Library HRwgt
Require Export HRwequal.
Module mHRwgt (N:Num_w).
Import N.
Module Export LL := mHRwequal(N).
Definition HRwgt (y x : HRw) : Prop :=
match y with @exist _ _ yy Hyy ⇒
match x with @exist _ _ xx Hxx ⇒
(∃ n, lim n ∧ 0 < n ∧ (w ≤ (n*(yy+ (-xx)))))
end end.
Notation "0w" := HRw0.
Notation "1w" := HRw1.
Notation "x >w y" := (HRwgt x y) (at level 50).
Lemma HRwgt_Zgt : ∀ x y:HRw, HRwgt x y → (proj1_sig y) < (proj1_sig x).
Proof.
intros x y; case x; intros xx Hxx; case y; intros yy Hyy.
simpl;intros Hexists.
elim Hexists; intros n (Hlim,(Hlt,H)).
apply lt_plus_inv with (oppA yy).
setoid_replace (yy + - yy) with a0 by ring.
apply lt_mult_inv with n .
assumption.
setoid_replace (n × 0) with 0 by ring.
apply lt_le_trans with w.
apply Aw.
assumption.
Qed.
Lemma HRwgt_Zgt' : ∀ (a b:A) (Ha:P a) (Hb: P b),
HRwgt (exist (fun (x:A) ⇒ P x) a Ha) (exist (fun (x:A) ⇒ P x) b Hb) → b < a.
Proof.
intros a b Ha Hb H.
change (proj1_sig (exist (fun (x:A) ⇒ P x) b Hb) < proj1_sig (exist (fun (x:A) ⇒ P x) a Ha)).
apply HRwgt_Zgt; assumption.
Qed.
End mHRwgt.
Module mHRwgt (N:Num_w).
Import N.
Module Export LL := mHRwequal(N).
Definition HRwgt (y x : HRw) : Prop :=
match y with @exist _ _ yy Hyy ⇒
match x with @exist _ _ xx Hxx ⇒
(∃ n, lim n ∧ 0 < n ∧ (w ≤ (n*(yy+ (-xx)))))
end end.
Notation "0w" := HRw0.
Notation "1w" := HRw1.
Notation "x >w y" := (HRwgt x y) (at level 50).
Lemma HRwgt_Zgt : ∀ x y:HRw, HRwgt x y → (proj1_sig y) < (proj1_sig x).
Proof.
intros x y; case x; intros xx Hxx; case y; intros yy Hyy.
simpl;intros Hexists.
elim Hexists; intros n (Hlim,(Hlt,H)).
apply lt_plus_inv with (oppA yy).
setoid_replace (yy + - yy) with a0 by ring.
apply lt_mult_inv with n .
assumption.
setoid_replace (n × 0) with 0 by ring.
apply lt_le_trans with w.
apply Aw.
assumption.
Qed.
Lemma HRwgt_Zgt' : ∀ (a b:A) (Ha:P a) (Hb: P b),
HRwgt (exist (fun (x:A) ⇒ P x) a Ha) (exist (fun (x:A) ⇒ P x) b Hb) → b < a.
Proof.
intros a b Ha Hb H.
change (proj1_sig (exist (fun (x:A) ⇒ P x) b Hb) < proj1_sig (exist (fun (x:A) ⇒ P x) a Ha)).
apply HRwgt_Zgt; assumption.
Qed.
End mHRwgt.