Library w_n
Require Export ZArith.
Require Export LaugwitzSchmieden.
Module LSn <: Num_w.
Include LS.
Definition w :A := fun (n:nat) ⇒ Z_of_nat n.
Lemma ANS3 : ¬ lim w.
Proof.
apply beta_lim.
Qed.
Lemma Aw : 0 <A w.
Proof.
unfold ltA,w,a0.
∃ 1%nat.
induction n.
omega.
unfold Zlt;simpl; trivial.
Qed.
Lemma lim_lt_w : ∀ a, lim a∧ leA 0 a → ltA a w.
Proof.
apply lim_lt_beta.
Qed.
Lemma div_modw2 : ∀ a, w*(a/w) =A a + - (a mod% w).
Proof.
intros; apply div_mod2.
left; apply Aw.
Qed.
Lemma div_modw3 : ∀ a, |(a mod% w)| <A w.
Proof.
intros; apply div_mod3.
apply Aw.
Qed.
End LSn.
Require Export LaugwitzSchmieden.
Module LSn <: Num_w.
Include LS.
Definition w :A := fun (n:nat) ⇒ Z_of_nat n.
Lemma ANS3 : ¬ lim w.
Proof.
apply beta_lim.
Qed.
Lemma Aw : 0 <A w.
Proof.
unfold ltA,w,a0.
∃ 1%nat.
induction n.
omega.
unfold Zlt;simpl; trivial.
Qed.
Lemma lim_lt_w : ∀ a, lim a∧ leA 0 a → ltA a w.
Proof.
apply lim_lt_beta.
Qed.
Lemma div_modw2 : ∀ a, w*(a/w) =A a + - (a mod% w).
Proof.
intros; apply div_mod2.
left; apply Aw.
Qed.
Lemma div_modw3 : ∀ a, |(a mod% w)| <A w.
Proof.
intros; apply div_mod3.
apply Aw.
Qed.
End LSn.