Library w
Require Export LaugwitzSchmieden.
Module LSw <: Num_w.
Include LS.
Parameter w: nat→Z.
Axiom ANS3 : ¬lim w.
Axiom Aw : 0<A w.
Axiom lim_lt_w : ∀ a, lim a∧ leA 0 a → ltA a w.
Lemma div_modw2 : ∀ a, w*(a/w) =A a + - (a mod% w).
Proof.
intros a; apply div_mod2.
left; apply Aw.
Qed.
Lemma div_modw3 : ∀ a, |(a mod% w)| <A w.
Proof.
intros a; apply div_mod3.
apply Aw.
Qed.
End LSw.
Module LSw <: Num_w.
Include LS.
Parameter w: nat→Z.
Axiom ANS3 : ¬lim w.
Axiom Aw : 0<A w.
Axiom lim_lt_w : ∀ a, lim a∧ leA 0 a → ltA a w.
Lemma div_modw2 : ∀ a, w*(a/w) =A a + - (a mod% w).
Proof.
intros a; apply div_mod2.
left; apply Aw.
Qed.
Lemma div_modw3 : ∀ a, |(a mod% w)| <A w.
Proof.
intros a; apply div_mod3.
apply Aw.
Qed.
End LSw.