Library tarski_axioms

Require Export general_tactics.

This version of the axioms of Tarski is the one given in Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski, Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.
This axioms system is the result of a long history of axiom systems for geometry studied by Tarski, Schwabhäuser, Szmielew and Gupta.

Class Tarski_neutral_dimensionless := {
 Tpoint : Type;
 Bet : TpointTpointTpointProp;
 Cong : TpointTpointTpointTpointProp;
 between_identity : A B, Bet A B AA=B;
 cong_pseudo_reflexivity : A B : Tpoint, Cong A B B A;
 cong_identity : A B C : Tpoint, Cong A B C CA = B;
 cong_inner_transitivity : A B C D E F : Tpoint,
   Cong A B C DCong A B E FCong C D E F;
 inner_pasch : A B C P Q : Tpoint,
      Bet A P CBet B Q C
       x, Bet P x B Bet Q x A;
 five_segments : A A' B B' C C' D D' : Tpoint,
    Cong A B A' B'
    Cong B C B' C'
    Cong A D A' D'
    Cong B D B' D'
    Bet A B CBet A' B' C'A BCong C D C' D';
 segment_construction : A B C D : Tpoint,
     E : Tpoint, Bet A B E Cong B E C D;
 lower_dim : A, B, C, ¬ (Bet A B C Bet B C A Bet C A B)
}.

Class Tarski_2D `(Tn : Tarski_neutral_dimensionless) := {
  upper_dim : A B C P Q : Tpoint,
    P QCong A P A QCong B P B QCong C P C Q
    (Bet A B C Bet B C A Bet C A B)
}.

Class Tarski_2D_euclidean `(T2D : Tarski_2D) := {
  euclid : A B C D T : Tpoint,
    Bet A D TBet B D CAD
     x, y,
    Bet A B x Bet A C y Bet x T y
}.

Class EqDecidability U := {
 eq_dec_points : A B : U, A=B ¬ A=B
}.

Class InterDecidability U (Col : UUUProp) := {
 inter_dec : A B C D,
   ( I, Col I A B Col I C D)
 ¬ ( I, Col I A B Col I C D)
}.

We describe here a variant of the axiom system proposed by T.J.M. Makarios in June 2013. This variant has a slightly different five_segments axioms and allows to remove the cong_pseudo_reflexivity axiom. All axioms have been shown to be independent except cong_identity and inner_pasch.

Class Tarski_neutral_dimensionless_variant := {
 MTpoint : Type;
 BetM : MTpointMTpointMTpointProp;
 CongM : MTpointMTpointMTpointMTpointProp;
 Mbetween_identity : A B : MTpoint, BetM A B AA = B;
 Mcong_identity : A B C : MTpoint, CongM A B C CA = B;
 Mcong_inner_transitivity : A B C D E F : MTpoint,
   CongM A B C DCongM A B E FCongM C D E F;
 Minner_pasch : A B C P Q : MTpoint,
      BetM A P CBetM B Q C
       x, BetM P x B BetM Q x A;
 Mfive_segments : A A' B B' C C' D D' : MTpoint,
    CongM A B A' B'
    CongM B C B' C'
    CongM A D A' D'
    CongM B D B' D'
    BetM A B CBetM A' B' C'A BCongM D C C' D';
 Msegment_construction : A B C D : MTpoint,
     E : MTpoint, BetM A B E CongM B E C D;
 Mlower_dim : A, B, C, ¬ (BetM A B C BetM B C A BetM C A B)
 }.

We describe here an intuitionistic version of Tarski's axiom system proposed by Michael Beeson.

Class intuitionistic_Tarski_neutral_dimensionless := {
 ITpoint : Type;
 IBet : ITpointITpointITpointProp;
 ICong : ITpointITpointITpointITpointProp;
 Cong_stability : A B C D, ¬ ¬ ICong A B C DICong A B C D;
 Bet_stability : A B C, ¬ ¬ IBet A B CIBet A B C;
 IT (A B C : ITpoint) := ¬ (AB BC ¬ IBet A B C);
 ICol (A B C : ITpoint) := AB ¬ (~ IT C A B ¬ IT A C B ¬ IT A B C);
 Ibetween_identity : A B, ¬ IBet A B A;
 Icong_identity : A B C, ICong A B C CA = B;
 Icong_pseudo_reflexivity : A B : ITpoint, ICong A B B A;
 Icong_inner_transitivity : A B C D E F,
   ICong A B C DICong A B E FICong C D E F;
 Iinner_pasch : A B C P Q,
   IBet A P CIBet B Q C¬ ICol A B C
    x, IBet P x B IBet Q x A;
 Ibetween_symmetry : A B C, IBet A B CIBet C B A;
 Ibetween_inner_transitivity : A B C D, IBet A B DIBet B C DIBet A B C;
 Ifive_segments : A A' B B' C C' D D',
    ICong A B A' B'
    ICong B C B' C'
    ICong A D A' D'
    ICong B D B' D'
    IT A B CIT A' B' C'A BICong C D C' D';
 Isegment_construction : A B C D,
    AB E, IT A B E ICong B E C D;
 Ilower_dim : A, B, C, ¬ IT C A B ¬ IT A C B ¬ IT A B C
}.