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Overview

By definition checking if a proof is correct is decidable (even if
knowing that a formula is a theorem is undecidable in general).

Hence, in principle we can build proof assistants.

In practice:

Examples

Coq

Isabelle

PVS

HOL-Light

. . .
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Motivations
Overview

What is Coq ?

A proof assistant

base on type theory

that you can download here: http://coq.inria.fr.

It allows to :

define mathematical concepts

define programs

check proofs

Coq is not

an automated theorem prover nor

a tool which help you find proofs.
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Motivations
Overview

Geometry is central in the history of proofs

Euclid (−325-−265) The Elements.
The axiomatic method

Hilbert (1862-1943) Die Grundlagen
der Geometrie.
Formal mathematics

Tarski (1902-1983)
Metamathematische
Methoden in der
Geometrie.
Automation,
axiomatization
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But also lead to a long history of . . .

. . . incorrect proofs !

In 1763, in his dissertation Klügel provides a survey of about 30
attempts to “prove” Euclid’s parallel postulate” [Klu63].

Examples:

Ptolemy assumes implicitly Playfair axioms (unicity of
parallel).

Proclus assumes implicitly “If a line intersects one of two
parallel lines, both of which are coplanar with the original line,
then it must intersect the other also.”

Legendre published several incorrect proofs of Euclid 5 in his
best-seller “Éléments de géométrie”.
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Which kind of axiom system ?

Synthetic geometry Start with some geometric objects + axioms
about them . . .

Hilbert’s axiom system: points, lines and planes
Tarski’s axiom system
. . . many others variants (constructive, . . . )

Birkhoff’s axioms Start with a field for measuring distances and
angles + synthetic axioms

Analytic geometry Start with a field. Define geometric objects by
equations involving coordinates.
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Motivations
Overview

Synthetic geometry approach is appealing because it allows to have
results in neutral geometry.
But still we want to obtain the connection with analytic geometry
for the efficient automated deductions methods.
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Why the axioms of Tarski ?

There are simple.

11 axioms
two intuitive predicates (β AB C , AB ≡ CD)
no definition inside the axiom system

Good meta-theory:

decidability
categoricity
independance (almost)

Work for any dimension without modifying the language.
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Congruence axioms

Congruence Pseudo-Transitivity
AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Congruence Symmetry AB ≡ BA

Congruence Identity AB ≡ CC ⇒ A = B
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Betweeness axiom

Between identity β AB A⇒ A = B
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Five segments axiom

b

A
b

B
b

C

b D

b

A′

b

B′

b

C ′

b D
′

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧
AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧
β AB C ∧ β A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Some kind of SAS axiom without using angle congruence.
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Segment construction axiom

bc

b
A b

B

b
C

b
D

b
E

∃E , β AB E ∧ BE ≡ CD
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Pasch’s axiom

Allows to formalize some gaps in
Euclid’s Elements.
We have the inner form :

β AP C∧β B Q C ⇒ ∃X , β P X B∧β Q X A

bA

bB

bC

bP

b QbX

Moritz Pasch
(1843-1930)
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Overview

Parallel postulate

∃XY , β AD T ∧ β B D C ∧ A 6= D ⇒
β AB X ∧ β AC Y ∧ β X T Y

X Y

b
A

bB

b
C

b

T

b
D

This statement is equivalent to
Euclid 5th postulate.

Comes from an incorrect proof of
Euclid 5th by Legendre.

Adrien-Marie Legendre
(1752-1833) (watercolor

caricature by Julien

Léopold Boilly)
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Some Other Parallel Postulates
with Pierre Boutry

Theorem parallel_postulates:

decidability_of_intersection ->

((triangle_circumscription <-> tarski_parallel_postulate) /\

(playfair <-> tarski_parallel_postulate) /\

(par_perp_perp_property <-> tarski_parallel_postulate) /\

(par_perp_2_par_property <-> tarski_parallel_postulate) /\

(proclus <-> tarski_parallel_postulate) /\

(transitivity_of_par <-> tarski_parallel_postulate) /\

(strong_parallel_postulate <-> tarski_parallel_postulate) /\

(euclid_5 <-> tarski_parallel_postulate)).



Tarski vs Hilbert

Class Tarski := {

Tpoint : Type;

Bet : Tpoint -> Tpoint -> Tpoint -> Prop;

Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;

between_identity : forall A B, Bet A B A -> A=B;

cong_pseudo_reflexivity : forall A B : Tpoint, Cong A B B A;

cong_identity : forall A B C : Tpoint, Cong A B C C -> A = B;

cong_inner_transitivity : forall A B C D E F : Tpoint,

Cong A B C D -> Cong A B E F -> Cong C D E F;

inner_pasch : forall A B C P Q : Tpoint,

Bet A P C -> Bet B Q C -> exists x, Bet P x B /\ Bet Q x A;

five_segments : forall A A’ B B’ C C’ D D’ : Tpoint,

Cong A B A’ B’ -> Cong B C B’ C’ -> Cong A D A’ D’ -> Cong B D B’ D’ ->

Bet A B C -> Bet A’ B’ C’ -> A <> B -> Cong C D C’ D’;

segment_construction : forall A B C D : Tpoint,

exists E : Tpoint, Bet A B E /\ Cong B E C D;

lower_dim : exists A, exists B, exists C, ~ (Bet A B C \/ Bet B C A \/ Bet C A B)

upper_dim : forall A B C P Q : Tpoint,

P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->

(Bet A B C \/ Bet B C A \/ Bet C A B)

euclid : forall A B C, ~ (Bet A B C \/ Bet B C A \/ Bet C A B) ->

exists CC, Cong A CC B CC /\ Cong A CC C CC

}.



Tarski vs Hilbert I

Class Hilbert := {

Point : Type;

Line : Type;

EqL : Line -> Line -> Prop;

EqL_Equiv : Equivalence EqL;

Incid : Point -> Line -> Prop;

(** Group I Incidence *)

line_existence : forall A B, A<>B -> exists l, Incid A l /\ Incid B l;

line_unicity : forall A B l m, A <> B -> Incid A l -> Incid B l -> Incid A m -> Incid B m -> EqL l m;

two_points_on_line : forall l, exists A, exists B, Incid B l /\ Incid A l /\ A <> B;

ColH := fun A B C => exists l, Incid A l /\ Incid B l /\ Incid C l;

plan : exists A, exists B, exists C, ~ ColH A B C;

(** Group II Order *)

BetH : Point -> Point -> Point -> Prop;

between_col : forall A B C : Point, BetH A B C -> ColH A B C;

between_comm : forall A B C : Point, BetH A B C -> BetH C B A;

between_out : forall A B : Point, A <> B -> exists C : Point, BetH A B C;

between_only_one : forall A B C : Point, BetH A B C -> ~ BetH B C A /\ ~ BetH B A C;

between_one : forall A B C, A<>B -> A<>C -> B<>C -> ColH A B C -> BetH A B C \/ BetH B C A \/ BetH B A C;

cut := fun l A B => ~ Incid A l /\ ~ Incid B l /\ exists I, Incid I l /\ BetH A I B;



Tarski vs Hilbert II

pasch : forall A B C l, ~ ColH A B C -> ~ Incid C l -> cut l A B -> cut l A C \/ cut l B C;

(** Group III Parallels *)

Para := fun l m => ~ exists X, Incid X l /\ Incid X m;

euclid_existence : forall l P, ~ Incid P l -> exists m, Para l m;

euclid_unicity : forall l P m1 m2, ~ Incid P l -> Para l m1 -> Incid P m1-> Para l m2 -> Incid P m2 -> EqL m1 m2;

(** Group IV Congruence *)

CongH : Point -> Point -> Point -> Point -> Prop;

cong_pseudo_transitivity : forall A B C D E F, CongH A B C D -> CongH A B E F -> CongH C D E F;

cong_refl : forall A B, CongH A B A B;

cong_existence : forall A B l M, A <> B -> Incid M l -> exists A’, exists B’,

Incid A’ l /\ Incid B’ l /\ BetH A’ M B’ /\ CongH M A’ A B /\ CongH M B’ A B;

cong_unicity : forall A B l M A’ B’ A’’ B’’, A <> B -> Incid M l ->

Incid A’ l -> Incid B’ l ->

Incid A’’ l -> Incid B’’ l ->

BetH A’ M B’ -> CongH M A’ A B ->

CongH M B’ A B -> BetH A’’ M B’’ ->

CongH M A’’ A B ->

CongH M B’’ A B ->

(A’ = A’’ /\ B’ = B’’) \/ (A’ = B’’ /\ B’ = A’’);

disjoint := fun A B C D => ~ exists P, BetH A P B /\ BetH C P D;

addition: forall A B C A’ B’ C’, ColH A B C -> ColH A’ B’ C’ ->

disjoint A B B C -> disjoint A’ B’ B’ C’ ->



Tarski vs Hilbert III

CongH A B A’ B’ -> CongH B C B’ C’ -> CongH A C A’ C’;

Angle := @Triple Point;

angle := build_triple Point;

CongaH : Angle -> Angle -> Prop;

cong_5 : forall A B C A’ B’ C’, forall H1 : (B<>A /\ C<>A), forall H2: B’ <> A’ /\ C’ <> A’,

forall H3 : (A<>B /\ C<>B), forall H4: A’ <> B’ /\ C’ <> B’,

CongH A B A’ B’ -> CongH A C A’ C’ -> CongaH (angle B A C H1) (angle B’ A’ C’ H2) ->

CongaH (angle A B C H3) (angle A’ B’ C’ H4);

same_side := fun A B l => exists P, cut l A P /\ cut l B P;

outH := fun P A B => BetH P A B \/ BetH P B A \/ (P <> A /\ A = B);

InAngleH := fun a P =>

(exists M, BetH (V1 a) M (V2 a) /\ ((outH (V a) M P) \/ M = (V a))) \/

outH (V a) (V1 a) P \/ outH (V a) (V2 a) P;

Hline := @Couple Point;

line_of_hline : Hline -> Line;

hline_construction := fun a (h: Hline) P (hc:Hline) H =>

(P1 h) = (P1 hc) /\

CongaH a (angle (P2 h) (P1 h) (P2 hc) (conj (sym_not_equal (Cond h)) H)) /\

(forall M, InAngleH (angle (P2 h) (P1 h) (P2 hc) (conj (sym_not_equal (Cond h)) H)) M ->

same_side P M (line_of_hline h));



Tarski vs Hilbert IV

aux : forall (h h1 : Hline), P1 h = P1 h1 -> P2 h1 <> P1 h;

hcong_4_existence: forall a h P,

~Incid P (line_of_hline h) -> ~ BetH (V1 a)(V a)(V2 a) ->

exists h1, (P1 h) = (P1 h1) /\ (forall CondAux : P1 h = P1 h1,

CongaH a (angle (P2 h) (P1 h) (P2 h1) (conj (sym_not_equal (Cond h)) (aux h h1 CondAux)))

/\ (forall M, ~ Incid M (line_of_hline h) /\ InAngleH (angle (P2 h) (P1 h) (P2 h1) (conj (sym_not_equal (Cond h)) (aux h h1 CondAux))) M

-> same_side P M (line_of_hline h)));

hEq : relation Hline := fun h1 h2 => (P1 h1) = (P1 h2) /\

((P2 h1) = (P2 h2) \/ BetH (P1 h1) (P2 h2) (P2 h1) \/

BetH (P1 h1) (P2 h1) (P2 h2));

hcong_4_unicity :

forall a h P h1 h2 HH1 HH2,

~Incid P (line_of_hline h) -> ~ BetH (V1 a)(V a)(V2 a) ->

hline_construction a h P h1 HH1 -> hline_construction a h P h2 HH2 ->

hEq h1 h2

}.



Our formalization of geometry within Coq (joint work with P. Boutry, G. Braun, J.D. Genevaux, P. Schreck)
Toward a Certified ETC (joint work with D. Braun)

Motivations
Overview

Results

Formalization of the first 14 chapters of SST, this includes:

A big library in neutral dimensionless geometry: projection,
axial symetry, angles, midpoint . . .
Geometric proof of Pappus and Desargues by Gabriel Braun
Construction of the field of coordinates by Gabriel Braun

Integration of automated deduction methods

Connection with other axiom systems

Some “high-level” theorems: quadrilaterals, midpoints,
Varignon, Euler line, well known triangle centers, . . .
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Motivations
Overview

Automation

Big scale automation

Tools to prove a theorem completly:

Simple version of Wu’s method (with Jean-David Genevaux)
[GNS11].

Area Method of Chou, Gao and Zhang [Nar04, JNQ12].

Small scale automation [BNSB14] (with Boutry and Schreck)

Tools to simplify interactive proofs:

Tactics to deal with ndgs: A 6= B, ¬Col(A,B,C )

Tactics to deal with permutations: AB ‖ CD ≡ DC ‖ BA
Tactics to deal with pseudo transitivity of Col , etc.
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Overview of the formalization in Coq
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Motivations
Overview

Statistics

Definitions 356
Lemmas (manual) 2300
Proofs 104 kloc

We need proof search !
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Our approach
Results

Triangle centers

Since centuries geometers have
studied some special points of
triangles.

1 Center of gravity

2 Circumcenter

3 Orthocenter

4 Incenter

5 . . .

These points have some
properties, for example :

1 H,G and O are collinear:
Euler line

2 . . .
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Clark Kimberling’s Encyclopedia of Triangle Centers

Clark Kimberling’s
encyclopedia
contains:

more than
6000 centers

and thousands
of properties

,

presented
without
proofs.

Many results come
from computer
computations.
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How to trust these results ?

To use one of these result you need to assume:

1 The definitions corresponds to our intention.

2 The algorithms and theorems used are correct
(characterization of collinearity using coordinates,
normalization or simplification of expressions involving radicals
and/or trigonometric functions).

3 No typo was introduced while copying the results in the
encyclopedia.

4 The compiler, the web server, the OS and the hardware are
correct.

In this project we want to reduce the trusted code base to the one
of Coq.
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The points in the encyclopedia are defined by

geometric constructions midpoint, reflection, intersection of lines,
center of circle, . . . , and many advanced geometric
constructions

physical properties X(5626) = Center of eletrostatic potential

coordinates X(1092) = trilinear cube of X(3)
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Coordinates of the points

Can be expressed using
homogeneous coordinates as:

Polynomials in a, b, c

Radical expressions in a, b, c

Trigonometric expressions
involving A, B, C
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The kind of problems

Given a set P of points:

1 Find all triples (A,B,C ) ∈ P3 such that Col(A,B,C ).

2 For some function of arity n, find all (P1, . . . ,Pn,Q) ∈ Pn+1

such that f (P1, . . .Pn) = Q
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Our Approach

1 Start with the list of homogeneous coordinates

2 Find properties using symbolic numeric computations on few
triangles

In practice one triangle is enough
Maple’s numeric computations is not enough
I did not try exact numeric computation (core library)
Needs normalization of expressions involving radicals

Example:
√

3 + 2
√

2− 1−
√

2 = 0

3 Check properties using a CAS (Maple)

Could not check all properties

4 Check properties using a proof assistant (Coq)

Remove trigonometric expressions using: cos(A) = a2−b2−c2

−2bc
Heuristic to pseudo-normalize some expressions involving
radicals

Narboux
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Preliminary Results

Statistics for 6000 points

Type of property CAS Coq
Col 68820 67454

Isotomic conjugate 616 604
Complement 932 906
Cyclocevian Conjugate 17 16
Isogonal Conjugate 1954 1905
Hirst inverse 20769 9130
Ceva conjugate 12131 7592
...
Total 271568 193042 (71 %)

Computation time

About 50 core/day(s) of computation.
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Preliminary Results

Draft available here:
http://dpt-info.u-strasbg.fr/~narboux/draftCETC/
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Conclusion

We have a large library of formal geometry.

Still needs to be completed to integrate all differents parts.

Perspective

How to certify more properties ?

How to search in this database ? using sketches ?

How to find new properties ?
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Thank you.

Narboux



Our formalization of geometry within Coq (joint work with P. Boutry, G. Braun, J.D. Genevaux, P. Schreck)
Toward a Certified ETC (joint work with D. Braun)

Triangles centers
Our approach
Results

Bibliography I

Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel
Braun.
Using small scale automation to improve both accessibility and
readability of formal proofs in geometry.
In Francisco Botana and Pedro Quaresma, editors,
Automated Deduction in Geometry 2014, Proceedings of ADG
2014, pages 1–19, Coimbra, Portugal, July 2014.
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