Toward a Certified Encyclopedia of Geometry

Julien Narboux
Université de Strasbourg－ICube－CNRS

GC 2015 －Nanning
CCU3E

Outline

(1) Our formalization of geometry within Coq (joint work with P. Boutry, G. Braun, J.D. Genevaux, P. Schreck)

- Motivations
- Overview
- Axiom system
- Results
- Automation
(2) Toward a Certified ETC (joint work with D. Braun)
- Triangles centers
- Our approach
- Results

(My) History of Proof

(1) Clarify the hypotheses

(My) History of Proof

(1) Clarify the hypotheses
(2) Clarify what is a proof

(My) History of Proof

(1) Clarify the hypotheses
(2) Clarify what is a proof
(3) Be so precise that there is no need to understand the proof to check it

(My) History of Proof

(1) Clarify the hypotheses
(2) Clarify what is a proof
(3) Be so precise that there is no need to understand the proof to check it
(1) Automate proof generation

(My) History of Proof

(1) Clarify the hypotheses
(2) Clarify what is a proof
(3) Be so precise that there is no need to understand the proof to check it
(1) Automate proof generation

By definition checking if a proof is correct is decidable (even if knowing that a formula is a theorem is undecidable in general).

Hence, in principle we can build proof assistants.

By definition checking if a proof is correct is decidable (even if knowing that a formula is a theorem is undecidable in general).

Hence, in principle we can build proof assistants.

In practice:

Examples

- Coq
- Isabelle
- PVS
- HOL-Light
- ...

What is Coq ?

- A proof assistant
- base on type theory
- that you can download here: http://coq.inria.fr.

It allows to :

- define mathematical concepts
- define programs
- check proofs

What is Coq ?

- A proof assistant
- base on type theory
- that you can download here: http://coq.inria.fr.

It allows to :

- define mathematical concepts
- define programs
- check proofs

Coq is not

- an automated theorem prover nor
- a tool which help you find proofs.

Demo

Varignon's theorem

Demo

Varignon's theorem

Narboux

Geometry is central in the history of proofs

> Euclid (-325--265) The Elements.
> The axiomatic method
> Hilbert (1862-1943) Die Grundlagen
> der Geometrie.
> Formal mathematics
> Tarski (1902-1983)
> Metamathematische
> Methoden in der
> Geometrie.
> Automation,
> axiomatization

Geometry is central in the history of proofs

Euclid (-325--265) The Elements.
The axiomatic method
Hilbert (1862-1943) Die Grundlagen
der Geometrie.
Formal mathematics
Tarski (1902-1983)
Metamathematische
Methoden in der

Geometrie.
Automation,
axiomatization

Geometry is central in the history of proofs

Euclid (-325--265) The Elements.
The axiomatic method
Hilbert (1862-1943) Die Grundlagen
der Geometrie.
Formal mathematics
Tarski (1902-1983)
Metamathematische
Methoden in der
Geometrie.
Automation,
axiomatization

But also lead to a long history of . . .

incorrect proofs !

In 1763, in his dissertation Klügel provides a survey of about 30 attempts to "prove" Euclid's parallel postulate" [Klu63].

Examples:

- Ptolemy assumes implicitly Playfair axioms (unicity of parallel).
- Proclus assumes implicitly "If a line intersects one of two parallel lines, both of which are coplanar with the original line, then it must intersect the other also."
- Legendre published several incorrect proofs of Euclid 5 in his best-seller "Éléments de géométrie".

Our project

Which kind of axiom system ?

Synthetic geometry Start with some geometric objects + axioms about them ...

- Hilbert's axiom system: points, lines and planes
- Tarski's axiom system
- ... many others variants (constructive, ...)

Analytic geometry Start with a field. Define geometric objects by equations involving coordinates.

Which kind of axiom system ?

Synthetic geometry Start with some geometric objects + axioms about them ...

- Hilbert's axiom system: points, lines and planes
- Tarski's axiom system
- ... many others variants (constructive,)

Birkhoff's axioms Start with a field for measuring distances and angles + synthetic axioms
Analytic geometry Start with a field. Define geometric objects by equations involving coordinates.

Synthetic geometry approach is appealing because it allows to have results in neutral geometry. But still we want to obtain the connection with analytic geometry for the efficient automated deductions methods.

Why the axioms of Tarski ?

- There are simple.
- 11 axioms
- two intuitive predicates (β ABC, $A B \equiv C D$)
- no definition inside the axiom system

Why the axioms of Tarski ?

- There are simple.
- 11 axioms
- two intuitive predicates (β ABC, $A B \equiv C D$)
- no definition inside the axiom system
- Good meta-theory:
- decidability
- categoricity
- independance (almost)

Why the axioms of Tarski ?

- There are simple.
- 11 axioms
- two intuitive predicates (β ABC, $A B \equiv C D$)
- no definition inside the axiom system
- Good meta-theory:
- decidability
- categoricity
- independance (almost)
- Work for any dimension without modifying the language.

Congruence axioms

Congruence Pseudo-Transitivity

$$
A B \equiv C D \wedge A B \equiv E F \Rightarrow C D \equiv E F
$$

Congruence Symmetry $A B \equiv B A$
Congruence Identity $A B \equiv C C \Rightarrow A=B$

Betweeness axiom

Between identity $\beta A B A \Rightarrow A=B$

Five segments axiom

$$
\begin{aligned}
& A B \equiv A^{\prime} B^{\prime} \wedge B C \equiv B^{\prime} C^{\prime} \wedge \\
& A D \equiv A^{\prime} D^{\prime} \wedge B D \equiv B^{\prime} D^{\prime} \wedge \\
& \beta A B C \wedge \beta A^{\prime} B^{\prime} C^{\prime} \wedge A \neq B \Rightarrow C D \equiv C^{\prime} D^{\prime}
\end{aligned}
$$

Some kind of SAS axiom without using angle congruence.

Segment construction axiom

$\exists E, \beta A B E \wedge B E \equiv C D$

Pasch's axiom

Allows to formalize some gaps in
Euclid's Elements.
We have the inner form :
$\beta A P C \wedge \beta B Q C \Rightarrow \exists X, \beta P X B \wedge \beta Q X A$

Moritz Pasch (1843-1930)

Parallel postulate

$$
\exists X Y, \beta A D T \wedge \beta B D C \wedge A \neq D \Rightarrow
$$ $\beta A B X \wedge \beta A C Y \wedge \beta X T Y$

- This statement is equivalent to Euclid 5th postulate.
- Comes from an incorrect proof of

Adrien-Marie Legendre (1752-1833) (watercolor caricature by Julien

Léopold Boilly) Euclid 5th by Legendre.

Some Other Parallel Postulates

with Pierre Boutry

Theorem parallel_postulates:

```
    decidability_of_intersection ->
    ((triangle_circumscription <-> tarski_parallel_postulate) /\
    (playfair
    (par_perp_perp_property
    <> tarski_parallel_postulate) /\
    <-> tarski_parallel_postulate) /\
    (par_perp_2_par_property
    (proclus
    (transitivity_of_par
(strong_parallel_postulate
    (euclid_5 <-> tarski_parallel_postulate)).
    <-> tarski_parallel_postulate) /\
    <-> tarski_parallel_postulate) /\
    <-> tarski_parallel_postulate) /\
    <-> tarski_parallel_postulate) /\
```


\square

```
Class Tarski := {
    Tpoint : Type;
    Bet : Tpoint -> Tpoint -> Tpoint -> Prop;
    Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;
    between_identity : forall A B, Bet A B A -> A=B;
    cong_pseudo_reflexivity : forall A B : Tpoint, Cong A B B A;
    cong_identity : forall A B C : Tpoint, Cong A B C C -> A = B;
    cong_inner_transitivity : forall A B C D E F : Tpoint,
        Cong A B C D -> Cong A B E F >> Cong C D E F;
    inner_pasch : forall A B C P Q : Tpoint,
            Bet A P C -> Bet B Q C -> exists x, Bet P x B /\ Bet Q x A;
    five_segments : forall A A' B B' C C' D D' : Tpoint,
        Cong A B A' B' -> Cong B C B' C' -> Cong A D A' D' -> Cong B D B' D' ->
        Bet A B C -> Bet A' B' C' -> A <> B -> Cong C D C' D';
    segment_construction : forall A B C D : Tpoint,
        exists E : Tpoint, Bet A B E /\ Cong B E C D;
    lower_dim : exists A, exists B, exists C, ~ (Bet A B C \/ Bet B C A \/ Bet C
    upper_dim : forall A B C P Q : Tpoint,
        P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->
        (Bet A B C \/ Bet B C A \/ Bet C A B)
    euclid : forall A B C, ~ (Bet A B C \/ Bet B C A \/ Bet C A B) ->
        exists CC, Cong A CC B CC /\ Cong A CC C CC
}.
```

```
Class Hilbert := {
    Point : Type;
    Line : Type;
    EqL : Line -> Line -> Prop;
    EqL_Equiv : Equivalence EqL;
    Incid : Point -> Line -> Prop;
    (** Group I Incidence *)
    line_existence : forall A B, A<>B -> exists l, Incid A l /\ Incid B l;
    line_unicity : forall A B l m, A <> B -> Incid A l -> Incid B l -> Incid A m
    two_points_on_line : forall l, exists A, exists B, Incid B l \\ Incid A l \\ A
    ColH := fun A B C => exists l, Incid A l \\ Incid B l \\ Incid C l;
    plan : exists A, exists B, exists C, ~ ColH A B C;
    (** Group II Order *)
    BetH : Point -> Point -> Point -> Prop;
    between_col : forall A B C : Point, BetH A B C -> ColH A B C;
    between_comm : forall A B C : Point, BetH A B C -> BetH C B A;
    between_out : forall A B : Point, A <> B -> exists C : Point, BetH A B C;
    between_only_one : forall A B C : Point, BetH A B C -> ~ BetH B C A /\ ~ BetH
    between_one : forall A B C, A<>B -> A<>C -> B<>C -> ColH A B C -> BetH A B C
    cut := fun l A B => ~ Incid A l \\ ~ Incid B l / exists I, Incid I l /\ BetH
```

pasch : forall A B C l, ~ ColH A B C \rightarrow ~ Incid C l \rightarrow cut 1 A B \rightarrow cut 1 A C (** Group III Parallels *)
Para := fun $1 \mathrm{~m} \Rightarrow{ }^{\sim}$ exists X, Incid X $1 / \backslash$ Incid X m;
euclid_existence : forall $1 \mathrm{P}, \sim$ Incid $P 1->$ exists m, Para 1 m ;
euclid_unicity : forall 1 P m 1 m 2 , ~ $\operatorname{Incid} \mathrm{P} 1 \mathrm{l}$ Para 1 m 1 -> Incid P m1-> P
(** Group IV Congruence *)
CongH : Point -> Point -> Point -> Point -> Prop;
cong_pseudo_transitivity : forall A B C D E F, CongH A B C D \rightarrow CongH A B E F cong_refl : forall A B, CongH A B A B;
cong_existence : forall A B l M, A <> B \rightarrow Incid M l $->$ exists A^{\prime}, exists B^{\prime},

Incid A' 1 -> Incid B' $1->$
Incid A', 1 -> Incid B', 1 ->
BetH A' M B' $->$ CongH M A' A B $->$
CongH M B' A B $\rightarrow \operatorname{Bet} H$ A', M B', $->$
CongH M A', A B \rightarrow
CongH M B', A B $->$
$\left(A^{\prime}=A^{\prime} \prime / \backslash B^{\prime}=B^{\prime} \prime\right) \backslash /\left(A^{\prime}=B^{\prime} \prime / \backslash B^{\prime}=A^{\prime} \prime\right)$;
disjoint $:=$ fun $A B C D \Rightarrow \sim$ exists P, BetH A P B $/ \backslash \operatorname{BetH} C P D ;$
addition: forall A B C A' B' C', ColH A B C \rightarrow ColH A' B' C' $->$
disjoint A B B C -> disjoint A' B' B' C' ->

CongH A B A' B' \rightarrow CongH B C B' C' \rightarrow CongH A

```
Angle := @Triple Point;
angle := build_triple Point;
CongaH : Angle -> Angle -> Prop;
cong_5 : forall A B C A' B' C', forall H1 : (B<>A /\ C<>A), forall H2: B' <> A
    forall H3 : (A<>B /\ C<>B), forall H4: A' <> B' /\ C' <> B',
    CongH A B A' B' }->\mathrm{ CongH A C A' C' }->\mathrm{ CongaH (angle B A C H1) (angle B' A' C'
    CongaH (angle A B C H3) (angle A' B' C' H4);
same_side := fun A B l => exists P, cut l A P N cut l B P;
outH := fun P A B => BetH P A B \/ BetH P B A \/ (P <> A /\ A = B);
InAngleH := fun a P =>
(exists M, BetH (V1 a) M (V2 a) /\ ((outH (V a) M P) \/ M = (V a))) \/
                                    outH (V a) (V1 a) P \/ outH (V a) (V2 a) P;
Hline := @Couple Point;
line_of_hline : Hline -> Line;
hline_construction := fun a (h: Hline) P (hc:Hline) H =>
(P1 h) = (P1 hc) /\
CongaH a (angle (P2 h) (P1 h) (P2 hc) (conj (sym_not_equal (Cond h)) H)) /\
(forall M, InAngleH (angle (P2 h) (P1 h) (P2 hc) (conj (sym_not_equal (Cond h
    same_side P M (line_of_hline h));
```

```
aux : forall (h h1 : Hline), P1 h = P1 h1 -> P2 h1 <> P1 h;
    hcong_4_existence: forall a h P,
~ Incid P (line_of_hline h) -> ~ BetH (V1 a)(V a) (V2 a) ->
exists h1, (P1 h) = (P1 h1) /\ (forall CondAux : P1 h = P1 h1,
                    CongaH a (angle (P2 h) (P1 h) (P2 h1) (conj
                    /\ (forall M, ~ Incid M (line_of_hline h)
                        -> same_side P M (line_of_
```

hEq : relation Hline $:=$ fun h1 h2 $\Rightarrow(P 1 h 1)=(P 1 h 2) /$
$((\mathrm{P} 2 \mathrm{~h} 1)=(\mathrm{P} 2 \mathrm{~h} 2) \backslash / \mathrm{BetH}(\mathrm{P} 1 \mathrm{~h} 1)(\mathrm{P} 2 \mathrm{~h} 2)(\mathrm{P} 2 \mathrm{~h} 1) ~ \ /$
$\operatorname{BetH}(\mathrm{P} 1 \mathrm{~h} 1)$ (P 2 h 1) (P 2 h 2$)$)
hcong_4_unicity :
forall a h P h1 h2 HH1 HH2,
~Incid P (line_of_hline h) -> ~ BetH (V1 a) (V a) (V2 a) ->
hline_construction a h P h1 HH1 -> hline_construction a h P h2 HH2 ->
hEq h1 h2
\}.

Results

- Formalization of the first 14 chapters of SST, this includes:
- A big library in neutral dimensionless geometry: projection, axial symetry, angles, midpoint ...
- Geometric proof of Pappus and Desargues by Gabriel Braun
- Construction of the field of coordinates by Gabriel Braun
- Integration of automated deduction methods
- Connection with other axiom systems
- Some "high-level" theorems: quadrilaterals, midpoints, Varignon, Euler line, well known triangle centers, ...

Automation

Big scale automation

Tools to prove a theorem completly:

- Simple version of Wu's method (with Jean-David Genevaux) [GNS11].
- Area Method of Chou, Gao and Zhang [Nar04, JNQ12].

Small scale automation [BNSB14] (with Boutry and Schreck)

Tools to simplify interactive proofs:

- Tactics to deal with ndgs: $A \neq B, \neg \operatorname{Col}(A, B, C)$
- Tactics to deal with permutations: $A B\|C D \equiv D C\| B A$
- Tactics to deal with pseudo transitivity of Col, etc.

Overview of the formalization in Coq

Statistics

Definitions	356
Lemmas (manual)	2300
Proofs	104 kloc

We need proof search!

Toward a Certified ETC (joint work with D. Braun)

(1) Our formalization of geometry within Coq (joint work with P. Boutry, G. Braun, J.D. Genevaux, P. Schreck)

- Motivations
- Overview
- Axiom system
- Results
- Automation
(2) Toward a Certified ETC (joint work with D. Braun)
- Triangles centers
- Our approach
- Results

Triangle centers

Since centuries geometers have studied some special points of triangles.
(1) Center of gravity
(2) Circumcenter
(3) Orthocenter
(9) Incenter
© ...
These points have some
 properties, for example:
(1) H, G and O are collinear:

Euler line
...

Triangle centers

Since centuries geometers have studied some special points of triangles.
(1) Center of gravity
(2) Circumcenter
(3) Orthocenter
(9) Incenter
© ...
These points have some properties, for example :

(1) H, G and O are collinear:

Euler line
...

Triangle centers

Since centuries geometers have studied some special points of triangles.
(1) Center of gravity
(2) Circumcenter
(3) Orthocenter
(9) Incenter
© ...
These points have some properties, for example :

(1) H, G and O are collinear:

Euler line
...

Triangle centers

Since centuries geometers have studied some special points of triangles.
(1) Center of gravity
(2) Circumcenter
(3) Orthocenter
(9) Incenter
© ...
These points have some properties, for example:
(1) H, G and O are collinear:

Euler line
...

Triangle centers

Since centuries geometers have studied some special points of triangles.
(1) Center of gravity
(2) Circumcenter
(3) Orthocenter
(3) Incenter
© ...
These points have some properties, for example:
(1) H,G and O are collinear: Euler line
...

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's encyclopedia contains:

- more than 6000 centers

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's encyclopedia contains:

- more than 6000 centers

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's encyclopedia contains:

- more than 6000 centers

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's encyclopedia contains:

- more than 6000 centers

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's

 encyclopedia
contains:

- more than 6000 centers
- and thousands of properties,

$X(5)=$ NINE-POINT CENTER

Trilinears $\quad \cos (\mathrm{B}-\mathrm{C}): \cos (\mathrm{C}-\mathrm{A}): \cos (\mathrm{A}-\mathrm{B})$ $f(C, A, B)$ where $f(A, B, C)=\cos A+2 \cos B \cos C$ $g(B, C, A): g(C, A, B)$, where $g(A, B, C)=\cos A-2 \sin B \sin C$ $=h(a, b,) ; h(b, c, a) ; h(c, a, b)$, where $h(a, b, c)=b c\left[a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}\right]$

Barycentrics a $\cos (\mathrm{B}-\mathrm{C}): \mathrm{b} \cos (\mathrm{C} \cdot \mathrm{A}): \mathrm{c} \cos (\mathrm{A} \cdot \mathrm{B})$
$=h(a, b, c): h(b, c, a): h(c, a, b)$, where $h(a, b, c)=a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}$
$X(5)$ is the center of the nine-point circle. Euler showed in that this circle passes through the midpoints of the sides of $A B C$ and the feet of the altitudes of $A B C$, hence six of the nine midpoints of segments A-to-X(4), B-to-X(4), C-to-X(4). The radius of the nine-point circle is one-half the circumradius.
Dan Pedoc, Circles: A Machematical Vlew, Mathematical Association of America, 1995.
If you have The Geometer's Sketchpad, you can view these sketches: Nine-point center, Euler Line, Roll Circle, MacBeath Inconic
X(5) lies on the Napoleon cubic (also known as the Feverbach cubic) and these lines:

 $\begin{array}{llllllll}1848,1871 & 1861,1872 & 2120,2121 & 3460,3461 & 3462,3463 & 3468,3469 & 3470,3471\end{array}$
$\mathrm{X}(5)$ is the $\{\mathrm{X}(2), \mathrm{X}(4)\}$-harmonic conjugate of $\mathrm{X}(3)$. For a list of other harmonic conjugates of $\mathrm{X}(5)$, click Tables at the top of this page
$\mathrm{X}(5)=$ homothetic center of medial triangle and Euler triangle
$X(5)=$ homothetic center of ABC and the triangle obtained by reflecting $\mathrm{X}(3)$ in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$
$\mathrm{X}(5)=$ radical center of the Stammler circles
$\mathrm{X}(5)=$ centroid of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}(4)\}$ (Randy Hutson, August 23, 2011)
$X(5)=$ midpoint of $X(t)$ and $X(j)$ for these (i, j) :
$X(1)=$ midpoint of $X(1)$ and $X(1)$ for these $(1,7):$
$(1,355),(2,381),(3,4),(11,119),(20,382),(68,155),(110,265),(113,125),(114,115),(116,118),(117,124),(122,133),(127,132),(128,137),(129,130),(131,136),(399,3448)$
$X(5)=$ reflection of $X(1)$ in $X(J)$ for these (IT $):(2,547),(3,140),(4,546),(20,548),(52,143),(549,2),(550,3),(1263,137),(1353,6),(1385,1125),(1483,1),(1484,11)$
$X(5)=$ isogonal conjugate of $X(54)$
$X(5)=$ isotomic conjugate of $X(95)$
$X(5)=$ inverse-in-circumcircle of $X(2070)$
$X(5)=$ inverse-in-orthocentroidal-circle of $X(3)$
$\mathrm{X}(5)=$ complement of $\mathrm{X}(3)$

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's

 encyclopedia contains:- more than 6000 centers
- and thousands of properties,
- presented without proofs.

$\mathbf{X}(5)=$ NINE-POINT CENTER

Trilinears $\quad \cos (\mathrm{B}-\mathrm{C}): \cos (\mathrm{C}-\mathrm{A}): \cos (\mathrm{A}-\mathrm{B})$ (C, A, B) where $f(A, B, C)=\cos A+2 \cos B \cos C$, $, C, A): g(C, A, B)$, where $g(A, B, C)=\cos A-2 \sin B \sin C$ $=h(a, b,) ; h(b, c, a) ; h(c, a, b)$, where $h(a, b, c)=b c\left[a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}\right]$

Barycentrics a $\cos (\mathrm{B}-\mathrm{C}): \mathrm{b} \cos (\mathrm{C} \cdot \mathrm{A}): \mathrm{c} \cos (\mathrm{A} \cdot \mathrm{B})$
$=h(a, b, c): h(b, c, a): h(c, a, b)$, where $h(a, b, c)=a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}$
$X(5)$ is the center of the nine-point circle. Euler showed in that this circle passes through the midpoints of the sides of $A B C$ and the feet of the altitudes of $A B C$, hence six of the nine midpoints of segments A-to-X(4), B-to-X(4), C-to-X(4). The radius of the nine-point circle is one-half the circumradius.
Dan Pedoc, Circles: A Machematical Vlew, Mathematical Association of America, 1995.
If you have The Geometer's Sketchpad, you can view these sketches: Nine-point center, Euler Line, Roll Circle, MacBeath Inconic
X(5) lies on the Napoleon cubic (also known as the Feverbach cubic) and these lines:

 $\begin{array}{llllllll}1848,1871 & 1861,1872 & 2120,2121 & 3460,3461 & 3462,3463 & 3468,3469 & 3470,3471\end{array}$
$\mathrm{X}(5)$ is the $\{\mathrm{X}(2), \mathrm{X}(4)\}$-harmonic conjugate of $\mathrm{X}(3)$. For a list of other harmonic conjugates of $\mathrm{X}(5)$, click Tables at the top of this page.
$\mathrm{X}(5)=$ homothetic center of medial triangle and Euler triangle
$X(5)=$ homothetic center of $A B C$ and the triangle obtained by reflecting $X(3)$ in the points A, B, C
$X(5)=$ radical center of the Stammer circles
$X(5)=$ eentroid of $\{A, B, C, X(4)\}$ (Randy Hutson, August 23, 2011)
$X(5)=$ midpoint of $X(t)$ and $X(j)$ for these (i, j) :
$(1,355),(2,381),(34),(11,119),(20,382),(58,155),(110,265),(113,125),(114,115),(116,118),(117,124),(122,133),(127,132),(128,137),(129,130),(131,136),(399,3448)$
$X(5)=$ reflection of $X(1)$ in $X(J)$ for these (IT): $(2,547),(3,140),(4,546),(20,548),(52,143),(549,2),(550,3),(1263,137),(1353,6),(1385,1125),(1483,1),(1484,11)$
$X(5)=$ isogonal conjugate of $X(54)$
$X(5)=$ isotomic conjugate of $X(95)$
$\mathrm{X}(5)=$ inverse-in-circumcircle of X(2070)
$\mathrm{X}(5)=$ inverse-in-orthocentroidal-circle of $\mathrm{X}(3)$
$\mathrm{X}(5)=$ complement of $\mathrm{X}(3)$

Clark Kimberling's Encyclopedia of Triangle Centers

Clark Kimberling's

 encyclopedia contains:- more than 6000 centers
- and thousands of properties,
- presented without proofs.
Many results come from computer computations.

$X(5)=$ NINE-POINT CENTER

Trilinears $\quad \cos (\mathrm{B}-\mathrm{C}): \cos (\mathrm{C}-\mathrm{A}): \cos (\mathrm{A}-\mathrm{B})$, $f(C, A, B)$, where $f(A, B, C)=\cos A+2 \cos B \cos C$ $g(B, C, A): g(C, A, B)$, where $g(A, B, C)=\cos A-2 \sin B \sin C$ $=h(a, b,) ; h(b, c, a) ; h(c, a, b)$, where $h(a, b, c)=b c\left[a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}\right]$

Barycentrics a $\cos (\mathrm{B}-\mathrm{C}): \mathrm{b} \cos (\mathrm{C} \cdot \mathrm{A}): \mathrm{c} \cos (\mathrm{A} \cdot \mathrm{B})$
$=h(a, b, c): h(b, c, a): h(c, a, b)$, where $h(a, b, c)=a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}$
$X(5)$ is the center of the nine-point circle. Euler showed in that this circle passes through the midpoints of the sides of $A B C$ and the feet of the altitudes of $A B C$, hence six of the nine midpoints of segments A-to-X(4), B-to-X(4), C-to-X(4). The radius of the nine-point circle is one-half the circumradius.
Dan Pedoe, Circles: A Machematical View, Mathematical Association of America, 1995.
If you have The Geometer's Sketchpad, you can view these sketches: Nine-point center, Euler Line, Roll Circle, MacBeath Inconic
X(5) lies on the Napoleon cubic (also known as the Fevertach cubic) and these lines:

 $\begin{array}{lllllll}1848,1871 & 1861,1872 & 2120,2121 & 3460,3461 & 3462,3463 & 3468,3469 & 3470,3471\end{array}$
$\mathrm{X}(5)$ is the $\{\mathrm{X}(2), \mathrm{X}(4)\}$-harmonic conjugate of $\mathrm{X}(3)$. For a list of other harmonic conjugates of $\mathrm{X}(5)$, click Tables at the top of this page.
$\mathrm{X}(5)=$ homothetic center of medial triangle and Euler triangle
$X(5)=$ homothetic center of ABC and the triangle obtained by reflecting $\mathrm{X}(3)$ in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$
$X(5)=$ radical center of the Stammer circles
$X(5)=$ eentroid of $\{A, B, C, X(4)\}$ (Randy Hutson, August 23, 2011)
$X(5)=$ midpoint of $X(t)$ and $X(j)$ for these (i, j) :
$(1,355),(2,381),(34),(11,119),(20,382),(58,155),(110,265),(113,125),(114,115),(116,118),(117,124),(122,133),(127,132),(128,137),(129,130),(131,136),(399,3448)$
$X(5)=$ reflection of $X(1)$ in $X(J)$ for these (IT): $(2,547),(3,140),(4,546),(20,548),(52,143),(549,2),(550,3),(1263,137),(1353,6),(1385,1125),(1483,1),(1484,11)$
$X(5)=$ isogonal conjugate of $X(54)$
$X(5)=$ isotomic conjugate of $X(95)$
$X(5)=$ inverse-in-circumcircle of $X(2070)$
$X(5)=$ inverse-in-orthocentroidal-circle of $X(3)$
$X(5)=$ complement of $X(3)$

How to trust these results ?

To use one of these result you need to assume:
(1) The definitions corresponds to our intention.
(2) The algorithms and theorems used are correct (characterization of collinearity using coordinates, normalization or simplification of expressions involving radicals and/or trigonometric functions).
(3) No typo was introduced while copying the results in the encyclopedia.
(9) The compiler, the web server, the OS and the hardware are correct.

How to trust these results ?

To use one of these result you need to assume:
(1) The definitions corresponds to our intention.
(2) The algorithms and theorems used are correct (characterization of collinearity using coordinates, normalization or simplification of expressions involving radicals and/or trigonometric functions).
(3) No typo was introduced while copying the results in the encyclopedia.
(9) The compiler, the web server, the OS and the hardware are correct.

In this project we want to reduce the trusted code base to the one of Coq.

The points in the encyclopedia are defined by
geometric constructions midpoint, reflection, intersection of lines, center of circle, ..., and many advanced geometric constructions
physical properties $X(5626)=$ Center of eletrostatic potential coordinates $X(1092)=$ trilinear cube of $X(3)$

Coordinates of the points

Can be expressed using homogeneous coordinates as:

- Polynomials in a, b, c
- Radical expressions in a, b, c
- Trigonometric expressions involving A, B, C

The kind of problems

Given a set P of points:
(1) Find all triples $(A, B, C) \in P^{3}$ such that $\operatorname{Col}(A, B, C)$.
(2) For some function of arity n, find all $\left(P_{1}, \ldots, P_{n}, Q\right) \in P^{n+1}$ such that $f\left(P_{1}, \ldots P_{n}\right)=Q$

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles
(3) Check properties using a CAS (Maple)

- Could not check all properties
(3) Check properties using a proof assistant (Coq)

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
(3) Check properties using a CAS (Maple)
- Could not check all properties
(3) Check properties using a proof assistant (Coq)

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
- Maple's numeric computations is not enough
(3) Check properties using a CAS (Maple)
- Could not check all properties
(9) Check properties using a proof assistant (Coq)

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
- Maple's numeric computations is not enough
- I did not try exact numeric computation (core library)
(3) Check properties using a CAS (Maple)
- Could not check all properties
(1) Check properties using a proof assistant (Coq)

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
- Maple's numeric computations is not enough
- I did not try exact numeric computation (core library)
- Needs normalization of expressions involving radicals

Example: $\sqrt{3+2 \sqrt{2}}-1-\sqrt{2}=0$
(3) Check properties using a CAS (Maple)

- Could not check all properties
(9) Check properties using a proof assistant (Coq)

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
- Maple's numeric computations is not enough
- I did not try exact numeric computation (core library)
- Needs normalization of expressions involving radicals

Example: $\sqrt{3+2 \sqrt{2}}-1-\sqrt{2}=0$
(3) Check properties using a CAS (Maple)

- Could not check all properties
(4) Check properties using a proof assistant (Coq)
- Remove trigonometric expressions using: $\cos (A)=\frac{a^{2}-b^{2}-c^{2}}{-2 b c}$

Our Approach

(1) Start with the list of homogeneous coordinates
(2) Find properties using symbolic numeric computations on few triangles

- In practice one triangle is enough
- Maple's numeric computations is not enough
- I did not try exact numeric computation (core library)
- Needs normalization of expressions involving radicals

Example: $\sqrt{3+2 \sqrt{2}}-1-\sqrt{2}=0$
(3) Check properties using a CAS (Maple)

- Could not check all properties
(1) Check properties using a proof assistant (Coq)
- Remove trigonometric expressions using: $\cos (A)=\frac{a^{2}-b^{2}-c^{2}}{-2 b c}$
- Heuristic to pseudo-normalize some expressions involving radicals

Preliminary Results

Statistics for 6000 points

Type of property	CAS	Coq
Col	68820	67454
Isotomic conjugate	616	604
Complement	932	906
Cyclocevian Conjugate	17	16
Isogonal Conjugate	1954	1905
Hirst inverse	20769	9130
Ceva conjugate	12131	7592
\ldots		
Total	271568	$193042(71 \%)$

Computation time

About 50 core/day(s) of computation.

Preliminary Results

Draft available here:

http://dpt-info.u-strasbg.fr/~narboux/draftCETC/

```
CertifiedETC Lists of points Transformation Tables -
Coqfiles About Links Credits
```


A Certified Version of Clark Kimberling's Encyclopedia of Triangle Centers

Early Draft

Warning!

The resuits displayed below are very preliminary. There are still issues: The list of properties is not complate. If it does not appear in the list, it does not mean that t does not hold.
The definitions of some geometric transiormations may be wrong.
Al Coq proots assume that all derominetors are non zero. That is why you heve an Admitted at he end of each proof.
Pase come back laier.

Legend

- Unwed The property is a conjecture, the property is checked only in some particular triangles
Wrimily We have a script for a CAS to check that the propety holds for any triangle (or for a large class of triangles)
Cortrod uraco con We have a script tor Coq to check that the property holds for any triangle (α for alarge class of triangles)
Generated:

Complement

2) $\mathrm{X}(2975)$

Conclusion

- We have a large library of formal geometry.
- Still needs to be completed to integrate all differents parts.

Perspective

- How to certify more properties ?
- How to search in this database ? using sketches ?
- How to find new properties?

Thank you.

Bibliography I

囦 Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun.
Using small scale automation to improve both accessibility and readability of formal proofs in geometry.
In Francisco Botana and Pedro Quaresma, editors,
Automated Deduction in Geometry 2014, Proceedings of ADG 2014, pages 1-19, Coimbra, Portugal, July 2014.
围 Jean-David Génevaux, Julien Narboux, and Pascal Schreck. Formalization of Wu's Simple Method in Coq.
In Certified Programs and Proofs (CPP 2011), volume 7086 of
Lecture Notes in Computer Science, pages 71-86. Springer, 2011.

Bibliography II

嗇 Predrag Janičić，Julien Narboux，and Pedro Quaresma．
The Area Method：a Recapitulation． Journal of Automated Reasoning，48（4）：489－532， 2012.

围 G．S．Klugel．
Conatuum praecipuorum theoriam parallelarum demonstrandi recensio， 1763.
German translation available：http：／／www2．math．
uni－wuppertal．de／～volkert／versuch．html．
國 Julien Narboux．
A Decision Procedure for Geometry in Coq．
In Slind Konrad，Bunker Annett，and Gopalakrishnan Ganesh， editors，Proceedings of TPHOLs＇2004，volume 3223 of Lecture Notes in Computer Science．Springer－Verlag， 2004.

