Proof assistants for teaching proof and proving, motivations and challenges ITI IRMIA++ Seminar - 2024

Julien Narboux

March 2024

Julien Narboux Proof assistants for teaching

A software which allows to :

- define mathematical concepts/programs
- mechanically check proofs of theorems/programs

A software which allows to :

- define mathematical concepts/programs
- mechanically check proofs of theorems/programs

What it is not?

- An automated theorem prover
- A tool that helps in finding the proofs

History of proof assistants

- ACL Boyer-Moore (75-)
- LCF Milner (72)
- Automath De Bruijn (67)
- Mizar Trybulec (73-)
- Isabelle Paulson (86-)
- Coq Huet-Coquand (84-) (ACM Software System Award 2013)
- . . .
- Lean Moura (2013)

Imperative We give orders (called tactics) to complete the proof tree

Declarative The proof is a sequence of mathematical assertions and their justification.

```
example (p q r : Prop) : p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r) :=
beain
  apply iff.intro,
    intro H,
    apply (or.elim (and.elim_right H)),
      intro Hq,
      apply or.intro_left,
      apply and.intro,
        exact (and.elim left H),
      exact Hg,
    intro Hr,
    apply or.intro_right,
    apply and.intro,
    exact (and elim left H).
    exact Hr.
  intro H.
  apply (or.elim H),
    intro Hpq,
    apply and intro,
      exact (and.elim left Hpg),
    apply or intro left,
    exact (and.elim right Hpg),
  intro Hpr,
  apply and.intro,
    exact (and.elim_left Hpr),
  apply or.intro_right,
  exact (and elim right Hpr)
```

end

ヨト イヨト イヨト

3

```
theorem sort prime irrational:
  fixes p :: nat
  assumes "prime p"
  shows "sqrt p \notin Q"
proof
  from <prime p> have p: "p > 1" by (rule prime gt 1 nat)
  assume "sort \mathbf{p} \in \mathbf{O}"
  then obtain m n :: nat
    where n: "n \neq 0"
      and sort rat: "!sort p! = m / n"
      and "coprime m n" by (rule Rats abs nat div natE)
  have eq: m^2 = p * n^2
  proof -
    from n and sqrt rat have "m = 'sqrt p' * n" by simp
    then have m^2 = (\text{sgrt } p)^2 * n^2 by (simp add: power mult distrib)
    also have "(sqrt p)^2 = p" by simp
    also have "... * n^2 = p * n^2" by simp
    finally show ?thesis by linarith
  ged
  have "p dvd m ∧ p dvd n"
  proof
    from eq have "p dvd m<sup>2</sup>" ...
    with <prime p> show "p dvd m" by (rule prime dvd power)
    then obtain k where "m = p * k"...
    with eq have "p * n^2 = p^2 * k^2" by algebra
    with p have "n^2 = p * k^2" by (simp add: power2 eq square)
    then have "p dvd n<sup>2</sup>" ...
    with <prime p> show "p dvd n" by (rule prime dvd power)
  ged
  then have "p dvd gcd m n" by simp
  with <coprime m n> have "p = 1" by simp
  with p show False by simp
aed
                                                                           · · = · = · · · · ·
```

- CompCert (X. Leroy, ACM Award 2022)
- seL4 Micro Kernel (ACM Award 2023)
- 4 Color theorem 2007, Feit-Thompson 2012 (Gonthier)
- Flyspeck 2015 (Hales)
- Polynomial Freiman-Ruzsa 2023 (Tao)

Motivations for using a proof assistant?

- immediate feedback : forbids non-sense statements, forbids incorrect reasoning, detect scope and freshness errors,...
- clarify role of statements : axiom, lemma, hypothesis, premise, conclusion, goal, ...
- clarify theoretical status¹ (conjecture, consequence of hypotheses, sufficient condition to obtain the goal, ...) and operational status : premise/conclusion
- clarify allowed logical rules
- impartiality
- micro-world : definitions and allowed theorems
- clarify what is a proof forbidding other types of argumentation
- gamification

1. Duval's terminology

- To teach what is a proof
- To teach logic
- To teach software foundations
- To automate proof-checking
- To teach maths in general

Two communities :

- Didactics of mathematics
- Interactive theorem proving

Computer Science

logic

• proof of programs, semantics, software foundations

U-Penn, Portland, Princeton, Harvard, Warsaw, CNAM, Lyon, Nice, Paris, Strasbourg, ...

Maths

 Bachelor - Maths : Nijmegen (ProofWeb), Nice (CoqWeb), Chambery (Phox), Paris (Lean), Strasbourg (Edukera/LeanVerbose/Deaduction)...

• . . .

- M2 CS : Semantics, Hoare's logic, formalized in Coq.
- M1 CS : Formalization of proofs in geometry.
- M1 CS : Course about formal theorem with/about Coq.
- L2 CS : Course about logic, Edukera in Logic mode (natural deduction)
- L1 Maths and L1 CS : Introduction to proof

- M2 CS : Semantics, Hoare's logic, formalized in Coq.
- M1 CS : Formalization of proofs in geometry.
- M1 CS : Course about formal theorem with/about Coq.
- L2 CS : Course about logic, Edukera in Logic mode (natural deduction)
- L1 Maths and L1 CS : Introduction to proof

Edukera (Rognier and Duhamel)

- Web-application
- Coq is hidden inside the web page
- LCF style interaction + proof displayed in a pen and paper style.
- Some users in France (about 1000 students, 70k exercises)
- No textual input "proof by pointing", syntactically correct by construction (as using Scratch)
- Easy to learn using a tutorial
- Always correct applications of a logic rule
- Meta-variables

Logic

- Use natural deduction rules.
- Can display proof tree (Fitch's or Gentzen's style).
- Backward reasoning
- 2 Maths
 - Forward/Backward reasoning.
 - Less fine-grained proof steps than in logic mode.

Edukera (logic mode)

Q,	n a O	*							
Implication									
⇒	Introduction (⇒I)		٩						
⇒×	Elimination (⇒E)		٩						
	Conjunction								
	conjunction								
4	Introduction (^I)		a,						
٠Ą	Left elimination (Q,						
^;	Right elimination	ŧ	٩						
	Disjunction								
۰۷ ₊	Left introduction		۹						
V.	Right introduction	t	۹						
V _×	Elimination (vE)		٩						
	Negation								
¬+	Introduction (¬I)		٩						
٦×	Elimination (¬E) 1		٩						
	False								
Ļ	Elimination (⊥E)	ŧ.		٩					

・ロト ・回ト ・ヨト ・ヨト

æ

Edukera (math mode)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @ ●

Experiment at master lelvel

 Choose a proof Pythagoras's theorem and propose a formalization.

Discussions :

- validity of proof
- proofs as explanation
- simplicity

- visual proofs
- circularity
- genericity (proof in a model, vs proof in every model)

Experiment with first-year students : Introduction to proof and proving

- L1 Maths and L1 CS, selected/not selected student.
- 7 groups.
- Mixed teaching team : high-school teachers, PhD students, lecturer in maths, lecturer in CS.
- Contents : vocabulary and structure of a mathematical document. Reasoning rules (without formality). Sets, Functions (direct image, inverse image, injective, surjective), Relations, induction.

Pre-experiment in Strasbourg in 2024

- Objective : introduction to proof
- 3 groups with Deaduction by Frédéric Le Roux
- 3 groups with Lean-Verbose by Patrick Massot
- On paper assessment.

Current work :

- Construction of a corpus of exercises (proofs, true/false, formalization).
- Improving software, bug reporting.
- Instrumentation of proof assistants to collect date.

E TP4_1	fonctions_inj_surj.lean 9+	E TP3_fonctions.lean 9+, M ×		∀น⊡…		
FCR > = TP3_fonctions.lean > {} exercicet						:137:27 -
	section exercicet			Martin	Tactic state	"
					Tactic state	
					1 goal	
					XYZ: Type	
	lemma exercise.image reg	ciproque de image T :			AA': Set X	
128 $-\forall A, A \subset f^{-1}(f^{+}(A))$					f:X→Y	
				A CONTRACTOR	g:Y→Z	
	Exercice "exo4"				BB': Set Y	
131 Données :					x: X	
					X_mem : X E A	
	Conclusion : A ⊆ f -1'				⊢ f x ∈ f '' A	
					▼Expected type	"
	Soit x ∈ A				. Exposica type	
	On réécrit via definitio	on.image_reciproque			XYZ: Type	
137	Montrons que f x E f ''				A A': Set X	
	On applique exercise.ima	age_directe			T: X → Y	
	On conclut par (x_mem :	x ∈ A)			$g: T \rightarrow Z$	
					••••••••••••••••••••••••••••••••••••••	
					x mem · x E A	-/Repository/FCR-le
	lemma exercise.image_re	eciproque_de_image_II :			∟ Set X	TP3_fonctions.lean
	V A, T (T ·· (A)) 9					nomer • wouldere
					All Messages (19)	
	Exercice exos			Contraction of the local division of the loc		
	Hypothèses					
	Conclusion : f =11 (f 1	(A)) 5 A				
	Démonstration :					
	Soit x \in f $-1'$ (f $''$ A)					
	On réécrit via definitio	on.image_reciproque dans x_mem	qui devient f x ∈ f '' A			

```
Exercice "exo1"
  Conclusion : VraiFaux (\forall n : \mathbb{N}, (n = 0) \vee (n = 1))
Démonstration :
  Montrons que \neg \forall n : \mathbb{N}, (n = 0) v (n = 1)
  On pousse la négation
  Montrons que 3 convient : (3 \neq 0) \land (3 \neq 1)
  On calcule
-- Plus petit que tous
-- Il existe m dans N tel que pour tout n dans N, m \leq n.
Exercice "exo2"
  <u>Conclusion</u> : VraiFaux (\exists m : \mathbb{N}, (\forall n : \mathbb{N}, m \le n))
Démonstration :
  Montrons que \exists m : \mathbb{N}, (\forall n : \mathbb{N}, m \leq n)
  Montrons que 0 convient : \forall (n : N), 0 \leq n
  Soit n
  On calcule
```

<ロト <回ト < 回ト < 回ト = 三日 - 三日 -

In previous work² we studied one exercise using different PAs (Coq, Deaduction, Edukera, Lean (Verbose), Lurch) and we provided an *a priori* study of the potential impact of different features.

Exercise

Étant donnés trois ensembles A, B et C tels que $C \subseteq A$ et une fonction $f : A \rightarrow B$, montrer que si f est injective alors $f^{-1}(f(C)) = C$.

2. Evmorfia BARTZIA, Antoine MEYER et Julien NARBOUX (oct. 2022). "Proof assistants for undergraduate mathematics and computer science education : elements of a priori analysis". In : *INDRUM 2022 : Fourth conference of the International Network for Didactic Research in University Mathematics*. Sous la dir. de María TRIGUEROS. Hanovre, Germany : Reinhard Hochmuth. automatic unfolding of definitions ● fake success? (→ Lean Verbose / Coq Waterproof)
real success since they get a proof?
interaction style undo/redo, and automatic application of

reasoning rules can lead to a trial/error strategy

Very few results about proof assistants (lannone, Hanna, Richard, Thoma).

Since 2024, ANR APPAM lead by Cécile Ouvrier-Buffet : didactics + maths+ computer science.

Study of student's difficulty while learning proof, impact of the use of proof assistants.

- What competencies are exercised using PAs?
- Does PAs improve habits?
- Is the syntax a problem?
- Syntax vs semantics?
- How to transfer to proofs on paper?
- What is the impact of foundations of PAs on student perception of proof?

A thematic school : PAT

PAT 2023 : first thematic school about proof assistant for teaching, 38 participants. PAT 2025? (project submitted to CNRS)

Workshops : ThEdu

ThEdu 2024, July 2, IJCAR, Nancy.

Bibliography

A Zotero group :

www.zotero.org/groups/2621881/

