Theorem Proving as Constraint Solving with Coherent Logic

Predrag Janičić University of Belgrade, Serbia Julien Narboux University of Strasbourg, France

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 少くで

1/26

Dagstuhl Seminar 21472: "Geometric Logic, Constructivisation, and Automated Theorem Proving", November 21-27, 2021.

$$A_0(\vec{x}) \land \ldots \land A_{n-1}(\vec{x}) \Rightarrow \exists \vec{y} (B_0(\vec{x}, \vec{y}) \lor \ldots \lor B_{m-1}(\vec{x}, \vec{y}))$$

where universal closure is assumed, A_i denotes an atomic formula, and B_i denotes a conjunction of atomic formulae.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Inference System for Coherent Logic

$$\frac{\Gamma, ax, A_0(\vec{a}), \dots, A_{n-1}(\vec{a}), \underline{B_0(\vec{a}, \vec{b}) \vee \dots \vee B_{m-1}(\vec{a}, \vec{b})}{\Gamma, ax, A_0(\vec{a}), \dots, A_{n-1}(\vec{a}) \vdash P} \text{ MP}$$

where ax is

$$A_0(\vec{x}) \land \ldots \land A_{n-1}(\vec{x}) \Rightarrow \exists \vec{y} (B_0(\vec{x}, \vec{y}) \lor \ldots \lor B_{m-1}(\vec{x}, \vec{y}))$$

$$\frac{\Gamma, \underline{B_0(\vec{c})} \vdash P \quad \dots \quad \Gamma, \underline{B_{m-1}(\vec{c})} \vdash P}{\Gamma, B_0(\vec{c}) \lor \dots \lor B_{m-1}(\vec{c}) \vdash P} \text{ QEDcs (case split)}$$

 $\frac{1}{\Gamma, \underline{B_i(\vec{a}, \vec{b})} \vdash \exists \vec{y} (B_0(\vec{a}, \vec{y}) \lor \ldots \lor B_{m-1}(\vec{a}, \vec{y}))} \text{ QEDas (assumption)}$

$$\overline{\Gamma, \bot \vdash P} \text{ QEDefq (ex falso quodlibet)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- The pure forward chaining approach to ATP does not take the goal into account.
- SAT/SMT solvers have been progressing a lot in the recent years.
- Encoding the problem of finding a Coherent Logic proof into SAT/SMT theories can restore a form of multidirectional reasoning.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○豆 のくで

- In traditional automated proving:
 - the search is performed over a set of formulae and it terminates once the goal formula or contradiction is found.
 - A proof can then be reconstructed as a byproduct of this process.
- In our approach, proving as constraint solving:
 - the search is performed globally over a set of possible proofs;
 - a proof of a given formula can be represented by a sequence of natural numbers, meeting some constraints;
 - a proof is found by a solver that finds a sequence that meets these conditions.

Surprisingly (as far as we know) this approach has not been studied extensively. Only:

- Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin, Christopher Lynch, and Ralph Eric McGregor. *Encoding First Order Proofs in SAT*, CADE-21, 2007.
- Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch, and Ralph Eric McGregor. *Encoding First Order Proofs in SMT*. ENTCS, 198(2):71–84, 2008.

イロト イロト イヨト イヨト ヨー シベル

Inference System for Coherent Logic: Example

Consider the following set of axioms: ax1: $\forall x \ (p(x) \Rightarrow r(x) \lor q(x))$ ax2: $\forall x (q(x) \Rightarrow \bot)$

and the conjecture: $\forall x \ (p(x) \Rightarrow r(x))$

The same proof in a forward manner, in a natural language form:

Consider an arbitrary a such that: p(a). It should be proved that r(a).

- $r(a) \lor q(a)$ (by MP, from p(a) using axiom ax1; instantiation: $X \mapsto a$)
- 2. Case r(a):
- 3. Proved by assumption! (by QEDas)
- 4. Case q(a):
- 5. \perp (by MP, from q(a) using axiom ax2; instantiation: $X \mapsto a$)
- Contradiction! (by QEDefq)
 Proved by case split! (by QEDcs, by r(a), q(a))

Encoded Proof: Example

0.	1 0 0	2 0 /* Nesting: 1; Step kind:0 = Assumption; Branching: no; p2(a) */	
1.	1 13 1	4 0 6 0 /* Nesting: 1; Step kind:13 = MP-axiom:13; Branching: yes; p4(a) or p6(a) */	
		0 /* From steps: (0) */	
		0 /* Instantiation */	
2.	2 2 0	4 0 /* Nesting: 2; Step kind:2 = First case;	
		Branching: no; p4(a) */	
з.	2 10	/* Nesting: 2; Step kind:10 =	
		QED by assumption; */	
4.	3 3 0	6 0 /* Nesting: 3; Step kind:3 = Second case;	
		Branching: no; p6(a) */	
5.	3 14 0	<pre>0 /* Nesting: 3; Step kind:14=MP-axiom:14);</pre>	
		Branching: no; p0() */	
		4 /* From steps: (4) */	
		0 /* Instantiation */	
6.	3 11	/* Nesting: 3: Step kind:11 = QED by EFQ:*/	
7	1 9	/* Nesting: 1: Step kind: $q = 0$ FD by cases:*	/
	1 0	, webuing. 1, bush kind.s - QED by cases, */	

・ロット (四)・(川)・(日)・(日)・

- We add constraints expressing that a sequence of integers represents a valid proof.
- The proofs by cases are encoded by associating nesting information to each proof step.
- The absence of function symbols in CL allows a trivial encoding of matching of axiom arguments (no need to encode the unification problem).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シック

• For convenience, we consider CL2, all formuae are of the form:

$$A_0(\vec{x}) \wedge \ldots \wedge A_{n-1}(\vec{x}) \Rightarrow \exists \vec{y} (B_0(\vec{x}, \vec{y}) \lor \ldots \lor B_{m-1}(\vec{x}, \vec{y}))$$

where

- m = 1 or m = 2;
- each formula B_i consists of only one conjunct.
- The axioms and the conjecture can be relatively simply translated from CL to CL2 (by introducing new predicate symbols)
- The proof obtained for CL2 can be simply transformed to a proof over the original CL language
- Each proof has a form: $Proof ::= As^* MP^* (QEDcs (Proof^2) | QEDas | QEDefq)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A maximal proof length M is given.
- Proof steps and the constraints are encoded by natural numbers.
- A constraint solver (for linear arithmetic, for instance), is invoked to find a model.
- There is a proof of length ≤ M iff there is a model for the constraints.
- If there is a model, then a proof can be reconstructed from it.
- A proof for a proof assistant can be constructed.

<ロト (日) (日) (三) (三) (三) (二) (1/26)

- Symmetry breaking (for instance, if step *s* + 1 does not use step the result of step *s*, then we order the two steps by the lexicographic order (number of premises, number of the lemma used)).
- Ø Memoization (use variables instead of duplicating constraints).

<ロト (日) (日) (三) (三) (三) (三) (2/26)

Gentzen: "I wanted to set up a formalism that comes as close as possible to actual reasoning" In CL:

- no need for normalization to clausal form.
- a better level of granularity compared to natural deduction.

<ロト (日) (日) (三) (三) (三) (三) (3/26)

- "ABCD is a rectangle because ABCD is square"
- ABC are collinear because BAC are collinear"
- "ABCD is a parallelogram because BCDA is a parallelogram"

Should these proof steps be implicit ?

It depends on the context: in high-school 1) should be explicit, 3) is equivalent to the parallel postulate.

In Larus an option is available to consider all lemmas with at most one assumption as implicit.

<ロト (日) (日) (三) (三) (三) (二) (14/26)

- "ABCD is a rectangle because ABCD is square"
- ABC are collinear because BAC are collinear"
- "ABCD is a parallelogram because BCDA is a parallelogram" Should these proof steps be implicit ?
- It depends on the context: in high-school 1) should be explicit, 3)
- is equivalent to the parallel postulate.
- In Larus an option is available to consider all lemmas with at most one assumption as implicit.

<ロト (日) (日) (三) (三) (三) (二) (14/26)

- ABCD is a rectangle because ABCD is square"
- "ABC are collinear because BAC are collinear"
- "ABCD is a parallelogram because BCDA is a parallelogram"

Should these proof steps be implicit ?

It depends on the context: in high-school 1) should be explicit, 3) is equivalent to the parallel postulate.

In Larus an option is available to consider all lemmas with at most one assumption as implicit.

<ロト (日) (日) (三) (三) (三) (二) (14/26)

Euclid Book I, Proposition 4: Side-Angle-Side Euclid Book I, Proposition 5: In isosceles triangles the angles at the base equal one another. Or, in formal terms:

 $\forall A, B, C (isosceles(A, B, C) \Rightarrow congA(A, B, C, A, C, B))$

Output example

Consider arbitrary a, b, c such that: isosceles(a, b, c). It should be proved that congA(a, b, c, a, c, b).

- 1. $col(c, a, b) \lor \neg col(c, a, b)$ (by MP, using axiom cn_col1b; instantiation: $A \mapsto c, B \mapsto a, C \mapsto b$)
- 2. Case *col*(*c*, *a*, *b*):
- 3. \perp (by MP, from col(c, a, b), isosceles(a, b, c) using axiom nnncolNegElim; instantiation: $A \mapsto a, B \mapsto b, C \mapsto c$)
- 4. Contradiction! (by QEDefq)
- 5. Case $\neg col(c, a, b)$:
- 6. congA(a, b, c, a, c, b) (by MP, from isosceles(a, b, c), isosceles(a, b, c), $\neg col(c, a, b)$ using axiom proposition_04; instantiation: $A \mapsto a, B \mapsto c, C \mapsto b, Xa$ $\mapsto a, Xb \mapsto b, Xc \mapsto c$)
- 7. Proved by assumption! (by QEDas)
- 8. Proved by case split! (by QEDcs, by $col(c, a, b), \neg col(c, a, b)$)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The C++ implementation — Larus — is available at: https://github.com/janicicpredrag/Larus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We experimented with our implementation of the approach using four sets of problems:

- **()** a corpus of 64 problems coming from the CL community
- a corpus of 234 problems coming from the formalization of Book 1 of Euclid's Elements
- some crafted examples
- a corpus of lemma about pseudo transitivity of collinearity and compared to:
 - State of the art provers: Vampire, Eprover, Iprover
 - Small (prolog based) provers: LeanCop, NanoCop
 - Provers generating Coq proofs or Coq's tactics: Zenon, Coq-firstorder, Coq-sauto
 - A Coherent Logic prover: Geo
 - Similar approach for FOL: ChewTPTP
 - Portfolio approach: Isabelle SledgeHammer (without proof reconstruction)

Janičić, Narboux Proving as Constraints Solving with CL

Janičić, Narboux

- Using this approach, the user can add constraints either to help the prover or to find a specific proof.
- Examples:
 - predicate r must appear somewhere in the proof: fof(hintname0, hint, r(?,?), _, _)
 - ax2 must be used in the proof at step 3, instantiating both arguments with the same value

fof(hintname0, hint, _, 3, ax2(A,A))

• Hints could be used within proof assistant for turning proof sketches into formal proofs.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Using tactics rather than λ -terms.
- Using tactics we can mimic CL rules, preserve readability and maintainability.
- The generated Coq's proof is in declarative style.
- Inlined lemmas are kept implicit.

<ロト (日) (日) (三) (三) (三) (22/26)

Coq output (without inline lemmas)

```
Theorem proposition_05 : forall A B C : MyT, isosceles A B C -> congA A B C A C
     в
Proof
intros a b c.
intros
assert (cong a b a c) by applying (defisosceles a b c).
assert (triangle a b c) by applying (defisosceles a b c).
assert (col b a c \backslash/ ~ col b a c) by applying (cn_col1b b a c).
by cases on ( ( col b a c ) \setminus ( ~ col b a c ) ).
   assert (~ col a b c) by applying (deftriangle a b c).
   assert (col a b c) by applying (lemma_collinearorder b a c).
   assert (False) by contradiction on (col a b c).
   contradict.
   assert (cong a c a b) by applying (lemma_congruencesymmetric a a b c).
   assert (congA b a c c a b) by applying (lemma_ABCequalsCBA b a c).
   assert (congA a b c a c b) by applying (proposition_04 a b c a c b).
   conclude.
Qed.
```

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

While, for instance, in the resolution method, classical logic and reasoning are deeply built-in, in the presented approach and when using the prover, one can easily choose whether to use excluded middle or not (and, hence, choose between classical and intuitionistic setting), it is just a matter of adding axioms.

- Test the prover on problems which are not in CL form and study the impact of anti-skolemization and geometrization.
- Improving the encoding used (e.g., by using some form of incremental encoding, or some meta-theorems);
- Improving the solving process (e.g., by using some other SAT/SMT solvers, or by instructing SAT/SMT solvers to take into account some specifics of input instances);
- Paralellisation

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ◆ ○ ○ 25/26

- Larus can generate readable and machine checkable proofs and use proof hints.
- Larus can not compete with state of the art provers, but can compete with others provers generating Coq's proofs.
- The approach could be tried for other logics.

<ロト (日) (日) (三) (三) (三) (三) (26/26)