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2 Jani£i� - Narboux - Quaresma1. IntrodutionThere are two major families of methods in automated reasoning ingeometry: algebrai style and syntheti style methods.Algebrai style has its roots in the work of Desartes and in the trans-lation of geometry problems to algebrai problems. The automation ofthe proving proess along this line began with the quanti�er eliminationmethod of Tarski (Tarski, 1951) and sine then had many improve-ments (Collins, 1975). The harateristi set method, also known asWu's method (Wu, 1978; Chou, 1985), the elimination method (Wang,1995), the Gröbner basis method (Kapur, 1986b; Kapur, 1986a), and theCli�ord algebra approah (Li, 2000) are examples of pratial methodsbased on the algebrai approah. All these methods have in ommon analgebrai style, unrelated to traditional, syntheti geometry methods,and they do not provide human-readable proofs. Namely, they dealwith polynomials that are often extremely omplex for a human tounderstand, and also with no diret link to the geometrial ontents.The seond approah to the automated theorem proving in geometryfouses on syntheti proofs, with an attempt to automate the traditionalproving methods. Many of these methods add auxiliary elements to thegeometri on�guration onsidered, so that a ertain postulates ouldapply. This usually leads to a ombinatorial explosion of the searhspae. The hallenge is to ontrol the ombinatorial explosion and todevelop suitable heuristis in order to avoid unneessary onstrutionsteps. Examples of syntheti proof methods inlude approahes by Gel-ertner (Gelernter, 1959), Nevis (Nevis, 1975), Elok (Elok, 1977),Greeno et al. (Greeno et al., 1979), Coelho and Pereira (Coelho andPereira, 1986), Chou, Gao, and Zhang (Chou et al., 1993; Chou et al.,1996).In this paper we fous on the area method, an e�ient semi-algebraimethod for a fragment of Eulidean geometry, developed by Chou, Gao,and Zhang (Chou et al., 1993; Chou et al., 1994; Chou et al., 1996b).This method enables implementing e�ient provers apable of gener-ating human readable proofs. These proofs often di�er from the tradi-tional, Hilbert-style, syntheti proofs, but still they are often onise,onsisting of steps that are diretly related to the geometrial ontentsinvolved and hene an be easily understood by a mathematiian.The main idea of the area method is to express the hypotheses ofa theorem using a set of starting (�free�) points and a set of onstru-tive statements eah of them introduing a new point, and to expressthe onlusion by an equality between polynomials in some geometriquantities (without onsidering Cartesian oordinates). The proof isdeveloped by eliminating, in reverse order, the points introdued before,
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3using for that purpose a set of appropriate lemmas. After eliminatingall the introdued points, the onlusion of the theorem ollapses to anequation between two rational expressions involving only free points.This equation an be further simpli�ed to involve only independentvariables. If the expressions on the two sides are equal, the statementis valid, otherwise it is invalid. All proof steps generated by the areamethod are expressed in terms of appliations of high-level geometrylemmas and expression simpli�ations.Although the basi idea of the method is simple, implementing it isa very hallenging task beause of a number of details that has to bedealt with. To our knowledge, apart from the original implementationby the authors who �rst proposed the area method, there are onlythree implementations more. These three implementations were madeindependently and in di�erent ontexts:
− within a tool for storing and exploring mathematial knowledge(Theorema (Buhberger et al., 2006)) � implemented by JuditeRobu (Robu, 2002).
− within a generi proof assistant (Coq (The Coq development team,2009)) � implemented by Julien Narboux (Narboux, 2004);
− within a dynami geometry tool (GCLC (Jani£i¢, 2006)) � im-plemented by Predrag Jani£i¢ and Pedro Quaresma (Jani£i¢ andQuaresma, 2006);The implementations of the method an e�iently �nd proofs of arange of non-trivial theorems, inluding theorems due to Ceva, Menelaus,Gauss, Pappus, and Thales.In this paper, we present an in-depth desription of the area methodovering all relevant de�nitions and lemmas. We also provide some of theimplementations details, whih are not given or not learly stated in theoriginal presentations. We follow the original exposition, but in a reor-ganised, more methodologial form. This desription of the area methodshould be su�ient for a omplete understanding of the method, andfor making a new implementation a straightforward task. This paperalso summarises our results, experienes, and desriptions of our soft-ware systems related to the area method (Jani£i¢ and Quaresma, 2006;Quaresma and Jani£i¢, 2006a; Quaresma and Jani£i¢, 2006b; Jani£i¢and Quaresma, 2007; Narboux, 2004; Narboux, 2007a).In this paper we onsider only the basi variant of the area methodfor Eulidean geometry, although there are other variants. Additionaltehniques an also be used to produe shorter proofs and slightly ex-tend the basi domain of the method (Chou et al., 1994). However,
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4 Jani£i� - Narboux - Quaresmathese tehniques are appliable only in speial ases and not in a uni-form way, in ontrast to the basi method. It is also possible to extendthe area method to deal with inequations in the goal. Then the �nalinequation an be deided using an CAD algorithm or a heuristi likethe sum of squares method. There are also variants of the area methoddeveloped for solid Eulidean geometry (Chou et al., 1995) and forhyperboli plane geometry (Yang et al., 1998). Substantially, the ideaof these variants is the same as in the basi method and this demonstratethat the approah has a wide domain. Variants of the method an beimplemented in the same way desribed in this paper.Overview of the paper. The paper is organised as follows: �rst, inSetion 2, we explain the area method in details. In Setion 3, wedesribe all the existing implementations of the method and some oftheir appliations. In Setion 4 we summarise our ontributions and wedraw �nal onlusions in Setion 5.2. The Area MethodThe area method is a deision proedure for a fragment of Eulideanplane geometry. The method deals with problems stated in terms ofsequenes of spei� geometri onstrution steps. We begin introduingthe method by way of example.In the rest of the paper, apital letters will denote points in the planeand △ABC will denote the triangle with verties A, B, and C.2.1. Introdutory ExampleThe following simple example brie�y illustrates some key features ofthe area method.EXAMPLE 2.1. (Ceva's Theorem). Let △ABC be a triangle and P bean arbitrary point in the plane. Let D be the intersetion of AP and
BC, E be the intersetion of BP and AC, and F the intersetion of
CP and AB. Then it holds that:

AF

FB

BD

DC

CE

EA
= 1This result an be stated and proved, within the area method setting.The Constrution. The points A, B, C, and P are free points, pointsnot de�ned by onstrution steps. The point D is the intersetion ofthe line determined by the points A and P and the line determined by
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5the points B and C. The points E and F are onstruted in a similarfashion.For this problem, an initial non-degeneray ondition is, that it holds
F 6= B, D 6= C, and E 6= A. Notie also that the point P is notompletely arbitrary point in the plane, sine it should not belong tothe three lines parallel to the sides of the triangle and passing throughthe opposite verties (Figure 1).
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Figure 1. Illustration for Ceva's theoremStating the Conjeture. One of the key problems in automated theoremproving in geometry is the ontrol of the ombinatorial explosion thatarises from the number of similar, but still di�erent, ases that have tobe analysed. For instane, given three points A, B, and C, how manytriangles they de�ne? One an argue that the answer is one, but froma syntati point of view the △ABC is not equal to the △ACB. Forreduing suh ombinatorial explosion, but also for ensuring rigorousreasoning, one has to deal with arrangement relations, suh as on thesame side of a line, two triangles have the same positive orientation, et.Note that, in Eulidean geometry, positive and negative orientation arejust two names used to distinguish between the two orientations andone an selet any triangle in the plane and prolaim that it has theorientation that will be alled positive (and it is similar with orienta-tion of segments on a line). In other words, in Eulidean geometry thenotion of orientation is relative rather then absolute, and one an provethat a triangle has positive orientation, only if positive (and negative)orientation was already de�ned via some triangle in the same plane.In the Cartesian model of Eulidean geometry, the two orientations
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6 Jani£i� - Narboux - Quaresmaare distinguished as lokwise and ounterlokwise orientations. Thesetwo names should not be used for Eulidean geometry, beause theyannot be de�ned there. Unfortunately, these terms are widely used ingeometrial texts, inluding the desription of the area method (Zhanget al., 1995).For stating and proving onjetures, the area method uses a set ofspei� geometri quantities. The geometri quantities enable treatingarrangement relations.Within the area method the following geometri quantities are used:
− ratio of parallel direted segments, denoted AB/CD. If the points

A, B, C, and D are ollinear, AB/CD is the ratio between lengthsof direted segments AB and CD. If the points A, B, C, and D arenot ollinear, and it holds AB‖CD, there is a parallelogram ABPQsuh that P , Q, C, and D are ollinear and then AB

CD
= QP

CD
.

− signed area for a triangle ABC, denoted SABC ;
− Pythagoras di�erene, denoted PABC , for the points A, B, C, de-�ned as PABC = AB

2
+ CB

2 − AC
2.These three geometri quantities allow expressing (in form of equali-ties) geometry properties suh as ollinearity of three points, parallelismof two lines, equality of two points, perpendiularity of two lines, et.(see setion 2.2.1). In the example, the onjeture is expressed usingratios of parallel direted segments.Proof. The proof of a onjeture is based on eliminating all the on-struted points, in reverse order, using for that propose the propertiesof the geometri quantities, until an equality in only the free points isreahed. If the equality is valid, then the original onjeture is valid too.For the given example, a proof an be as follows:It an be proved that AF

FB
= SAPC

SBCP
. By analogy BD

DC
= SBPA

SCAP
and

CE

EA
= SCPB

SABP
. Therefore:

AF

FB

BD

DC

CE

EA
= SAPC

SBCP

BD

DC

CE

EA
the point F is eliminated

= SAPC

SBCP

SBPA

SCAP

CE

EA
the point D is eliminated

= SAPC

SBCP

SBPA

SCAP

SCPB

SABP
the point E is eliminated

= 1 Q.E.D.
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7The example illustrates how to express a problem using the givengeometri quantities and how to prove it, and moreover, how to give aproof that is onise and very easy to understand.The omplete proof proedure will be given in Setion 2.5. Beforethat, the underlying axiom system will be introdued.2.2. Axiomati Grounds for the Area MethodThere is a number of axiom systems for Eulidean geometry. Eulid'ssystem (Heath, 1956), partly naive from today's point of view, was usedfor enturies. In early twenty entury, Hilbert provided a more rigorousaxiomatisation (Hilbert, 1977), one of the landmarks for modern math-ematis, but still not up to modern standards (Dehlinger et al., 2000;Meikle and Fleuriot, 2003). In mid-twenty entury, Tarski presented anew axiomatisation for elementary geometry (without all ontinuity fea-tures ensured), along with a deision proedure for that theory (Tarski,1959). Although there are other variations of these systems (Jani£i¢,1996; Narboux, 2006), these three are the most in�uential and mostpopular axiomati systems for geometry.Modern ourses on lassial Eulidean geometry are most often basedon Hilbert's axioms. In Hilbert-style geometry, the primitive (not de-�ned) objets are: point, line, plane. The primitive (not de�ned) pred-iates are those of ongruene and order (with addition of equalityand inidene1). Properties of the primitive objets and prediates areintrodued by �ve groups of axioms, suh as: �For two points A, B thereexists a line a suh that both A and B are inident with it�.In the following text we brie�y disuss how axiomati grounds an bebuilt for the fragment of geometry treated by the area method. We willpresent two approahes, both enabling proving properties of geometriquantities required by the area method.2.2.1. A Hilbert Style AxiomatisationThe geometri quantities used within the area method an be de�nedin Hilbert style geometry, but they also require axioms of the theory of�elds.The notions of the ratio of parallel direted segments and of thesigned area involve the notion of orientation of segments on a line andthe notion of orientation of triangles in a plane (disussed in setion 2.1).DEFINITION 1. (Ratio of parallel direted segments).
1 See von Plato's disussion about inidene in Hilbert's geometry (von Plato,1997).
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8 Jani£i� - Narboux - QuaresmaTable I. Expressing geometry prediates in terms of the three geometri quantities.property in terms of geometri quantitiespoints A and B are idential PABA = 0points A, B, C are ollinear SABC = 0

AB is perpendiular to CD PACD = PBCD

AB is parallel to CD SACD = SBCD

O is the midpoint of AB AO

OB
= 1

AB has the same length as CD PABA = PCDCpoints A, B, C, D are harmoni AC

CB
=

DA

DBangle ABC has the same measure as DEF SABC · PDEF = SDEF · PABC

A, B, C and D belong to the same irle SCAD · PCBD = SCBD · PCAD

If the points A, B, C, and D are ollinear, AB

CD
is the ratio betweenlengths of direted segments AB and CD. If the points A, B, C, and Dare not ollinear, and it holds AB‖CD, there is a parallelogram ABPQsuh that P , Q, C, and D are ollinear and then AB

CD
= QP

CD
.DEFINITION 2. (Signed Area). The signed area of the triangle ABC,denoted SABC .The Pythagoras di�erene is a generalisation of the Pythagoras equal-ity regarding the three sides of a right triangle, to an expression appli-able to any triangle (for a triangle ABC with the right angle at B, itholds that PABC = 0.).DEFINITION 3. (Pythagoras di�erene). For three points A, B, and

C, the Pythagoras di�erene, denoted PABC , is de�ned in the followingway:
PABC = AB

2
+ CB

2 − AC
2
.Using these three geometri quantities it is possible to express arange of geometry prediates as shown in Table 2.2.1.Proofs generated by the area method use a set of spei� lemmas.These lemmas an be proved within the Hilbert's geometry (i.e., withinits fragment for plane geometry), but the full, formal proofs would bevery long. That is why it is suitable to have an alternative axioma-tisation, suitable for the area method. Chou, Gao and Zhang (Chouet al., 1993) proposed suh a system for a�ne geometry, and in thenext setion we propose a variant of this system.
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92.2.2. A New Axiom System for the Area MethodThe axiom system used by Chou, Gao and Zhang (Chou et al., 1994)is a Hilbert style axiom system, i.e. a semi-analyti axiom system with(only) points as primitive objets (lines are not primitive objets as inHilbert's axiom system). The axiom system ontains the axioms of �eld,so the system uses the onept of numbers, but it is still oordinate free.The �eld is not assumed to be ordered, hene the axiom system has theproperty of representing an unordered geometry. This means that, forinstane, one annot express the onept of a point being between twopoints (unlike in Hilbert's system).In the following, we present our speial-purpose axiom system forEulidean plane geometry (within �rst order logi with equality), amodi�ed version of the axiomati system of Chou, Gao and Zhang.There are several reasons why we modi�ed the original axiom system.Compared to the original version, ours has the advantage to be moreonise and organised. Moreover, we formally veri�ed (within the Coqproof assistant (The Coq development team, 2009)) all the propertiesof the geometri quantities required by the area method, demonstratingthe orretness of the system and eliminating all onerns about validityof the lemmas.In our axiom system, there is just one type of objets: points. Thesystem uses a �eld (F,+, ·, 0, 1) of harateristi di�erent from 2.2 Theaxioms of the theory of �elds are standard and hene omitted.There is one primitive binary funtion symbol (··) and one ternaryfuntion symbols (S...) from points to F . The �rst depits the signeddistane between two points, the seond represents the signed area ofa triangle. All axioms given in Table II are impliitly universally quan-ti�ed. To improve readability (of the last three axioms), the followingshortuts are used:
PABC ≡ AB

2
+ BC

2 − AC
2

AB ‖ CD ≡ SACB + SABD = 0
AB ⊥ CD ≡ PACD + PBCD = 0The axiom system we propose di�ers from the axiom system of Chou,Gao and Zhang in several aspets.First, our system does not use ollinearity as a primitive notionand instead, ollinearity is de�ned by the signed area. Chou, Gao and

2 The fat that the harateristi of F is di�erent from 2 is used to simplifythe axiom system. Indeed, if 0 6= 2 sine ∀ABC,SABC = −SBAC (by axiom 3)then ∀AC,SAAC = −SAAC and hene ∀AC,SAAC = 0, so we an omit the axiom
SAAC = 0 whih appears in the system proposed by Chou et al. In addition, thisassumption allows, for instane, onstrution of the midpoint (using the onstrutionaxiom with r =

1
2
) of a segment without expliitly stating the assumption 0 6= 2.

areaMethodReap.tex; 6/10/2009; 19:53; p.9



10 Jani£i� - Narboux - QuaresmaTable II. The axiom system1. AB = 0 if and only if the points A and B are idential2. SABC = SCAB3. SABC = −SBAC4. If SABC = 0 then AB + BC = AC (Chasles's axiom)5. There are points A, B, C suh that SABC 6= 0 (dimension; not all points areollinear)6. SABC = SDBC + SADC + SABD (dimension; all points are in the same plane)7. For eah element r of F , there exists a point P , suh that SABP = 0 and
AP = rAB (onstrution of a point on the line)8. If A 6= B,SABP = 0, AP = rAB,SABP ′ = 0, AP ′ = rAB, then P = P ′ (uniity)9. If SPCQ + SPQD = 0, C 6= D SCDQ 6= 0, and PQ

CD
= 1, then SP DQ

SCDQ
= 1(parallelogram)10. If SPAC 6= 0 and SABC = 0 then AB

AC
=

SP AB

SP AC
(proportions)11. If C 6= D and AB ⊥ CD and EF ⊥ CD then AB ‖ EF .12. If A 6= B and AB ⊥ CD and AB ‖ EF then EF ⊥ CD.13. If FA ⊥ BC and SF BC = 0 then 4S2

ABC = AF
2
BC

2 (area of a triangle).
Zhang's system has axioms introduing properties of ollinearity, andthese axioms are then used for proving that three points are ollinearif and only if SABC = 0 (Chou et al., 1994).Seond, while Chou, Gao and Zhang's axiom system restrits toratios of direted parallel segments AB

CD
where the lines AB and CD areparallel, we skip this syntatial restrition and an use ratios for arbi-trary points. The onsisteny of the axiom system is preserved beausethe onept of oriented distane an be interpreted in the standardCartesian model. The area method requires expliitly that for everyratio of direted segments AB

CD
, AB is parallel to CD. Therefore, the areamethod is not a deision proedure for this theory, as it an not prove ordisprove all onjetures stated in the introdued language beause themethod an not deal with ratios of the form AB

CD
if AB ∦ CD (however,it is a deision proedure for the set of formulae from the restritedversion of the language).Third, while Chou, Gao and Zhang's axiom system deals with a�negeometry, we extend the system to deal with Eulidean geometry as wemake expliit the axioms about Pythagoras di�erene (axioms 11, 12,and 13).

areaMethodReap.tex; 6/10/2009; 19:53; p.10



112.3. Geometri ConstrutionsThe area method is used for proving onstrutive geometry onjetures:statements about properties of objets onstruted by some �xed set ofelementary onstrutions. In this setion we �rst desribe the set ofavailable onstrution steps and then the set of onjetures that an beexpressed.2.3.1. Elementary Constrution StepsConstrutions overed by the area method are losely related, but stilldi�erent, from onstrutions by ruler and ompass. These are the ele-mentary onstrutions by ruler and ompass:
− onstrution of an arbitrary point;
− onstrution of an arbitrary line;
− onstrution (by ruler) of a line suh that two given points belongto it;
− onstrution (by ompass) of a irle suh that its entre is onegiven point and suh that the seond given point belongs to it;
− onstrution of a point suh that it is the intersetion of two lines(if suh a point exists);
− onstrution of the intersetions of a given line and a given irle(if suh points exist).
− onstrution of the intersetions of two given irles (if suh pointsexist).The area method annot deal with all geometry theorems involvingthe above onstrutions. It does not support onstrution of an arbitraryline, and support intersetions of two irles and intersetions of a lineand a irle only in a limited way.Instead of support for intersetions of two irles or a line and airle (ritial for desribing many geometry theorems), there are new,spei� onstrution steps. All onstrutions supported by the areamethod are expressed in terms of the involved points.3 Therefore, only

3 Elementary onstrution steps used by the area method do not use the oneptof line and plane expliitly. This is onvenient from the formalisation and automati-zation point of view. Indeed, in an axiom system based only on the onept of points(as in Tarski's axiom system (Tarski, 1959)), the dimension implied an be easilyhanged by adding or removing some appropriate axioms (stated in the original
areaMethodReap.tex; 6/10/2009; 19:53; p.11



12 Jani£i� - Narboux - Quaresmalines and irles determined by spei� points an be used (rather thanarbitrarily hosen lines and irles) and the key onstrutions stepsare those introduing new points. For a onstrution steps to be well-de�ned, ertain onditions may be required. These onditions are allednon-degeneray ondition (ndg-onditions). The degree of freedom tellsif a point is free (degree bigger than 0), or not.In the following text, (Line U V) will denote a line suh that thepoints U and V belong to it, and (Cirle O U) will denote a irlesuh that its entre is point O and suh that the point U belongs to it.Some of the onstrutions steps are formulated using the �xed �eld
(F,+, ·, 0, 1), employed by the used axiom system.Given below is the list of elementary onstrutions in the area method,along with the orresponding ndg-onditions and the degrees of freedomof the onstruted points.ECS1 onstrution of an arbitrary point U; this onstrution step isdenoted by (Point U).ndg-ondition: �degree of freedom for U: 2ECS2 onstrution of a point Y suh that it is the intersetion of twolines (Line U V) and (Line P Q); this onstrution step is denotedby (Inter Y (Line U V) (Line P Q))ndg-ondition: UV ∦ PQ; U 6= V ; P 6= Q.degree of freedom for Y: 0ECS3 onstrution of a point Y suh that it is the foot from a givenpoint P to (Line U V); this onstrution step is denoted by (FootY P (Line U V)).ndg-ondition: U 6= Vdegree of freedom for Y: 0ECS4 onstrution of a point Y on the line passing through a point

W and is parallel to (Line U V), suh that WY = rUV , where ris an element of F , a rational expression in geometri quantities,or a variable; this onstrution step is denoted by (Pratio Y W(Line U V) r).signature). On the other hand, in an axiom system based on the onepts of pointsand lines, suh as Hilbert's axiom system, in order to extent the system to the thirddimension ones needs both to update some axioms, to introdue some new axiomsand to hange the signature of the theory by introduing the sort of planes.
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13ndg-ondition: U 6= V ; if r is a rational expression in the geometriquantities, the denominator of r should not be zero.degree of freedom for Y: 0, if r is a �xed quantity; 1, if r is avariable.ECS5 onstrution of a point Y on the line passing through a point Uand perpendiular to (Line U V), suh that 4SUV Y

PUV U
= r, where r isa rational number, a rational expression in geometri quantities, ora variable; this onstrution step is denoted by (Tratio Y (LineU V) r).ndg-ondition: U 6= V ; if r is a rational expression in geometriquantities then the denominator of r should not be zero.degree of freedom for Y: 0, if r is a �xed quantity; 1, if r is avariable.The above set of onstrutions is su�ient for expressing many on-strutions based on ruler and ompass, but not all of them. For instane,an arbitrary line annot be onstruted by the above onstrution steps.Still, one an onstrut two arbitrary points and then (impliitly) theline going through these points.Also, intersetions of two irles and intersetions of a line and airle are not supported in a general ase. However, it is still possibleto onstrut intersetions of two irles and intersetions of a line anda irle in some speial ases. For example:

− onstrution of a point Y suh that it is the intersetion (otherthan point U) of a line (Line U V) and a irle (Cirle O U) anbe represented as a sequene of two onstrution steps: (Foot NO (Line U V)), (Pratio Y N (Line N U) -1).
− onstrution of a point Y suh that it is the intersetion (other thanpoint P ) of a irle (Cirle O1 P) and a irle (Cirle O2 P)an be represented as a sequene of two onstrution steps: (FootN P (Line O1 O2)), (Pratio Y N (Line N P) -1).In addition, many other onstrutions (expressed in terms of on-strutions by ruler and ompass) an be performed by the elementaryonstrutions of the area method. Some of them are:
− onstrution of a line suh that a given point W belongs to it and itis parallel to a line (Line U V); it an be represented as a sequeneof two steps: (Pratio N W (Line U V) 1), (Line W N).
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14 Jani£i� - Narboux - Quaresma
− onstrution of a line suh that a given point W belongs to it andit is perpendiular to a line (Line U V); if W , U , V are ollinear,then this onstrution an be represented as (Tratio N (Line WU) 1), (Line N W), otherwise it an be represented as (Foot NW (Line U V)), (Line N W).
− onstrution of a perpendiular bisetor of a segment with end-points U and V ; this onstrution an be represented as (PratioM (Line U U) V 1/2), (Tratio N (Line M U) 1), (Line N M).Also, it is possible to onstrut an arbitrary point on a line (LineU V), by (Pratio Y U (Line U V) r) where r is an indeterminate, oron a irle (Cirle O P), by (Point Q), (Foot N O (Line P Q)),(Pratio Y N (Line N P) -1).Within a wider system (e.g., within a dynami geometry tool), ariher set of onstrution steps an be used for desribing geometryonjetures as long as all of them an be represented by the elementaryonstrution steps of the area method.As said, the set of elementary onstrution steps in the area methodannot over all onstrutions based on ruler and ompass. On the otherend, there are also some onstrutions that an be performed by theabove onstrution steps and that annot be performed by ruler andompass. For instane, if 3

√
2 ∈ F then, given two distint points A and

B, one an onstrut a third point C suh that AC = 3
√

2 AB, sineone an use this number (whereas it is not possible using ruler andompass).EXAMPLE 2.2. The onstrution given in Example 2.1 an be repre-sented in terms of the given onstrution steps as follows:
A,B,C, P are free points (ECS1)Inter D (Line A P) (Line B C)) (ECS2)Inter E (Line B P) (Line A C)) (ECS2)Inter F (Line C P) (Line A B)) (ECS2)2.3.2. Construtive Geometry StatementsIn the area method, geometry statements have a spei� form.DEFINITION 4. (Construtive Geometry Statement). A onstrutivegeometry statement, is a list S = (C1, C2, . . . , Cn, G) where Ci, for

1 ≤ i ≤ n, are elementary onstrution steps, and the onlusion of thestatement, G is of the form E1 = E2, where E1 and E2 are polynomialsin geometri quantities of the points introdued by the steps Ci. Ineah of Ci, the points used in the onstrution steps must be alreadyintrodued by the preeding onstrution steps.
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15The lass of all onstrutive geometry statements is denoted by C.Note that, in its basi form, the area method does not deal withinequalities in its onlusion statement, G (for another variant of themethod see setion 3.3.2).For a statement S = (C1, C2, . . . , Cn, (E1 = E2)) from C, the ndg-ondition is the set of ndg-onditions of the steps Ci plus the onditionthat the denominators of the length ratios in E1 and E2 are not equalto zero, and the onditions that line appearing in the length ratios in
E1 and E2 are parallel. The logial meaning of a statement is hene:

C1 ∧ C2 ∧ ... ∧ Cn∧

NDG1 ∧ NDG2 ∧ ... ∧ NDGn∧
d1 ∧ ... ∧ dm

p1 ∧ ... ∧ pm

⇒ E1 = E2where Ci are the propositions haraterising the onstrution steps;
NDGi are the ndg-onditions assoiated to the onstrution steps; diare the onditions on denominators appearing in E1 and E2; and piare the onditions about parallelism: for eah ratio of the form AB

CDappearing in E1 and E2, there is the ondition AB ‖ CD.EXAMPLE 2.3. The statement orresponding to the theorem given inExample 2.1 an be represented as follows:
AP ∦ BC ∧ A 6= P ∧ B 6= C ∧
BP ∦ AC ∧ B 6= P ∧ A 6= C ∧
CP ∦ AB ∧ C 6= P ∧ A 6= B ∧
F 6= B ∧ D 6= C ∧ E 6= A ∧
AF ‖ FB ∧ BD ‖ DC ∧ CE ‖ EA ∧
⇒ AF

FB

BD

DC

CE

EA
= 12.4. Properties of Geometri Quantities & EliminationLemmasWe present some de�nitions and the properties of geometri quantities,required by the area method. We follow the material from originaldesriptions of the method (Chou et al., 1993; Chou et al., 1994; Chouet al., 1996b; Zhang et al., 1995), but in a reorganised form. The rigoroustraditional proofs (not formal) aompanying all the results presented inthis setion are available in (Quaresma and Jani£i¢, 2009). The formal
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16 Jani£i� - Narboux - Quaresma(mahine veri�able) proofs are available as a Coq ontribution (Nar-boux, 2009).Along the method appliation, in addition to the basi geometriquantities, some additional quantities (SABCD and PABCD) may ourin the onjeture being proved. These quantities are de�ned in terms ofthe basi quantities, as follows.DEFINITION 5. The signed area of a quadrilateral ABCD is de�nedas SABCD = SABC + SACD.DEFINITION 6. For four points A,B,C and D, PABCD is de�ned asfollows:
PABCD = PABD − PCBD = AB

2
+ CD

2 − BC
2 − DA

2
.The following lemmas are impliitly universally quanti�ed and it isassumed that it holds A 6= B for any ratio of parallel direted segmentsof the form XY

AB
.LEMMA 1. PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.LEMMA 2. PQ

AB
= 0 i� P = Q.LEMMA 3. PQ

AB

AB

PQ
= 1.LEMMA 4. SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.LEMMA 5. PAAB = 0.LEMMA 6. PABC = PCBA.LEMMA 7. PABA = 2AB

2.2.4.1. Elimination LemmasAn elimination lemma is a theorem that has the following properties:
− it states an equality between a geometri quantity involving aertain onstruted point Y and an expression not involving Y ;
− this last expression is omposed using only geometri quantities;
− this expression is well de�ned: denominators are di�erent from zeroand ratios of distanes are omposed only using parallel segments.
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17It is required to desribe elimination of points introdued by fouronstrution steps (ECS2 to ECS5) from three kinds of geometri quan-tities.Some elimination lemmas enable eliminating a point from expres-sions only at ertain positions � usually the last position in the list ofthe arguments. That is why it is neessary �rst to transform relevantterms of the urrent goal into the form that an be dealt with bythese elimination lemmas. Moreover, some elimination lemmas requirethat some points are assumed to be distint. The �rst following lemmaensures that this assumptions an be met.LEMMA 8. If G is a geometri quantity involving Y , then either G isequal to zero or it an be transformed into one of the following forms(or their sum or di�erene), for some A, B, C, and D that are di�erentfrom Y :
AY

CD
; AY

BY
;−AY

BY
; 1

AY

CD

;PABY ;PAY B;SABY ;Proof: If G is a geometri quantity of arity 4 (SABCD or PABCD), the�rst step is to transform it into terms of arity 3 by one of the followingtwo rules.
SABCD → SABC + SACD De�nition 5
PABCD → PABD − PCBD De�nition 6Now, all remaining geometri quantities (involving Y ) an be treated.Signed ratios: G an have one of the following forms (for some A, B,and C di�erent from Y ):

• Y Y

AY
= 0 (by Lemma 2)

• Y Y

Y A
= 0 (by Lemma 2)

• Y Y

CD
= 0 (by Lemma 2)

• AY

BY

• AY

Y B
= −AY

BY
(by Lemma 1)

• Y A

BY
= −AY

BY
(by Lemma 1)

• Y A

Y B
= AY

BY
(by Lemma 1)

• AY

CD

• Y A

CD
= −AY

CD
(by Lemma 1)
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18 Jani£i� - Narboux - Quaresma
• AB

CY
= 1

CY

AB

(by lemmas 1 and 3)
• AB

Y C
= 1

CY

BA

(by lemmas 1 and 3)Signed area: G an have one of the following forms (for some A and
B di�erent from Y ):
• SY Y Y = 0 (by Lemma 4)
• SAY Y = 0 (by Lemma 4)
• SY AY = 0 (by Lemma 4)
• SY Y A = 0 (by Lemma 4)
• SAY B = SBAY (by Lemma 4)
• SY AB = SABY (by Lemma 4)
• SABYPythagoras di�erene: G an have one of the following forms (forsome A and B di�erent from Y ):
• PY Y Y = 0 (by Lemma 5)
• PAY Y = 0 (by lemmas 6 and 5)
• PY AY = PAY A (by Lemma 7)
• PY Y A = 0 (by Lemma 5)
• PAY B

• PY AB = PBAY (by Lemma 6)
• PABY Q.E.D.If G(Y ) is one of the following geometri quantities: SABY , SABCY ,

PABY , or PABCY for points A, B, C di�erent from Y , then G(Y ) isalled a linear geometri quantity.The following lemmas are used for the elimination of Y from geo-metri quantities. Thanks to Lemma 8, it is su�ient to onsider onlygeometri quantities with only one ourrene of Y and the ase AY

BY
.Therefore, it an be assumed that Y di�ers from A, B, C, and D inthe following lemmas (although they are valid in a general ase, unlessstated otherwise). This ensures that Y does not our on the right handsides appearing in the elimination lemmas.
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19LEMMA 9. (EL1). If Y is introdued by (Inter Y (Line U V) (LineP Q)) then it holds that:4
AY

CY
=

{

SAPQ

SCPQ
if A is on UV

SAUV

SCUV
otherwise

AY

CD
=

{

SAPQ

SCPDQ
if A is on UV

SAUV

SCUDV
otherwiseLEMMA 10. (EL2). If Y is introdued by (Foot Y P (Line U V))then it holds that (we assume D 6= U ; otherwise interhange U and V ):

AY

CY
=

{

PPUV PPCAV +PPV UPPCAU

PPUV PCV C+PPV UPCUC−PPUV PPV U
if A is on UV

SAUV

SCUV
otherwise

AY

CD
=

{

PPCAD

PCDC
if A is on UV

SAUV

SCUDV
otherwiseLEMMA 11. (EL3). If Y is introdued by (Pratio Y R (Line P Q)r) then it holds that (we assume that A 6= Y ):

AY

CY
=











AR

PQ
+r

CR

PQ
+r

if A is on RY

SAPRQ

SCPRQ
otherwise

AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwiseLEMMA 12. (EL4). If Y is introdued by (Tratio Y (Line P Q) r)then it holds that:

AY

CY
=







SAPQ−
r
4
PPQP

SCPQ−
r
4
PPQP

if A is on PY
PAPQ

PCPQ
otherwise

AY

CD
=

{

SAPQ−
r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

4 Notie that in this and other lemmas, the ondition A on UV is trivially met if
A is one of the points U and V . This speial ase may be treated as a separate asefor the sake of e�ieny.
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20 Jani£i� - Narboux - QuaresmaLEMMA 13. (EL5). Let G(Y ) be a linear geometri quantity and Y isintrodued by (Inter Y (Line U V) (Line P Q). Then it holds that:
G(Y ) =

SUPQG(V ) − SV PQG(U)

SUPV Q
.LEMMA 14. (EL6). Let G(Y ) be a linear geometri quantity and Y isintrodued by (Foot Y P (Line U V)). Then it holds that:

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U
.LEMMA 15. (EL7). Let G(Y ) be a linear geometri quantity and Y isintrodued by (Pratio Y W (Line U V) r). Then it holds that:

G(Y ) = G(W ) + r(G(V ) − G(U)).LEMMA 16. (EL8). If Y is introdued by (Tratio Y (Line P Q) r)then it holds that:
SABY = SABP − r

4
PPAQB.LEMMA 17. (EL9). If Y is introdued by (Tratio Y (Line P Q) r)then it holds that:

PABY = PABP − 4rSPAQB.LEMMA 18. (EL10). If Y is introdued by (Inter Y (Line U V)(Line P Q)) then it holds that:
PAY B =

SUPQ

SUPV Q

G(V ) +
SV PQ

SUPV Q

G(U) − SUPQ · SV PQ · PUV U

S2
UPV Q

.LEMMA 19. (EL11). If Y is introdued by (Foot Y P (Line U V))then it holds that:
PAY B =

PPUV

PUV U

G(V ) +
PPV U

PUV U

G(U) − PPUV · PPV U

PUV U

.LEMMA 20. (EL12). If Y is introdued by (Pratio Y W (Line U V)r) then it holds that:
PAY B = PAWB + r(PAV B − PAUB + 2 · PWUV ) − r(1 − r)PUV U .LEMMA 21. (EL13). If Y is introdued by (Tratio Y (Line P Q) r)then it holds that:

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).
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21Table III. Elimination Lemmas Geometri Quantities
AY

CY

AY

CD
SABY SABCY PABY PABCY PAY BECS2 EL1 EL5 EL10ECS3 EL2 EL6 EL11ECS4 EL3 EL7 EL12Construtive Steps ECS5 EL4 EL8 EL9 EL13Elimination LemmasThe information on the elimination lemmas is summarized in Ta-ble III.On the bases of the above lemmas, given a statement S, it is alwayspossible to eliminate all onstruted points (in reverse order) leavingonly free points, numerial onstants and numerial variables. Namely,by Lemma 8, all geometri quantities are transformed into one of thestandard forms and then appropriate elimination lemmas (dependingon the onstrution steps) are used to eliminate all onstruted points.2.5. The Algorithm and its PropertiesIn this setion we present the area method's algorithm. As explainedin setion 2.1, the idea of the method is to eliminate all the on-struted points and then to transform the statement being proved intoan expression involving only independent geometri quantities.2.5.1. Dealing with Side Conditions in Elimination LemmasApart from ndg-onditions of the onstrution steps, there are also sideonditions in some of the elimination lemmas. Namely, some eliminationlemmas have two ases (side onditions) � positive (always of the form�A is on PQ�) and negative (always of the form �A is not on PQ�). Asin the ase of ndg-onditions, the positive side onditions (those of theform �A is on PQ�) an also be expressed in terms of geometri quan-tities (as SAPQ = 0) and heked by the area method itself. Negativeside onditions (expressed ad SAPQ 6= 0) an also be proved in somesituations. Basially, the area method an only prove onjetures of theform E1 = E2, but if, while trying to prove that it holds E1 6= E2, oneends up with a trivial inequality (a 6= b for two distint onstants aand b), then it yields E1 6= E2 (sine all the rules applied by the areamethod are equivalene preserving).In one variant of the area method (implemented in GCLCprover,see 3.1), non-degeneray onditions an be introdued not only at the
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22 Jani£i� - Narboux - Quaresmabeginning (based on the hypotheses), but also during the proving pro-ess. If a side ondition for the positive ase of a branhing eliminationlemma (the one of the form L = R) an be proved (as a lemma), thenthat ase is applied. Otherwise, if a side ondition for the negativease (the one of the form L 6= R) an be proved (as a lemma), thenthat ase is applied. Otherwise, the ondition for the negative ase isassumed and introdued as an additional non-degeneray ondition.Therefore, this approah inludes proving subgoals (whih initiate anew proving proess on that new goal). However, there is no branhing,so the proof is always sequential, possibly with lemmas integrated. Lem-mas are being proved as separate onjetures, but, of ourse, sharingthe onstrution and non-degeneray onditions with the outer ontext.Note that in this variant of the method, the statement proved by themethod is not exatly the one given by the user as the method introduesndg-onditions.In another variant of the method (implemented in Coq, see 3.2),if a ondition for one ase an be proved, then that ase is applied,otherwise both ases are onsidered separately. Therefore, this variantmay produe branhing proofs (but does not generate additional ndg-onditions). Note that this variant does not hange the initial statementand does not risk to introdue ndg-onditions whih are not needed.Indeed, for example, in some ontexts it ould be the ase that neither
A always belongs to CD nor always it does not belong to CD, but thestatement to be proved is still true in both ases. Using the �rst variantof the method, in suh a ase the ondition SACD 6= 0 would be addedto the statement whereas the theorem ould be proved without thisassumption.
2.5.2. UniformizationThe main goal of the phase of eliminating onstruted points is thatall remaining geometri quantities are independent. However, this isnot exatly the ase, beause two equal geometri quantities an berepresented by syntatially di�erent terms. For instane, SABC an alsobe represented by SCAB. To solve this issue, it is needed to uniformizethe geometri quantities that appear in the statement. For this purpose,a set of onditional rewrite rules is used. To ensure termination, theserules are applied only when A, B and C stand for variables whose nameare in alphabeti order.The uniformization proedure onsists of applying exhaustively thefollowing rules:
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23
BA → −AB by Lemma 1

SBCA → SABC SACB → −SABC

SCAB → SABC SBAC → −SABC

SCBA → −SABC

by Lemma 4
PCBA → PABC by Lemma 6
PBAB → PABA by Lemma 72.5.3. Dealing with free points: area oordinatesThe elementary onstrution step ECS1 introdues arbitrary points.Suh points are the free points on whih all other objets are based. Fora geometri statement S = (C1, C2, . . . , Cm, (E1 = E2)), one an obtaintwo rational expressions E′

1 and E′
2 in ratio of direted segments, signedareas and Pythagoras di�erenes in only free points, numerial onstantsand numerial variables. Most often this simply leads to equations thatare trivially true (as in Ceva's example). However, the remaining ge-ometri quantities an still be mutually dependent, e.g., for any fourpoints A, B, C, and D it holds (by Axiom 6) that

SABC = SABD + SADC + SDBCIn suh ases, it is needed to redue E′
1 and E′

2 to expressions inindependent variables. For that purpose the area oordinates are used.DEFINITION 7. Let A, O, U , and V be four points suh that O, U ,and V are not ollinear. The area oordinates of A with respet to OUVare
xA =

SOUA

SOUV
, yA =

SOAV

SOUV
, zA =

SAUV

SOUV
.It is lear that xA + yA + zA = 1.It holds that the points in the plane are in a one to one orrespon-dene with their area oordinates. To represent E1 and E2 as expressionsin independent variables, �rst three new points O, U , and V , suh that

UO ⊥ OV and d = OU = OV , are introdued. Expressions E1 and E2an be transformed to expressions in the area oordinates of the freepoints with respet to OUV .For any point P , let XP denotes SOUP , let YP denotes SOV P , andlet Col(A,B,C) denotes the fat that A, B and C are ollinear.
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24 Jani£i� - Narboux - QuaresmaLEMMA 22. For any points A, B, C and D suh that C 6= D and
AB ‖ CD, it holds that:
AB

CD
=























































XCYA−XCYB−YAXB+YBXA−YCXA+YCXB

XCYA−XCYD−YAXD−YCXA+YCXD+XAYD
if not Col(A,C,D)

XBYA−XAYB

XDYC−XCYD

if Col(A,C,D) andnot Col(O,A,C)

SOUV (XB−XA)+XBYA−XAYB

SOUV (XD−XC)+XDYC−XCYD

if Col(A,C,D) and
Col(O,A,C) andnot Col(U,A,C)

SOUV (YB−YA)+XBYA−YBXA

SOUV (YD−YC)+XDYC−YDXC
otherwiseLEMMA 23. For any points A, B and C it holds that:

SABC = (YB−YC)XA+(YC−YA)XB+(YA−YB)XC

SOUV
.LEMMA 24. For any points A, B and C it holds that:

PABC = 8(
YAYC−YAYB+Y 2

B−YBYC−XAXB+XAXC+X2
B−XBXC

d2 ).LEMMA 25. SOUV = ±d2

2 .Using lemmas 22 to 25, expressions E1 and E2 an be written asexpressions in d2, and in the geometri quantities of the form SOUP or
SOV P where P is a free point (there is V suh that SOUV = d2

2 ).After this transformation, the equality E1 = E2 is transformed intoan equality over independent variables and numerial parameters.2.5.4. Simpli�ationFor simpli�ation of the statement the following rewrite rules are ap-plied.Degenerated geometri quantities:
Y Y

AB
→ 0 SAAB → 0 PAAB → 0

SBAA → 0 PBAA → 0
SABA → 0Ring simpli�ations:

a · 0 → 0 0 + a → a −0 → 0 (−a) · b → −(a · b)
0 · a → 0 a + 0 → a −− a → a a · (−b) → −(a · b)
1 · a → a a − 0 → a −a + a → 0 −a · −b → a · b
a · 1 → a 0 − a → −a a + (−b) → a − b

a − a → 0 −b + a → a − b
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25
c1 + c2 → c3 where c1 and c2 are onstants (elements of F ) and

c1 + c2 = c3

c1 · c2 → c3, where c1 and c2 are onstants (elements of F ) and
c1 · c2 = c3Field simpli�ations (if a 6= 0):

a
a

→ 1 0
a

→ 0 −b
a

→ − b
a

a
−a

→ −1 a
1 → a b

−a
→ − b

a

−a
a

→ −1 a · ( 1
a
) → 1 a·b

a
→ b

−a
−a

→ 1 b·a
a

→ b2.5.5. Deiding equality of two rational expressionsAfter the elimination of onstruted points, uniformization of geomet-ri quantities, treatment of the free points, and the simpli�ation, anequality between two rational expressions involving only independentquantities is obtained. To deide validity of suh an equality (by trans-forming its two sides), the following (terminating) rewrite rules areused.Reduing to a single fration:
a
b

+ c → a+c·b
b

a · b
c
→ a·b

c
a
b
c

→ a·c
b

c + a
b

→ c·b+a
b

a
b
· c → a·c

b

a
b

c
→ a

b·c
a
b

+ c
b
→ a+c

b
a
b
· c

d
→ a·c

b·d

a
b
c
d

→ a·d
c·b

a
b

+ c
d

→ a·d+c·b
bdReduing to an equation without frations:

a
b

= c → a = c · b a
b

= c
b
→ a = c

c = a
b

→ c · b = a a
b

= c
d

→ a · d = c · bReduing to an equation where the right hand side is zero:
a = c → a − c = 0Reduing left hand side to right assoiative form:

((a + b) + c) → a + (b + c) a · (b + c) → a · b + a · c
((a · b) · c) → a · (b · c) (b + c) · a → b · a + c · a

a · c → c · a, where c is a onstant (element of F ) and a is not aonstant.
a · (c · b) → c · (a · b) where c is a onstant (element of F ) and a isnot a onstant.
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26 Jani£i� - Narboux - Quaresma
c1 · (c2 · a) → c3 · a where c1 and c2 are onstants (elements of F )and c1 · c2 = c3.
E1+· · ·+Ei−1+c1 ·C+Ei+1+· · ·+Ej−1+c2 ·C ′+Ej+1+· · ·+En →

E1 + · · ·Ei−1 + c3 ·C +Ei+1 + · · ·+Ej−1 +Ej+1 + · · ·+En, where c1, c2and c3 are onstants (elements of F ) suh that c1 + c2 = c3 and C and
C ′ are equal produts (with all multipliands equal up to permutation).The above rules are used in the �waterfall� manner: they are triedfor appliability, and when one rule is (one) applied suessfully, thenthe list of the rules is tried from the top. The ordering of the rules animpat the e�ieny to some extent.The original equality is valid if and only if it is transformed to 0 = 0.Note that all the rules involving ratios given above an be appliedto ratios of direted segments (as, following the axiom system givenin Setion 2.2.2), ratios of direted segments are ratios over F . Sinethese rules are applied after the elimination proess, there is no dangerof leaving segment lengths involving onstruted points (by breakingsome ratios of segments). However, in this approah all ratios are han-dled only at the end of the proving proess. To inrease e�ieny, it ispossible to use these rules during the proving proess. Namely, all therules involving ratios an be used also in the simpli�ation phase, butnot applied to ratios of segments (they are treated as speial ase ofratios). The �rst approah is implemented in Coq (see 3.2), the seondin GCLCprover (see 3.1).The set of rules given above is not minimal, in a sense that somerules an be omitted and the proedure for deiding equality would stillbe omplete. However, they are used for e�ieny. Also, additional rulesan be used, as long as they are terminating and validity and invaliditypreserving.2.5.6. Non-degeneray ConditionsSome onstrutions are possible only if ertain onditions are met. Forinstane, the onstrution of the intersetion of lines a and b is possibleonly if the lines a and b are not parallel. For suh onstrutions ndg-onditions are stored and onsidered during the proving proess. Non-degeneray onditions of the onstrution steps have one of the followingtwo forms:
− A 6= B or, equivalently, PABA 6= 0;
− PQ ∦ UV or, equivalently, SPUV 6= SQUV ;Negations of these onditions have to be heked during the provingproess. As seen from above, these negations an be expressed as equal-ities in terms of geometri quantities and in some ases an be provedby the area method itself.
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27A ndg-ondition of a geometry statement is the onjuntion of ndg-onditions of the orresponding onstrution steps, plus the onditionsthat the denominators of the ratios of parallel direted segments in thestatement are not equal to zero, and the onditions that AB ‖ CD forevery ratio AB

CD
that appear in the statement. As said in Setion 2.3.2,the statement is proved with the assumption that its ndg-onditionsare satis�ed. Hene, if the negation of a ndg-ondition of a geometrystatement is met, the statement is trivially valid.As an example, onsider a theorem about an impossible onstrution.Let A, B and C be three arbitrary points (obtained by ECS1). Let Dbe on the line parallel to AB passing through C (obtained by ECS4).Let I be the intersetion of AB and CD (obtained by ECS2). Then,the assumptions of any statement G to be proved about these pointsare inonsistent sine the onstrution of D implies AB ‖ CD and theonstrution of I implies AB ∦ CD. Therefore, G is trivially valid.2.5.7. AlgorithmThe area method heks whether a onstrutive geometry statement

(C1, C2, . . . , Cm, E1 = E2) is valid or not, i.e., it heks whether E1 =
E2 is a dedutive onsequene of the onstrution (C1, C2, . . . , Cm),along with its ndg-onditions. As said, the key part of the method iseliminating onstruted points from geometri quantities. The point areintrodued one by one, and are eliminated from the goal expression inthe reverse order.Algorithm: Area methodInput: S = (C1, C2, . . . , Cm, (E1 = E2)) is a statement in C.Output: The algorithm heks whether S is valid or not and produesa orresponding proof (onsisting of all single steps performed).1. initially, the urrent goal is the given onjeture; translate thegoal in terms of geometri quantities using table 2.2.1 andgenerate all ndg-onditions for S;2. proess all the onstrution steps in reverse order:a) if the negation of the ndg-ondition of the urrent onstru-tion step is met, then exit and report that the onjetureis trivially valid; otherwise, this ndg-ondition is one of theassumptions of the statement.b) simplify the urrent goal (by using the simpli�ation pro-edure);
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28 Jani£i� - Narboux - Quaresma) if the urrent onstrution step introdues a new point
P , then eliminate (by using Lemma 8 and the eliminationlemmas) all ourrenes of P from the urrent goal;3. uniformize the geometri quantities (using the uniformizationrules);4. simplify the urrent goal (by using the simpli�ation proe-dure);5. test if the obtained equality is valid (by using the proeduregiven in 2.5.5); if yes, then the onjeture E1 = E2 is valid, un-der the assumption that the ndg-onditions hold, otherwise:a) eliminate the free points (using the area oordinates, asdesribed in 2.5.3);b) simplify the urrent goal (by using the simpli�ation pro-edure);) test if the obtained equality is valid (by using the proe-dure given in 2.5.5); if yes, then the onjeture E1 = E2 isvalid, under the assumption that the ndg-onditions hold.Otherwise the onjeture is not valid.Testing the validity of ndg-onditions within the main loop an alsobe performed by the area method itself (based on the onstrution stepsthat preede the urrent step).2.5.8. Properties of the MethodThe area method is terminating, sound, and omplete: it an prove anygeometry theorem expressed in terms of geometri quantities, and in-volving only objets introdued by using a spei�ed set of onstrutionssteps. Therefore, the proedure is a deision proedure for the desribedfragment of geometry.5Termination. Sine there is a �nite number of onstruted points,there is a �nite number of ourrenes of these points in the statement,and sine in eah appliation of the elimination lemmas there is at leastone ourrene of a onstruted points eliminated, it follows that allonstruted points will be eventually eliminated from the statements.Therefore, if the simpli�ation proedure and the proedure for deid-ing equality over independent parameters terminate, the whole of themethod terminates as well.

5 This fragment an also be de�ned as a quanti�er-free theory with the set ofaxioms equal to the set of all introdued lemmas. It an be easily shown that thistheory is a sub-theory of Eulidean geometry augmented by the theory of �elds.
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29Corretness. All steps of the method transform the urrent goal. Allsteps are based on the (proved) lemmas, so these transformation pre-serve the validity of the goal: the goal is valid after one step if and onlyif it was valid before that step. Therefore, it remains to onsider onlythe last step of the algorithm. If E1 = E2, then the original statementis obviously valid. Note that the ndg-onditions ensure that the denom-inators of all the expressions ourring in the proof are di�erent fromzero. Otherwise, if E1 6= E2, sine all geometri quantities ourring in
E1 and E2 are free parameters, in the geometri onstrution onsideredthey an take arbitrary values. So, it is possible to hoose onrete valuesfor these quantities leading to E1 6= E2, and a ounterexample for thestatement. Hene, in this ase, the statement is not valid. Therefore,the method is both sound and omplete: it returns the positive answer(along with the proof) if and only if the given onjeture is valid.Complexity The ore of the method does not have branhing (unlessthe variant with onsidering both ases in ndg-onditions is used, asexplained in Setion 2.5.6), whih makes it very e�ient for many non-trivial geometry theorems (still, the area method is less e�ient thanprovers based on algebrai methods (Chou et al., 1994)).The area method an transform a onjeture given as an equalitybetween rational expressions involving onstruted points, to an equal-ity not involving onstruted points. Eah appliation of eliminationlemmas eliminates one ourrene of a onstruted point and replaea relevant geometri quantity by a rational expression with a degreeless than or equal to two. Therefore, if the original onjeture has adegree d and involves n ourrenes of onstruted points, then theredued onjeture (without onstruted points) has a degree of atmost 2n (Chou et al., 1994). However, this degree is usually muh less,espeially if the simpli�ation proedures are used along the eliminationproess. The above analysis does not take into aount the omplexityof the elimination of free points and the simpli�ation proess.3. Implementations of the Area MethodIn this setion we desribe spei�s of our two (independent) implemen-tations of the area method and brie�y desribe other two implementa-tions. We also desribe some appliations of these implementations.
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30 Jani£i� - Narboux - Quaresma3.1. The Area Method in GCLCA theorem prover GCLCprover, based on the area method, is a partof a dynami geometry tool GCLC. This setion begins with a briefdesription of GCLC.3.1.1. GCLCGCLC (Jani£i¢, 2006; Jani£i¢, 2009) is a tool for visualisation of ob-jets and notions of geometry and other �elds of mathematis. Theprimary fous of the �rst versions of the GCLC was produing digitalillustrations of Eulidean onstrutions in LATEX form (hene the name�Geometry Construtions → LATEX Converter�), but now it is muhmore than that. For instane, there is support for symboli expres-sions, for parametri urves and surfaes, for drawing funtions, graphs,and trees, support for �ow ontrol, et. Libraries of GCLC proeduresprovide additional features, suh as support for hyperboli geometry.The basi idea behind GCLC is that onstrutions are abstrat, for-mal proedures, rather than images. Thus, in GCLC, produing math-ematial illustrations is based on �desribing �gures� rather than on�drawing �gures�. A �gure an be generated (in the Cartesian model ofthe plane) on the basis of the abstrat desription.The language of GCLC (Jani£i¢, 2009) onsists of the followinggroups of ommands: basi de�nitions (e.g., point for introduing apoint, line for a line determined by two point), basi onstrutions(e.g., interse for onstruting the intersetion of two lines), trans-formations (e.g., translate for translation), ommands for symbolialulations, ommands for �ow ontrol, drawing ommands, labellingand printing ommands, Cartesian ommands, low level ommands,ommands for desribing animations, and ommands for automatedtheorem proving.EXAMPLE 3.1. The example GCLC ode given in Figure 2 (left) de-sribes a triangle and the midpoints of two of triangle's sides. From thisGCLC ode, Figure 2 (right) an be generated.Apart from produing digital mathematial illustrations (in di�erentformats), GCLC an be used for teahing and studying geometry (andnot only geometry), and for storing visual mathematial ontents intextual form (as �gure desriptions in the underlying language).GCLC has been under onstant development sine 1996. It is imple-mented in C++, and onsist of around 40.000 lines of ode. WinGCLCis a version with a MS-Windows graphial interfae that makes GCLCa dynami geometry tool with a range of additional funtionalities(Figure 3).
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Figure 2. A desription of a triangle and midpoints of two of triangle's sides inGCLC language (left) and the orresponding illustration (right)3.1.2. Integration of the Area MethodGCLC has three geometry theorem provers for Eulidean onstrutivetheorems built in: a theorem prover GCLCprover based on the areamethod6 (Jani£i¢ and Quaresma, 2006) and algebrai theorem proversbased on the Gröbner bases method and on the Wu's method7 (Pre-dovi¢, 2008). Thanks to these theorem provers, GCLC links geometrialontents, visual information, and mahine�generated proofs.The provers are tightly integrated in GCLC. This means that one anuse the prover to reason about a GCLC onstrution (i.e., about objetsintrodued in it) without any adaptations to the dedution proess otherthen the addition of the onjeture itself. For this purpose, the proversuse the standard GCLC onstrution ommands. GCLCprover dealswith the subset of GCLC onstrution ommands (e.g., it does not dealwith intersetions of two irles). If needed, GCLCprover transforms aonstrution ommand into a form required by the area method and/orintrodues some auxiliary points. For example, the GCLC ommandmed m A B that introdues the segment bisetor m of the segment withendpoints A and B is dealt with, in the following way: internally, twoauxiliary points are introdued � a point Mm suh that (Pratio MmA (Line A B) 1/2) and a point Tm suh that Tratio Tm (Line MmA) 1); the line m is then, within the prover, determined by the points
Mm and Tm. A onjeture to be proved may involve only points and

6 This theorem prover was developed by Predrag Jani£i� and Pedro Quaresma.
7 These theorem provers were developed by Goran Predovi� and Predrag Jani£i�.
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32 Jani£i� - Narboux - Quaresma

Figure 3. WinGCLC Sreenshotlines already introdued within the urrent onstrution. A onjetureis given as argument to the prove ommand. It has to be of the form
L = R, where L and R are expressions over geometri quantities, whihan be ombined together into more omplex terms by operators foraddition, multipliation and division (written sum, mult, ratio). Theonjeture and all its sub-terms, are written in pre�x form, for instane,
SA′B′A = SA′B′B is given in the following way:prove { equal { signed_area3 A' B' A }{ signed_area3 A' B' B }}Alternatively, a onjeture an be given in the form of some higher-level properties (e.g., prove { parallel A B A' B' } and in suh asesit is internally transformed into a statement in terms of geometri quan-tities (following properties from Table 2.2.1). The prover onsiders onlyabstrat spei�ation of the onjeture and do not onsider Cartesianvalues of the points involved (they are used only for visualisation).For the onstrution shown in Example 3.1, it holds that the lines
AB and A′B′ are parallel and this an be proved by the theorem prover.This property an be given as argument to the prove ommand: prove
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33{ parallel A B A' B'}, after the desription of the onstrution. Theprover is invoked at the end of proessing of the GCLC �le.Support for the prover involves only �ve ommands: prove, to statethe onjeture, prooflevel used, optionally, for hoosing one of theeight levels of detail for the output (see 3.1.4), prooflimit for ontrol-ling the maximal number of proof steps, prover_timeout for �xing atime limit to the prover, and theorem_name for setting the name of thetheorem (later used in prover's output douments).3.1.3. Spei�s of the Implementation in GCLCThe algorithm implemented in GCLCprover is the one desribed inSetion 2.5.7, with the following spei�s, all introdued for inreasinge�ieny.3.1.3.1. Simpli�ation proedure. With respet to the simpli�ationproedure desribed in 2.5.4, there are the following spei�s in thevariant implemented within GCLCprover:
− The unary operator − is not used (and instead −x is representedas (−1) · x). Hene, the rules involving this operator are not used.This does not a�et the orretness of the method, but simpli�esthe implementation.
− The rules given in 2.5.5 are used also within the simpli�ationproedure, but the rules involving frations are not applied to ratiosof segments. Beause of that, the following additional rules are usedwithin the simpli�ation proedure:

• AB

AB
→ 1

• AB

BA
→ −1

− The following rules are used within the simpli�ation phase:
• x

c
→ (1/c) ·x, where c is a onstant (element of F ) and c 6= 1.

• E1·...·Ei−1·C·Ei+1·...·En

E′
1·...·E

′
j−1·C·E′

j+1·...·E
′
m

→ E1·...·Ei−1·Ei+1·...·En

E′
1·...·E

′
j−1·E

′
j+1·...·E

′
m

• E1+ · · ·+Ei−1+c1 ·C+Ei+1+ · · ·+En = E′
1+ · · ·+E′

j−1+c2 ·
C ′+E′

j+1+· · ·+E′
m → E1+· · ·+Ei−1+c3 ·C+Ei+1 · · ·+En =

E′
1 + · · · + E′

j−1 + E′
j+1 + · · · + E′

mwhere c1, c2, and c3 are onstants (elements of F ) suh that
c1 − c2 = c3 and C and C ′ are equal produts (with allmultipliands equal up to permutation).

areaMethodReap.tex; 6/10/2009; 19:53; p.33



34 Jani£i� - Narboux - Quaresma
• If the urrent goal is of the form E1 + . . . + En = E′

1 + . . . E′
mand if all summands Ei and E′

j have a ommon multipliationfator X, then try to prove that it holds X = 0:
∗ if X = 0 has been proved, the urrent goal an be rewrit-ten to 0 = 0;
∗ if X = 0 has been disproved (i.e., if X 6= 0 has beenproved), then both sides in the urrent goal an be an-elled by X;
∗ if neither X = 0 nor X 6= 0 an be proved, then assume

X 6= 0 (and add to the list of non-degeneray onditions)and anel both sides in the urrent goal by X.
− The uniformization proedure (2.5.2) is used within the simpli�a-tion proedure. In addition, if three points A, B, C are ollinear,then the rule SABC → 0 is applied.
− Reduing to area oordinates is not implemented. Instead, thefollowing rules are applied at that stage:

• AA → 0

• SABC → SABD + SADC + SDBC (by Axiom 6), if there areterms SABD, SADC , SDBC in the urrent goal.
• PABC → AB

2
+ CB

2
+ −1 · AC

2 (by De�nition 3)Note that after these rules applied, the equality being proved maystill involve dependent parameters. Still, the simpli�ation proessis applied again and the equality is tested for validity for the lasttime. Even without reduing to area oordinates, the above rulesenable proving most onjetures from the area method sope.3.1.3.2. Dealing with ndg-onditions. The prover reords and reportsabout the ndg-onditions of the onstrution steps, but there is no hekof ndg-onditions within the main loop. That hek is not neessaryin this ontext, i.e., within GCLC. Namely, when using GCLC, theuser desribes a onstrution and then provides a statement about theonstruted objets to be proved. The onstrution is visualised for a setof free points with onrete Cartesian oordinates. For eah onstrutionstep, it is heked if it is possible (e.g., if two lines do interset) andthe test orresponds to the ndg-ondition of the onstrution step. Ifsome of these heks fails, an error is reported, the onstrution is notvisualised, and the onjeture is not sent to the prover. In that ase,one of the ndg-onditions is false in the onrete model. Otherwise, all
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35the ndg-onditions are true in the onrete model, and hene, none oftheir negations an be valid, so the hek of ndg-onditions (as given insetion 2.5.7) is not needed.
3.1.3.3. Dealing with side onditions. If a side ondition for one ase ofa branhing elimination lemma an be proved, then that ase is applied,otherwise, a ondition for the negative ase is assumed and introduedas an additional ndg-ondition (as explained in Setion 2.5.1). The sameapproah is used when applying the anellation rule (see setion 3.1.3).Thanks to the powerful simpli�ation proedure, e�ient implemen-tation in C++ and to the fat that there are no branhing in the proofs,GCLCprover is very e�ient and an prove many omplex theoremsin only milliseonds (for examples see the GeoThms web repository(desribed in Setion 3.4.1).
3.1.4. Prover OutputThe proofs generated by GCLCprover an be exported to LATEX or toxml form using a speial-purpose styles, with explanations for eahproof step.8At the beginning of the proof, the auxiliary points are de�ned, forinstane:Let M0

a be the midpoint of the segment BC.Let T 1
a be the point on bisetor of the segment BC (suh thatTratio T 1

a M0
a B 1).For eah proof step (a single transformation of the goal being proved),there is an explanation and, optionally, its semantis ounterpart � asa hek whether a onjeture is valid in the spei� ase, determinedby the given Cartesian points. This semanti information is alulatedfor onrete points used in the onstrution for visualisation purposes(these Cartesian oordinates are never used in the proof itself); it anserve as a semanti test, espeially for onjetures for whih is not known

8 There are no objet-level proofs veri�able by theorem proving assistants.
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36 Jani£i� - Narboux - Quaresmawhether or not they are theorems. All proof steps are enumerated, forexample:
((

AF

FB
· BD

DC

)

· CE

EA

) = 1 by the statement (1)
(((

−1 · AF

BF

)

· BD

DC

)

· CE

EA

) = 1 by geometri simpli�ations (2)Lemmas (about side onditions) are proved within the main proof(making nested proof levels). After the proof steps, all non-degenerayonditions are listed, for instane:
SBPA 6= SCPA i.e., lines BC and PA are not parallel (onstru-tion based assumption)At the end, the output doument inludes a short report, onsistingof information on whether the onjeture was proved or disproved (orneither), data about CPU time spent, and the number of proof stepsperformed (in several ategories).The style for proofs formatted in LATEX has options for di�erentformatting. Proofs stored in xml are strutured analogously as in LATEXformat. The proofs in xml format ful�l restritions posed by a ustomdtd �le. For any xml �le, it an be heked if it meets these restritions(by a xml proessor). A proof in xml format an be onverted to ahtml form. A �le with a proof in xml format an also be open diretlyby web browsers.3.1.5. ExampleIn this setion we give a fragment of the output for the onjeture fromExample 3.2.
SAA′B′ = SBA′B′by the statement (1)
SB′AA′ = SB′BA′by geometrial simpli�ations (2)
“

SB′AA +
“

1

2
·

`

SB′AC +
`

−1 · SB′AA

´´

””

= SB′BA′by Lemma 29 (point A′ eliminated) (3)
. . .

0 =
“

0 +
“

1

2
· (0 + (−1 · 0))

””by geometrial simpli�ations (15)
0 = 0by algebrai simpli�ations (16)Q.E.D.There are no ndg onditions.Number of elimination proof steps: 5Number of geometrial proof steps: 15Number of algebrai proof steps: 25Total number of proof steps: 45Time spent by the prover: 0.001 seonds
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373.2. The Area Method in CoqThis setion desribes the formalisation of the area method using theproof assistant Coq. Coq is a general purpose proof assistant (The Coqdevelopment team, 2009; Huet et al., 2004; Bertot and Castéran, 2004).It allows expressing mathematial assertions and to mehanially hekproofs of these assertions.3.2.1. CoqWe begin the desription of the formalisation with a brief desriptionof Coq and how deision proedures an be formalised in Coq. Althoughthe Coq system has some automati theorem proving features, it is notan automati theorem prover. The proofs are mainly built by the userinteratively. The system allows formalising proofs in di�erent domains.For instane, it has been used for the formalisation of the four olourtheorem (Gonthier and Werner, 2004) and the fundamental theoremof algebra (Geuvers and et.al., 2008). In omputer siene, it an beused to prove orretness of programs, like a C ompiler that has beendeveloped and proved orret using Coq (Leroy, 2006).There are several reent results in the formalisation of elementarygeometry in proof assistants: Hilbert's Grundlagen (Hilbert, 1977) hasbeen formalised in Isabelle/Isar (Meikle and Fleuriot, 2003) and inCoq (Dehlinger et al., 2000). Gilles Kahn has formalised Jan von Plato'sonstrutive geometry in the Coq system (Kahn, 1995; von Plato, 1995).Frédérique Guilhot has made a large development in Coq dealing withFrenh high shool geometry (Guilhot, 2004). Julien Narboux has for-malised Tarski's geometry using the Coq proof assistant (Narboux,2007b). Jean Duprat proposes the formalisation in Coq of an axiomsystem for ompass and ruler geometry (Duprat, 2008). Projetive ge-ometry has also been formalised in Coq (Magaud et al., 2008; Magaudet al., 2009).Implementing deision proedures in Coq There are three methods toadd automation to the Coq system:1. diretly in the implementation language of Coq � Oaml;2. using the tati9 language of Coq � Ltac;3. by re�etion using Coq as a programming language.This third method, introdued by Samuel Boutin (Boutin, 1997),onsists of formalising a subset of the language of Coq using an objet of
9 A tati is a program whih expresses the sequene of the basi logial stepsneeded to formally prove a theorem.
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i−1Figure 4. The Re�etion mehanism.Coq itself. The omputations that an be done using the meta language(Oaml or Ltac) are performed using the Coq language itself. Figure 4represents the re�etion mehanism in the ase of a tati whih appliesa rewrite rule. A re�exive tati is omposed of four elements:
i: a piee of ode written in Ltac (or in Oaml) to translate a Coq terminto an objet of Coq;
f : a Coq funtion whih perform the omputations to solve the givenproblem;
i−1: a Coq funtion whih translates bak from the universe of Coq ob-jets to the universe ofCoq. Note that it is neessary that i−1(i(t)) →

t holds, but this fat does not need to be proven formally ;
P : the formal proof that the translation realised by f is orret.This method has the advantage to produe tatis that are moree�ient and that produe shorter proofs, sine the appliation of thetati is reorded in the proof just as a step of omputations. For moreinformation on the re�exive proof method, see, for instane, Chapter16 of the book Coq'Art (Bertot and Castéran, 2004).3.2.2. Formalisation of the Area MethodThe goal of the formalisation of the area method (in Coq) is to bring thelevel of automation provided by the method to the Coq proof assistant.This is done by implementing the deision proedure as a Coq tati andformalising all theorems needed by the method. We de�ned an axiomsystem, proved all the propositions needed by the tatis (we formallyproved more than 700 lemmas) and wrote the tatis.Coneptually, proving the propositions and writing the tatis thatuse them seem to be two separate tasks. But to ease the develop-ment, in our implementation we have intermixed the proofs of thepropositions and the tatis. We bootstrap partially the onstrutionof the whole deision proedure by using some automati tatis for
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39the proof of the elimination lemmas. Our tati is deomposed intosub-tatis performing the following tasks: initialisation; simpli�ation;uniformization; elimination of onstruted points; elimination of freepoints; onlusion.The implementation of the prover is realized mainly using the lan-guage Ltac whih is integrated in the system Coq. Still, some sub-tatis(for instane the simpli�ation tatis) are implemented using the re-�etion mehanism. We hosed not to use the re�etion tati for thewhole deision proedure for two reasons:1. We believe that the e�ieny of the method would not have beeninreased signi�antly. Indeed, the proof generated by our tationsists mainly of a sequene of appliation of elimination lemmas.2. Expressing the tati as a Coq funtion and proving its orretnesswould have been a very di�ult task, as we make heavy use of thehigh level primitives of the language Ltac suh as pattern math-ing, deleting hypotheses, et. To use the re�etion method for thewhole algorithm, the whole mahinery and the proof of its orretionshould have been realized using Coq.Consequently, we did not proved formally the ompleteness of themethod implementation (i.e., that the tati always sueeds if thetheorem is valid). Our formal proofs guaranty only the soundness ofthe method implementation (i.e., the proofs generated by the tati arealways orrets).3.2.3. Spei�s of the Implementation in CoqIn this setion, we desribe the algorithm whih is used in the Coq'simplementation of the area method.As the method is implemented within a proof assistant, eah stepof the algorithm orrespond to a proof step that is heked by the Coqsystem. At the end of the proof, it is heked another time by the Coqkernel as explained in setion 3.2.6. The main di�ulty is that Coqmust be �onvined� at eah step that the transformation we performis orret. For this we have to maintain two invariants:1. For eah syntati expression whih ours at the denominator ofsome fration, the ontext always ontains a proof that it is nonzero.2. For eah syntati expression whih represents a ratio of diretedsegments (AB/CD), the ontext always ontains a proof that ABis parallel to CD.
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40 Jani£i� - Narboux - QuaresmaThe algorithm implemented in Coq orresponds to the algorithmdesribed in Setion 2.5.7. We give details only for the phases withspei� features.Initialisation The initialisation phase performs the following tasks:1. unfold de�nitions;2. introdue hypotheses in the ontext;3. enode onstrutions of half-free points (points that belong to a lineor a irle) into onstrutions of �xed point with a parameter;4. ompose simple onstrutions into more omplex onstrutions whenit is possible;5. transform hypotheses of the form A 6= B into AB 6= 06. split onjuntions in the goal i.e. deompose onjuntions in thegoal into several goals;7. hek that the invariants are initially veri�ed.Dealing with Non-degeneray Conditions and Case Splits in LemmasAs GCLC, the Coq implementation does not deal with ndg onditions,we assume that the statement is not ontraditory.Conerning ase splits in elimination lemmas, new ndg-onditions arenot generated (unlike in GCLCprover) and, instead, ase distintion isperformed (as explained in Setion 2.5.1).3.2.4. ExampleWe now give a detailed desription of how the tati works on theexample 3.2 by deomposing the proedure into small steps10.The midpoint theorem is stated using our language in the syntax ofCoq as follows:EXAMPLE 3.2.Theorem midpoint_A :forall A B C A' B' : Point, midpoint A' B C ->midpoint B' A C -> parallel A' B' A B.geoInit.
10 These steps are not exatly the same steps as those exeuted by our automatiproedure (the automati proedure may treat the points in another order, andperform more simpli�ation and uni�ation steps).
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411 subgoalA : PointB : PointC : PointA' : PointB' : PointH : on_line_d A' B C (1 / 2)H0 : on_line_d B' A C (1 / 2)============================S A' A B' + S A' B' B = 0on_line_d A' B C (1/2) states that A′ is on line BC and BA′

BC
= 1

2 .At this step it would be enough to type area_method to solve thegoal using our deision proedure, but for this presentation we mimithe behaviour of the deision proedure using our sub-tatis. We givethe name of the sub-tatis on the left, and Coq output on the right11:geoInit. H : on_line_d A' B C (1 / 2)H0 : on_line_d B' A C (1 / 2)============================S A' A B' + S A' B' B = 0eliminate B'. H : on_line_d A' B C (1 / 2)============================1 / 2 * S A' A C + (1 - 1 / 2) * S A' A A +(1 / 2 * S B A' C + (1 - 1 / 2) * S B A' A) = 0basi_simpl. H : on_line_d A' B C (1 / 2)============================1 / 2 * S A' A C + (1 / 2 * S B A' C + 1 / 2 * S B A' A) = 0eliminate A'. ============================1 / 2 * (1 / 2 * S A C C + (1 - 1 / 2) * S A C B) +(1 / 2 * (1 / 2 * S C B C + (1 - 1 / 2) * S C B B) +1 / 2 * (1 / 2 * S A B C + (1 - 1 / 2) * S A B B)) = 0basi_simpl. ============================1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * S A B C) = 0uniformize. ============================1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * - S A C B) = 0field_and_onlude. Proof ompleted.
11 For this presentation the fat that A, B, C, A′, and B′ are of type Point hasbeen removed from the ontext.
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42 Jani£i� - Narboux - Quaresma3.2.5. Prover OutputThe main omparative feature of the implementation in Coq is that itprodues formal proofs. It was built with that main motivation (unlikeGCLCprover whih aims at produing proofs e�iently).The output of the formalisation in Coq is a formal proof. Morepreisely, it is a term of the alulus of indutive onstrutions whihreords all the details of the proof. These formal proofs are not readable,hene to have a readable proof we also output a human readable versionof the proofs in a textual format in the onsole. For instane, for theexample given above, the following output is generated:Area method:initialisation...elimination...elimination of point : B'we need to show that:(1 / 2 * S A' A C = 1 / 2 * S A' B C + 1 / 2 * S A' B A)elimination of point : A'we need to show that:(1 / 2 * (1 / 2 * S A C B) = 1 / 2 * (1 / 2 * S B A C))uniformize areas...simplifiation...before field...3.2.6. Bene�ts of the FormalisationFormalising a deision proedure within a proof assistant, has not onlythe advantage of simplifying the tedious task of (rigorously) provinggeometry theorems but also allows us to ombine the geometry proofsprovided by the tati with arbitrary ompliated proofs developed in-teratively using the full strength of the underlying logi of the theoremprover. For instane, theorems involving indution over the number ofpoints an be formalised in Coq. This approah has also the advantageof providing a higher level of reliability than ad ho theorem provers,beause the proofs generated by tatis are double heked by theCoq internal proof-heker (the Coq system as a whole and its kernel).Namely, sine it is possible that Coq itself ontains a bug, the Coqsystem is, to redue this risk, built using the de Bruijn's priniple: onlya small part of the system alled the kernel is trusted. All the proofsgenerated are heked by the kernel. If there is a bug outside the kernel,the system an fail, but it guarantees the soundness (i.e., it does notallow proving an invalid statement).During formalisation of the area method, we found two potentialsoures of inorretness.
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43First, during proving, we disovered one mistake in the original de-sriptions (Chou et al., 1993): in lemma EL12 the fator 2 before PWUVwas missing.Seond, when proving the invariant that elimination lemmas trans-form always well de�ned geometri quantities into an expression in-volving only well de�ned geometri quantities, we notied that someelimination lemmas require a non degeneray ondition. Let us onsiderLemma EL3: if Y is introdued by (Pratio Y R (Line P Q) r), thenit holds
AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwiseIf A = Y , it an be the ase that CD 6‖ PQ. This demonstrates thatthe lemma is valid only if A 6= Y and otherwise the ratio CD

PQ
is notwell de�ned. Hene, during proofs it is neessary to distinguish the twoases (A = Y and A 6= Y ) as explained in Setion 3.2.3 or to generatean additional ndg (A 6= Y ) as explained in Setion 3.1.3.3.3.2.7. Integration in GeoProofSimilarly to GCLC, the formalisation of the area method in Coq omeswith a dynami geometry software (Narboux, 2007a). The software de-veloped, GeoProof (Figure 5) ombines three tools: a dynami geometrysoftware to explore and invent onjetures, an automati theorem proverto hek fats, and an interative proof system (Coq) to mehaniallyhek proofs built interatively by the user.3.3. Other Implementations of the Area MethodAlthough it is very well-know and widely redited as the most e�ientmethod for proving geometry theorems that produe readable proofs,there are just a very few implementations of the area method. Atually,the situation is similar with other proving methods for geometry�toour knowledge, there are only around a dozen implementations in totalof other most e�ient proving methods (Wu's method, Gröbner basesmethod adapted to geometry theorem proving, the full angle method,and the dedutive database method), ounting versions employed withindi�erent systems. One of the main reasons for this is probably thefat that these methods, while having simple basi ideas, are all stillvery omplex and require many details to be �lled when making a realimplementation.In addition to the two implementations of the area method alreadydesribed, we are aware of the other two: one used within a family of
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Figure 5. GeoProoftools developed by the authors of the method and their ollaborators,and one developed within the wider system Theorema.3.3.1. Eulid and Geometry ExpertEulid is theorem prover based on the area method, developed in 1993by the authors of the method � Shang Ching Chou, Xiao Shan Gao,and Jing-Zhong Zhang (Chou et al., 1993). It was implemented inCommon Lisp and was aompanied by a list of 400 proved theorems.Geometry Expert12 (GEX) is a dynami geometry tool foused onautomated theorem proving and it implements Wu's, Gröbner basis,vetor, full-angle, and the area methods (Chou et al., 1996a). GEX wasimplemented in 1998 by Xiao Shan Gao.MMP/Geometer13 is a new, Chinese, version of GEX. The tool is be-ing developed from 2002 by Xiao-Shan Gao and Qiang Lin. It automatesgeometry diagram generation, geometry theorem proving, and geometrytheorem disovering (Gao and Lin, 2004). MMP/Geometer implementsWu's method, the area method, and the geometry dedutive databasemethod. Conjetures are given in a restrited pseudo-natural languageor in a point-and-lik manner.
12 http://www.mmr.iss.a.n/gex/
13 http://www.mmr.iss.a.n/mmsoft/
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45Java Geometry Expert14 (JGEX) is a new, Java version of GEX.JGEX is being developed from 2004, by Shang Ching Chou, Xiao ShanGao, and Zheng Ye. JGEX ombines dynami geometry, automatedgeometry theorem proving, and, as its most distintive part, visualdynami presentation of proofs. It provides a series of visual e�etsfor presentation of proofs. The proofs an be visualised either manuallyor automatially. Within the program distribution, there are more thansix hundred examples of proofs. JGEX implements the following meth-ods for geometry theorem proving: Wu's method, the Groëbner basismethod, the full-angle method, the dedutive database method. In theversion 0.80 (May 2009), the area method and the vetor method arestill under development.The systems from the GEX family are publily available, but theyare not open-soure and are not aompanied by tehnial reports withimplementation details, so one annot reonstrut how some parts of theproving methods are implemented. Available researh papers desribingthese tools desribe mainly only the high-level ideas and main requiredlemmas, but for instane, desriptions of the simpli�ation phase anddealing with ase splits are not available.3.3.2. TheoremaTheorema15 is a general mathematial tool with uniform framework foromputing, problem solving, and theorem proving (Buhberger et al.,2006). Theorema is implemented inMathematia. It has been developingfrom 1996 by Bruno Buhberger and a large team of his ollabora-tors. Theorema has support for several methods for automated theoremproving, inluding methods for theorem proving in geometry. The ge-ometry provers are designed for onstrutive geometry problems andthere is support for Wu's method, Gröbner bases method, and the areamethod (Robu, 2002). These provers were implemented by Judit Robu(the algebrai methods rely on methods that were already available inMathematia and Theorema).The geometry theorem provers are aompanied by visualisationtools typial for dynami geometry. Numerial heks of the validityof geometry statements an also be performed for spei� oordinatesof the points.In addition to the basi area method, there is also a modi�ed ver-sion that an deal not only with onjetures in the form of equalities,but also with onjetures in the form of inequalities over geometriquantities. Within this method (AreaCAD), geometri expressions aretransformed by the lemmas used in the basi area method and an on-
14 http://www.jgex.net/
15 http://www.theorema.org/
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46 Jani£i� - Narboux - Quaresmajeture (equivalent to the original one) only in terms of the free pointsof the onstrution is obtained. That new expression (with two sideslinked by one of the relations < or >) is tested for validity by Collins'algorithm for quanti�er elimination in real losed �elds by ylindrialalgebrai deomposition (Collins, 1975).EXAMPLE 3.3. Let r1 be the radius of the irumirle of a triangle
ABC, and let r2 be the radius of the insribed irle of the triangle.Then it holds that r2

1 ≥ 4r2
2 and this an be proved by AreaCAD.

A

B C

S
O

r1

r2

3.4. AppliationsAs other geometry theorem provers, the area method an have a rangeof di�erent appliations in eduation, mathematial software, omputer-aided design, omputer graphis, omputer vision, robotis, et. In thissetion a few existing, rather straightforward appliations, of the methodare desribed.3.4.1. GeoThmsGeoThms is a web-based framework for exploring geometrial knowl-edge that integrates dynami geometry software, automati theoremprovers, and a repository of geometri onstrutions, �gures and proofs(Quaresma and Jani£i¢, 2006b; Quaresma and Jani£i¢, 2006a). TheGeoThms users an easily use/browse through existing geometrial on-tent and build new ontents.The main motivation is to build and maintain a publily aessibleand widely used Internet based framework for onstrutive geometry.It an be used for teahing and studying geometry, but also as a majorInternet repository for geometrial knowledge.
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The dynami geometry software urrently used within GeoThms areGCLC (Jani£i¢, 2006) and Eukleides16 (Quaresma and Pereira, 2006),two widely used dynami geometry pakages. The automated theoremprovers used are the two theorem provers desribed in setions 3.1and 3.2, both based on the area method, and two theorem proversbased on algebrai methods (Predovi¢, 2008). GeoThms provides a webworkbenh that tightly integrates the mentioned tools into a singleframework for onstrutive geometry.
Javascript editor (textarea replacement),
with line numbers, and coloring

Built−in list of constructions

Personal Scrapbook

The Web interfae is a PHP/MySQL server-side solution designedto enable GeoThms users easily browse through the list of geometry
16 http://www.eukleides.org/
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48 Jani£i� - Narboux - Quaresmaproblems, their statements, illustrations and proofs, and also to intera-tively use the drawing and automati proof tools. GeoThms is aessibleat http://hilbert.mat.u.pt/GeoThms.3.4.2. Automati Veri�ation of Regular ConstrutionsSome geometry tools (e.g., Eukleides, GCLC) have a dual view of a givengeometri onstrution � its desription in a ustom formal languageand a visualised version, within the graphial interfae. Other tools(e.g., Geometer's Skethpad, Cabri) do not have, at least in an expliitform, a formal language for geometri onstrutions and instead theuser does not desribe a onstrution in abstrat terms but �draws�it, using a pre-de�ned set of geometry operations. Generally, there arethree types of onstrution errors:
− syntati errors � only appliable for geometry tools with formallanguages and this type of error is easily deteted by the underlyingproessor and easily orretable by the user. For the other family ofgeometry tools this type of error doesn't our due to a ontrolledenvironment where only syntatially orret ations are allowed.
− semanti errors �situations when, for a onrete set of geometrialobjets (usually given in Cartesian plane), a onstrution step isnot possible, for instane, two idential points do not determine aline. Suh an error will be dealt by most (if not all) geometry toolsfor a given �xed set of points. However, that error is deteted by anargument relevant only for the given instane of the onstrutionand the question whether the onstrution step is always impossibleor it is not possible only in the given speial ase is left open.
− dedutive errors �when a onstrution step is geometrially un-sound, e.g., there is never an intersetion of two parallel lines inEulidean geometry. The formal proof that a onstrution stepis always inpossible an only be provided by geometry tools thatinorporate geometry theorem provers.GCLC has a built-in mehanism (using GCLCprover) for heking ifa onstrution step is illegal, i.e., if it is always impossible (Jani£i¢ andQuaresma, 2007).EXAMPLE 3.4. Example 85 from the book Mehanial Geometry The-orem Proving (Chou, 1987) will be used to illustrate the mehanism forautomati veri�ation of regular onstrutions built into GCLC. UsingGCLC, the illustration given in Figure 6 an be generated.If the ode for the intersetion of lines AD and MN is added, e.g.,
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A

N
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CD

PQ

Figure 6. Example 85 from the book Mehanial Geometry Theorem Provingline mn M Ninterse X mn adGCLC will not perform the last onstrution step and it will give thefollowing error message:Run-time error: Bad definition. Can not determineintersetion. (Line: 40, position: 10)This is a semanti error only, deteted for the onrete set of pointsin the Cartesian plane. However, if GCLC is alled with an appropriateoption, in the above situation (with a semanti error enountered), itwill invoke the built-in theorem prover and provide the following infor-mation.Dedution hek invoked: the property that led to the errorwill be tested for validity.The onjeture suessfully proved - the ritial propertyalways holds. The prover output is written in the fileerror-proof.tex.Thus, the tool provides not only the statement that the onstrution isalways illegal, but also a rigorous proof of it (in the area method style).As far as we are aware of, the system for automated dedutive testingwhether a onstrution is illegal that is built into GCLC is the only suhsystem. A similar mehanism is available in JGEX: when a user tries toperform an illegal onstrution step, the tool may report that it is notpossible to perform the step, but it does not provide a proof for that ar-gument. The geometry tool Cinderella does not allow performing illegal
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50 Jani£i� - Narboux - Quaresmaonstrution steps, however the justi�ation is not based on dedutivebut on probabilisti reasoning (Kortenkamp and Rihter-Gebert, 2004).The apability of performing dedutive heks is important featurethat enhanes the didati nature of dynami geometry tools and pro-vides an important link with automated theorem proving. That linkonnets the dedutive nature of geometry onjetures with the seman-ti nature of models of geometry and, also, with human intuition andvisualisations.3.4.3. Computing Geometri ExpressionsWithin Theorema, the area method mahinery is used for omputing ex-pressions involving geometri quantities relative to a given onstrution.For the given expression, all onstruted points are eliminated and theexpression is simpli�ed, similarly as in the basi method (Robu, 2002).EXAMPLE 3.5. Let A, B and C be arbitrary points and let r is anarbitrary number. Let D be the intersetion of the line through B thatis parallel to AC and the line through C that is parallel to AB. Let A′be the point that divides CD in the ratio 1 : r(r − 1) and let B′ be thepoint that divides DA in the ratio 1 : r(r − 1). Finally, let X be theintersetion of the lines AA′ and BB′. The goal is to �nd the ratio ofthe area of the triangle ABC and the quadrilateral ABCD.
A

B C

DB′

A′

X

The tool implemented within Theorema, based on the area methodan ompute that the given ratio is equal to 1−r
4−4r+2r2 .Notie that the basi area method an prove that the given ratio equals

1−r
4−4r+2r2 , but omputing the given ratio (without an expeted result)requires some slight modi�ations of the method17.
17 This extension of the method was originally desribed by the authors of themethod (Chou et al., 1994).
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513.4.4. Disovering Geometry PropertiesWithin Theorema, the area method mahinery is used for exploringgeometrial on�gurations and disovering geometry properties (Robu,2002). The method is based on a systemati generation of all geometriexpressions representing interesting properties relative to a onstru-tion (ollinear points, ongruent segments, parallel and perpendiularlines, triangles with the same area) and then analysing whih of theseproperties might be unknown so far i.e., not present in an availableknowledge base. Starting from a knowledge base that spei�es someonstrutions and properties, a range of interesting theorems an beautomatially obtained. These obtained theorems an be added to theknowledge base and the exploration may ontinue without reomputingthe results already obtained. For testing generated properties, the areamethod is used, but other proving methods an be used as well.4. ContributionsIn this paper we gave a detailed aount of the area method and de-sribed all existing implementation that we are aware of and their widerontexts. This aount an serve as a basis for a straightforward imple-mentation of the method. In addition to that, this paper brings thefollowing original ontributions:
− We gave an axiom system that serve as a basis for the method,an extension of the axiom system given by the authors of themethod (Chou et al., 1994) (Setion 2.2.2).
− We made formal proofs, within the proof assistant Coq (in a on-tribution aompanying this paper), of all the lemmas needed forthe orretion of the method not only for a�ne geometry (al-ready desribed before (Narboux, 2004)), but also for Eulideangeometry (Narboux, 2009). Thanks to the formalisation, we en-sured the orretness of all the lemmas required by the method,with an exeption of one lemma that, as published in the originaldesription (Chou et al., 1994), ontained an error.
− We provided detailed traditional proofs in an Hilbert-style system(in a tehnial report aompanying this paper (Quaresma andJani£i¢, 2009)) of all the lemmas and �lled-in some details missingin the original desriptions.
− We made expliit the elimination proedure for all ases inludingthe speial ases suh as AY

CY
(Setion 2.4.1).

areaMethodReap.tex; 6/10/2009; 19:53; p.51



52 Jani£i� - Narboux - Quaresma
− We made expliit dealing with the ase split ourring in some ofthe lemmas (Setion 2.5.1).
− Wemade expliit the uniformization phase whih onsists in �ndingnormal forms for geometri quantities (Setion 2.5.2).
− We made expliit the formulas to be used for dealing with freepoints (Setion 2.5.3).
− We made an expliit desription of the simpli�ation phase (Se-tion 2.5.4).
− We made expliit the algorithm for deiding equality between tworational expressions in independent parameters (Setion 2.5.5).
− We highlighted the fat that a speial ase needs to be studiedwhen eliminating Y in AY

CD
(Setion 3.2.6).5. ConlusionsIn this paper we gave a detailed desription of the area method, one ofthe most signi�ant methods for automated theorem proving in geom-etry, introdued by Chou et al. in 1993. The method produes human-readable proofs and an e�iently prove many non-trivial theorems.The desription of the method given here an serve as a detailed tutorialon the method (�rst of that kind), su�ient for understanding andimplementing it in a straightforward manner.Within this paper we also showed how the area method an besuessfully integrated with other mathematial tools.We, the authors of the paper, independently made two of these in-tegrated implementations and in this paper we presented our ombinedresults and experienes related to the method and its appliations.ReferenesBertot, Y. and P. Castéran: 2004, Interative Theorem Proving and Program Devel-opment, Coq'Art: The Calulus of Indutive Construtions, Texts in TheoretialComputer Siene. An EATCS Series. Springer.Boutin, S.: 1997, `Using re�etion to build e�ient and erti�ed deision proe-dures.'. In: M. Abadi and T. Ito (eds.): Proeedings of TACS'97, Vol. 1281 ofLeture Notes in Computer Siene.
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