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Abstract. In type-theory based proof systems that provide inductive
structures, computation tools are automatically associated to inductive
definitions. Choosing a particular representation for a given concept has
a strong influence on proof structure. We propose a method to make
the change from one representation to another easier, by systematically
translating proofs from one context to another. We show how this method
works by using it on natural numbers, for which a unary representation
(based on Peano axioms) and a binary representation are available. This
method leads to an automatic translation tool that we have implemented
in Coq and successfully applied to several arithmetical theorems.

1 Introduction

Mechanical theorem provers can be used to develop provably correct software and
formalize large bodies of mathematics. Proofs for mathematical objectives are
eventually very useful for proofs of software components, when the correctness
of algorithms rely on arbitrarily complex mathematical notions, but very often
the proof styles are different. For plain mathematics, simplicity of concepts is of
paramount importance. For software proofs, efficiency plays a more important
role.

When considering natural numbers, the difference of style between mathe-
matical proofs and software proofs is embodied in two different representations
of numbers. With the unary representation, natural numbers are described as
an inductive set with two constructors: 0 and the successor function. The sim-
plicity is perfect, inductive proofs only have two cases, and this representation
is preferred in most proof developments about the mathematical properties of
natural numbers. But the representation of a number has a size proportional
to the number itself. Computers use a more compact representation, called the
binary representation. A natural number is either 0, or a sequence of bits, ones
and zeros, that starts with a one. Inductive proofs on this structure naturally
have four cases: two base cases corresponding to 0 and 1 and two other cases
corresponding to numbers of the form 2× x and 2 × x + 1 when x is already a
number different from 0.

Up until now, a large number of results have been established about natural
numbers, where the proofs make an intensive use of the unary representation
of natural numbers. However, it may sometimes be desirable to switch to the
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more efficient binary representation. Should all results be proven again, or is
there a way to re-use all the proofs that have already been done, either by
translating them from one data-structure to another, or by establishing these
results for an abstract data type that can be shown to be “made concrete” in
both representations?

This study concentrates on natural numbers, but it should apply to many
other contexts where initial choices of concrete data types might need to be
re-considered as software evolves.

2 Proof Representation

In type-theory based logical systems, the Curry-Howard isomorphism establishes
a correspondence between logic and typed λ-calculus, where types are logical for-
mulas and λ-terms are proofs. This isomorphism makes it possible to identify
the implication with a function type. Moreover, universal quantification is iden-
tified with a general notion of dependent function types, where the type for the
returned value depends on the input value.

For instance, let us consider a proof of “transitivity of implication” for propo-
sitions P , Q, and R. The statement has the following shape:

(R ⇒ P ) ⇒ (P ⇒ Q) ⇒ R ⇒ Q. (1)

The proof for this statement is represented by the following term:

λth1 : (R ⇒ P ); th2 : (P ⇒ Q); th3 : R.(th2 (th1 th3)). (2)

According to Heyting-Kolmogorov’s semantics, we can also associate a compu-
tational interpretation to proofs. We can consider the term (2) as a function,
which constructs a proof of Q when given proofs th1, th2, th3, respectively for
R ⇒ P , P ⇒ Q, and R. Just respecting the type discipline, we know that ap-
plying th1 to th3 is well-formed and returns a term of type P (i.e., a proof of
P ), then applying th2 finishes the proof.

Proof Translation: If P ′, Q′, and R′ are the same properties as P , Q, and R,
but now expressed with respect to a new concrete representation, it is easy to
reuse the proof (2) to obtain the following statement:

(R′ ⇒ P ′) ⇒ (P ′ ⇒ Q′) ⇒ R′ ⇒ Q′ (3)

A proof of this statement then becomes:

λth′
1 : (R

′ ⇒ P ′); th′
2 : (P

′ ⇒ Q′); th′
3 : R

′.(th′
2 (th

′
1 th′

3)). (4)

Application to Induction Principles: In practice, when one chooses a data type,
proof tools automatically generate induction principles. As a result, the proof
structures are influenced by the chosen data types and some theorems available
in one formalization will be missing in the other one. One important part of the
translation work is to recover theorems corresponding to induction principles
from the old setting in the new setting.
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Convertibility: Reasoning about inductive types also involves computing recur-
sively over these types. In type-theory based proof systems, the tradition is to
include computation in the conversion mechanisms that are automatically used
by the type-checker to compare two terms. Because the recursion mechanism is
intimately linked with the structure of the data types, this has a tremendous im-
pact on the translation of proofs: terms that are convertible in one setting may
not be convertible in the new setting. If PA and PB are considered equivalent in
the initial setting, the following term represents a correct proof:

λth1 : (PA ⇒ Q); th2 : (R ⇒ PB); th3 : R.(th1 (th2 th3)). (5)

The statement being proven is the following one:

(PA ⇒ Q) ⇒ (R ⇒ PB) ⇒ R ⇒ Q. (6)

When changing over to a new data-structure, P ′
A, and P ′

B , obtained by translat-
ing PA and PB respectively may not be convertible anymore. It then becomes
necessary to modify the structure of the proof term (5) and replace the im-
plicit equivalence between PA and PB by the explicit application of a theorem
th′

4 : P ′
B ⇒ P ′

A that we will have to prove on the side. In this case, the translation
of (6) becomes the following term:

λth′
1 : (P

′
A ⇒ Q′); th′

2 : (R
′ ⇒ P ′

B); th
′
3 : R

′.(th′
1 (th

′
4 (th

′
2 th′

3))).

In this paper, we describe the practical problems we have encountered in
an attempt to transform theorems from the unary representation to the binary
representation. We first recall the basics of inductive data type descriptions in
Coq (section 3), we then show how to make the conversion steps in the proof
explicit (section 4). In a third stage, we study how to represent functions and
their computational behavior (section 5). We finally present the tools we need
to change from one inductive data type to another, focusing on natural numbers
and their unary and binary representations (section 6). We then present an
overview of related work and examine the perspectives of this work.

3 Inductive Types in Coq

3.1 General Characteristics of Coq

The Coq system provides an implementation of the Calculus of Inductive Con-
structions [3, Chap.4]. It is a typed λ-calculus with dependent types [16] with
capabilities for inductive definitions [14]. Coq provides an interactive mode for
developing proofs by backward chaining, with a collection of proof commands
called tactics, that decompose goal logical formulas into simpler sub-goals. Each
tactic makes it possible to perform elementary reasoning steps. Eventually, all
proof steps are combined in a λ-term where the reasoning steps are represented
using λ-calculus constructions.
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Inductive types are defined by giving a collection of functions whose co-
domain is the type being defined and whose arguments may be in the inductive
type being defined (in fact, there are precise constraints on how the inductive
type may be used in the arguments but we will use only a simple form of inductive
types here). These functions are called constructors. For instance, unary natural
numbers are defined in the following manner:

Inductive nat : Set := O : nat | S : nat -> nat.

The inductive type is called nat, the functions given to define it are O (a function
with no argument, i.e., an element in the type) and S (a unary function). The
automatic tools in Coq use this definition to automatically construct a struc-
tural induction principle and recursion operator that makes it possible to define
recursive functions. The induction principle has the following shape:

nat_ind
: (P:(nat->Prop))(P O)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

In the calculus of inductive constructions, the recursion operator associated to an
inductive type is integrated in the conversion mechanisms that make it possible
to compare terms. It can be assimilated with a term nat rec with the following
type:

nat_rec
: (P: (nat -> Set))(P O)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

The reduction rules associated with this recursion operator are as follows:

(nat_rec P v0 f O) → v0 (nat_rec P v0 f (S n)) → (f n (nat_rec P v0 f n))

The definition of recursive functions is not always translated in terms of the
recursion operators. Instead, the definition of a recursive function can be viewed
as giving rise directly to reduction rules. For instance the factorial function is
defined as follows:

Fixpoint fact [n:nat] : nat :=
Cases n of O => (S O)

| (S p) => (mult (fact p) (S p))
end.

Corresponding reduction rules are:

(fact 0) → (S 0) (fact (S n)) → (mult (fact n) (S n))

The logical system does not distinguish between convertible terms. Put in
other terms, (fact 0) and (S 0) are identified. As a result, convertibility may
hide some parts of the reasoning steps, a particularity that has been thoroughly
exploited in reflexion or two-level approaches [8,4].
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4 Making Conversions Explicit

Some reasoning steps may be missing in proof terms because of the convertibility
rules which may identify syntactically different terms. We start by describing
through an example what implicit computational steps we would like to make
explicit in a proof term. We then present the method developed to achieve this
goal and describe an algorithm. We conclude by showing what happens when
the algorithm is applied to an example.

4.1 An Example

Throughout this section, we consider the theorem plus n O.

∀n ∈ nat n = (plus n O) (7)

A proof (as a λ-term) of this property is :

λn : nat.(nat ind (λn0 : nat.n0 = (plus n0 O))
(refl equal nat O)
λn0 : nat;H : (n0 = (plus n0 O)).

(f equal nat nat S n0 (plus n0 O) H) n)

It proceeds by induction on n, through the principle called nat ind.
The term (refl equal nat O) is a proof that O = O. However, thanks to convert-
ibility rules, it is also a proof of O = (plus O O). In the same way,

λn0 : nat;H : (n0 = (plus n0 O)). (f equal nat nat S n0 (plus n0 O) H)

is a proof of

∀n0 : nat n0 = (plus n0 O) ⇒ (S n0) = (S (plus n0 O))

It is also a proof of ∀n0 : nat n0 = (plus n0 O) ⇒ (S n0) = (plus (S n0) O)
which is the expected type for the third argument of the induction principle
nat ind.

4.2 Computing Expected and Proposed Types

The first step in our work is to extract the implicit computational steps from
the proof terms. To this end, we use a technique derived from Yann Coscoy’s
work [5] on proof explanation. This technique is also very close to the methods
for type-checking dependent types in the original ALF system [11]. We need to
determine positions within the proof term where expected and proposed types
differ. We restrict our work to concrete datatypes and concrete equalities and
will not be able to work with an abstract algebraic “book” equality. Here we
focus on Leibnitz’s equality which is the basic equality of Coq.
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4.3 Expected and Proposed Types

The algorithm we present in the next section uses intensively the notions of
expected and proposed type for a term. Given a term t, its expected type TE is
the type required for the whole term (whose t belongs to) to be well-typed. Its
proposed type TP is the one inferred by the type system.
Let us consider the example of an application (t1 t2). If the types inferred by
the system are the following ones:

t1 : T → U & t2 : T ′

Then the expected type for t2 is the argument T of the functional type T → U ,
whereas its proposed type is T ′. The application (t1 t2) is well-typed provided
the expected and proposed types for t2 are convertible. When using the formulas-
as-types (and proofs-as-terms) analogy, we see that the expected type is a proof
obligation, i.e. it states what we are required to prove. The proposed type is a
proof witness, i.e. it can be viewed as the formula whose term (here t2) is actually
proven.

4.4 The Algorithm

The algorithm is designed to work on proof terms which are well-typed. Its aim
is to locate positions where implicit ι-reduction steps occur in the proof term. It
eventually builds a new proof term, with no more implicit (ι-reduction) steps.
All these steps are recorded as logic variables that need to be proven on the side.

The terms we consider in this study are constants, variables, inductive types
and their constructors, λ-abstractions, product types, and applications. The cal-
culus of constructions also contains a case analysis operator (Cases) but it in-
volves important complications and we treat this operator in a separate section.

The algorithm takes a statement T , its proof t, and a context C as input. It
proceeds by recursive case analysis on t, and returns a new term and a list of
conjectures.

– Variables, Constants, Inductives Data Types, Constructors
All these constructs remain unchanged and are simply returned.

– Abstraction t ≡ λx : A.b
By hypothesis, the proof term we consider is well-typed. This ensures that
T can be reduced (via weak-head normal form computation) to a product
∀x : A′.B. Moreover, we know that A and A′ are convertible modulo βδι-
reduction. We choose to add x : A′ in the context C.
We then call the algorithm recursively with new input: b instead of t, B
instead of T , and x : A′ ; C instead of C.

– Application t ≡ (h u1 . . . un)
Here, we only know that the expected type for the whole application is T .
There is no expected type for the function h. However, we can compute its
proposed type TP . It is necessarily a product since the initial term is well-
typed. We can infer the expected type TEu1 for the first argument. We then
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compare that type with TPu1, that can be inferred by the system. If the types
TEu1 and TPu1 are convertible by βδ conversion the algorithm simply stores
an intermediary value v1 = u1. If these two types are not convertible by βδ
conversion, then the algorithm constructs a new conjecture c1 whose type is
∀x1 : t1, . . . xk : tk.TPu1 → TEu1 where the variables xi are the variables
that appear free in TPu1 and TEu1 and whose type is given in C; it stores
an intermediary value v1 = (c1 x1 · · · xk u1). This process is repeated for
all variables ui, each time creating an intermediary value vi and, possibly, a
conjecture ci. In the end, the algorithm constructs a term v = (h v1 . . . vn).
If this term v has type T , then the algorithm returns v and the new list of
conjectures. If this term has a type T ′ different from T , then the algorithm
constructs yet another conjecture c of type ∀x1 : t1, . . . xk : tk.T ′ → T and
returns the term (c x1 · · · xk (h v1 · · · vn)) and a list of conjectures containing
c and all the ci’s.
In the initial setting, all the conjectures are simple consequences of the con-
vertibility rule. In the target setting, these conjectures will need to be proven.

4.5 What Happens to Our Example ?

In our example, the proof term of plus n O is transformed into the following
one:

λn : nat.(nat ind

(λn0 : nat.n0 = (plus n0 O))
(Ha (refl equal nat O))
λn0 : nat;H : (n0 = (plus n0 O)).
(Hb n0 (f equal nat nat S n0 (plus n0 O) H)) n)

Two conjectures Ha and Hb are generated in order to relate expected and pro-
posed types in the branches of the application of the induction principle.

Ha : O = O ⇒ O = (plus O O)
Hb : ∀n : nat.(S n) = (S (plus n O)) ⇒ (S n) = (plus (S n) O)

We see they can be proven easily, by first introducing the premises and then
using the reflexivity of Leibniz’s equality. This works because the terms on both
sides of the equality are convertible modulo βδι-reduction.

5 Representing Functions

When translating proofs from one setting to the other, it is also necessary to find
the corresponding representations for the functions that are used in the proofs.
The corresponding representation for a given function may use a completely
different algorithm, for instance to benefit from the characteristics of the new
data structure. When the algorithm changes, we still need to express that the
initial function and its representation in the new setting do represent the same
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function. This will be done by showing that the new function satisfies equalities
that characterize the behavior of the initial function. We still need to show how
to find these equalities.

We describe this on the example of addition. In the unary setting, addition
works by moving as many S’s in front of the second argument as there are S’s in
the first argument. This is expressed with a function that has this form:

Fixpoint plus[n:nat] : nat -> nat :=
Cases n of O => [m:nat] m
| (S p) => [m:nat](S (plus p m))

end.

This notation is specific to Coq, and is very close to a let rec or letrec defi-
nition in ML.

As we already mentioned, such a definition adds to the convertibility rules
in the proof system, so that (plus (S n) m) and (S (plus n m)) actually are
convertible. In some theorems, the first term may be provided when the second
term is requested. If we work in the binary setting, it is most likely that this
convertibility will not hold anymore. On the other hand, it is possible to prove
the equality that expresses that both terms are equal.

Generating Equalities: From a given function definition, it is possible to derive
a collection of equalities that express the actual convertibility rules added in
the system. These equalities are constructed by an analysis on the text of the
definition. A first step to producing these equalities is to isolate the fixpoint
equality as already studied in [2]. For the plus example, this equality has the
following form.

∀n : nat. (plus n) = Cases n of
0 => [m:nat]m

|(S p) => [m:nat](S (plus p m)
end

However, this equality is still very linked to the unary data structure, because
it makes use of the Cases construct. For this Cases construct to be valid, it
is necessary to work in a setting where O and S are data type constructors.
To abstract away from the data structure, we exhibit equalities corresponding
to each conversion rule in the Cases construct. In our example the function
performs two different tasks, depending on whether n is 0 or (S p) for some p.

If n is 0, then the left-hand side of the equality becomes (plus 0). The right-
hand side is simplified according to corresponding rule in the Cases construct.
The equality becomes as follows:

(plus 0) = [m : nat]m

If n is (S p), the equality becomes:

∀p : nat. (plus (S p)) = [m : nat](S (plus p m))
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In fact, since type-theory based proof systems usually do not compare functions
extensionally, it is better to modify these equalities to avoid comparing functions,
but only values of these functions when these values do not have a function type.
The equalities thus become as follows:

∀m : nat. (plus 0 m) = m

∀p,m : nat. (plus (S p) m) = (S (plus p m))

Now, if we want to translate a proof about addition in the unary setting to
another setting, we need to prove these equations for the new addition. These
equations can then be used to simulate convertibility.

6 Mapping Binary Representation to the Unary Setting

The binary representation of natural numbers is inspired from the representation
of integer numbers proposed by P. Crégut as an implementation basis for the
Omega tactic, one of the most useful decision procedures for numerical problems
provided in Coq.

6.1 Constructing the Bijections

The set of strictly positive numbers is the set generated by 1 and the two func-
tions x 	→ 2 × x and x 	→ 2 × x + 1. This set is constructed using the following
inductive definition:

Inductive positive : Set :=
one: positive (* 1 *)

| pI: positive ->positive (* 2x+1, x>0 *)
| pO: positive ->positive. (* 2x, x>0 *)

The whole set of inductive numbers, including 0 is then described as the disjoint
sum of {0} and strictly positive numbers.

Inductive bin : Set := zero : bin | pos : positive -> bin.

From these definitions, the structural induction principles that are generated
basically express the following statement:

P (0) ∧ P (1) ∧ (∀p ∈ positive . P (p)⇒ P (2p+1)) ∧ (∀p ∈ positive . P (p)⇒ P (2p))

⇒ ∀n ∈ bin . P (n)

Seen as sets, types bin and nat are isomorphic, but their induction principles
establish a strong distinction between them. To reduce this distinction, we need
to exhibit a function S’, defined in the binary setting, representing the successor
function. Our definition of S’ relies on an auxiliary definition for strictly positive
numbers, aux S’:
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Fixpoint aux_S’ [n:positive] : positive :=
Cases n of
one (* 1 *) => (pO one) (* 2*1 *)

| (pO t) (* 2*t t>0 *) => (pI t) (* 2*t+1 *)
| (pI t) (* 2*t+1 t>0 *) => (pO (aux_S’ t)) (* 2*(t+1) *)
end.

Definition S’ : bin -> bin :=
[n:bin] Cases n of zero => (pos one) |

(pos u) => (pos (aux_S’ u)) end.

We can now construct two functions from elements of one data type to the other:

BtoN : bin → nat NtoB : nat → bin.

The function BtoN also relies on an auxiliary definition that takes care of strictly
positive numbers.

Fixpoint aux_BtoN [x:positive] : nat :=
Cases x of one => (S O)

| (pO t) => (mult (S (S O)) (aux_BtoN t))
| (pI t) => (S (mult (S (S O)) (aux_BtoN t)))

end.

Definition BtoN :=
[x:bin] Cases x of zero => O | (pos p) => (aux_BtoN p) end.

On the other hand, defining NtoB is a simple matter of repeating S’ the right
number of times:

Fixpoint NtoB [n:nat] : bin :=
Cases n of O => zero | (S x) => (S’ (NtoB x)) end.

Then, we need to express that these two functions are the inverse of each other,
or at least that NtoB is the left inverse of BtoN.

NtoB inverse : ∀a ∈ bin NtoB(BtoN(a)) = a

This proof relies on an auxiliary theorem NtoB mult2. This theorem re-phrases
the interpretation of pO as multiplication by 2 in the unary setting.

6.2 Mapping the Induction Principle

With the equality NtoB inverse, proving an induction principle for the binary
setting that has the same shape as the unary setting induction principle is easy.
This theorem we name new bin ind has the following statement:

∀P : bin → Prop.(P zero) ∧ (∀x : bin.P (x) ⇒ (P (S’ x))) ⇒ ∀x : bin.P (x)



Changing Data Structures in Type Theory: A Study of Natural Numbers 191

To prove this, we take an arbitrary x in bin and hypotheses P (zero) and

∀b : bin P (b) ⇒ P (S′(b))

(let us call this hypothesis h) and we replace x with NtoB(BtoN(x)). We then
prove the result by induction over BtoN(x). The base case is P (NtoB(0)), which is
equivalent to P (zero), while the step case requires P (NtoB(S(n))) knowing that
P (NtoB(n)) holds. Here NtoB(S(n)) is the same as S′(NtoB(n)) by the definition
of NtoB and we can use the hypothesis h.

All the inductive reasoning steps in the unary representation can then easily
be translated to the binary setting by relying on this new induction principle. In
this sense, we have made it possible to abstract away from the actual structure
of the data type: proofs done in the binary setting can have a single base case
and a single recursive case, exactly like the proofs done in the unary setting.

6.3 Mapping Recursive Functions

In this section, we work on the example of addition. The purpose of changing
to a binary representation of numbers is to use efficient algorithms for the basic
operations like addition. For this reason, addition is described by a very different
algorithm - the well-known carry adder - that happens to be structural recursive
in the binary data structure.

To show that this addition algorithm represents faithfully the addition func-
tion as implemented in the unary setting we only need to show that it satisfies the
characteristic equations of unary addition, as translated in the binary setting.
Naming Bplus this binary addition, the equations are:

Bplus S: ∀p, q : bin Bplus(S′(p), q) = S′(Bplus(p, q))
Bplus O: ∀p : bin Bplus(zero, p) = p

The first equation is proven by induction on the binary structure, actually fol-
lowing the recursive structure of the function Bplus. Proving the second equation
is very easy, since there is no recursion involved in this base case. However, since
the addition function in the binary setting has been provided manually, this
proof may require user-guidance.

The equations Bplus S and Bplus 0 can be added to the database of an au-
tomatic rewriting procedure that will automatically repeat rewriting with these
equations (oriented left to right). Termination is ensured by the fact that termi-
nation of ι-reduction was already ensured for addition in the unary setting.

6.4 Proving Conjectures

In an earlier stage of our work (section 4), we make ι-conversions occurring in
proofs explicit. The result of this work is a new presentation of proofs accompa-
nied with a collection of conjectures that correspond to the reasoning steps that
are performed by ι-conversion in the initial proof. The next stage of our work is
to prove translations of these conjectures in the new setting.
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In our example on the proof of plus n O, this yields two conjectures:

Ha’ : zero = zero ⇒ zero = Bplus(zero, zero)
Hb’ : ∀n : bin. n = Bplus(n, zero) ⇒ S’(n) = Bplus(S’(n), zero)

These conjectures are always easily proven automatically, by simply applying
rewriting operations repeatedly with the characteristic equations proven in sec-
tion 6.3. In Coq version 6.3.1, the proof is done using the proof command:

Repeat (Intro; AutoRewrite [simplification]);Auto.

This proof command assumes that users have added all the characteristic
equations in the theorem database named simplification as they are proven.

6.5 Bookkeeping

As correspondences are established between functions and theorems in one set-
ting and functions and theorems in the other setting, we need to maintain a
lookup table that is used to perform the translation of statements and proofs
from one setting to the other. From what we have seen so far, this lookup table
has the following shape:

unary setting binary setting unary setting binary setting
nat bin nat ind new bin ind
O zero S S’

plus Bplus Ha Ha’
Hb Hb’

This table is augmented every time a conjecture or a theorem is proven. The user
may also explicitly add new elements that are provided manually, for instance
when implementing multiplication and the characteristic equations for this oper-
ation. Here again, efficient multiplication on the binary structure is very different
from multiplication on the unary structure.

If all the conjectures have been proven, all the theorems used by a given
theorem have already been translated and proven, and the proof term for this
theorem does not contain Case constructs, then the proof automatically obtained
by translation according to the lookup table is always well-typed. Of course there
remains the problem of handling the presence of Cases constructs. This is the
object of the next section.

7 Case Constructs

Case analysis operators can appear in a proof term for various reasons. They are
introduced if the proof of a logical property is performed by case analysis on an
element of an inductive data type; they appear if proofs involve the one-to-one
and disjointness properties of the constructors of an inductive data type; they
are also used to describe computation.

We study under which conditions these case analysis steps can be treated
and how they are handled in a very pragmatic way. In most cases, structural
analysis can be replaced with the application of an induction theorem.
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7.1 Translating the “Case” Tactic on a Goal of Sort Prop

In this case, we have a goal, say P (n) to prove and we decide to proceed by case
analysis on the element n which belongs to an inductively defined data type. In
the example of unary numbers, we replace the Cases construct, for instance:

Cases n of O => h0 | (S p) => (hr p) end

by the application of the induction principle

(nat ind [n : nat](P n) h0 [n : nat][ : (P n)](hr p))

There is no step hypothesis since we perform case analysis rather than induction
on the data. The translation of this expression in the binary integers setting is
straightforward, replacing nat ind with new bin ind.

7.2 Translating Injectivity and Disjointness Properties of
Constructors

The problem with injectivity and disjointness of constructors is that usual proofs
for these properties rely on the ι-reduction behavior of the recursors. For in-
stance, the recursor for natural numbers has the following behavior:

(nat rec P h0 hr O) → h0
(nat rec P h0 hr (S p)) → (hr p (nat rec P h0 hr p))

We have not been able to construct an object simulating this behavior in the
binary setting. On the other hand, we have been able to recognize injectivity
and disjointness proofs by pattern-matching. The patterns for these reasoning
steps are respectively:

(LET ? ? ? (f equal . . .) . . .) (LET ? ? ? (eq ind . . .) . . .)

Then we build a new proof term by repeatedly applying the two following
statements, that are easily proven using their counterparts in the unary setting
and the bijections NtoB and BtoN:

bin inj : ∀n,m : bin. (S’ n) = (S’ m) → n = m
bin discr : ∀n : bin. ¬zero = (S’ n)

7.3 The “Case” Tactic on a Object of Sort Set

This use of the “Case” tactic to build a computational object is an extension of
the previous case for injectivity and disjointness. It can be transformed into a
nat rec theorem application. However, as we can not provide the user with a
suitable translation of such reduction steps, we can not translate such constructs
for the time being.



194 Nicolas Magaud and Yves Bertot

8 Conclusion

We have implemented an ML module that performs the technique presented in
this paper automatically. It has been tested on a small collection of theorems
(e.g. commutativity and associativity of addition) that have all been translated
automatically.

Researchers in the field of programming languages have already considered
the issue of concrete data type representation and correctness of abstraction.
Among them, Wadler proposed a new concept called Views [17] in order to recon-
cile the conflict between data abstraction and pattern matching in programming
languages.

Other researchers have studied the topic of proof transformation. In particu-
lar, Madden [10] and Anderson [1] show how automatic transformation of proofs
can lead to optimized programs extracted from these proofs. Richardson [15]
even uses this technique to change data structures in a proof and the program
that is extracted from this proof. His tool automatically obtains an algorithm
for addition in the binary setting, but this algorithm is less efficient than the
hand-crafted algorithm we study.

Another related topic revolves around proofs by analogy. Informal mathe-
matics contain frequently formulas of the form One would show P in the same
manner that Q. Melis andWhittle [13] propose a technique to construct a proof of
a theorem from a model. Their approach is distinguished by the level of abstrac-
tion that they take. They rely on proof-plans that basically are very high-level
proof procedures.

All this work around proof transformation is obviously related to the problem
of transferring proofs from one theorem prover to another. Felty and Howe [7]
show that proof transformations make it possible to use results established in
different provers at the same time. Denney [6] proposes a mechanism to generate
proof scripts for Coq from proof descriptions given in Hol.

As our plan was to provide a practical tool usable in the Coq system, our
study mainly focuses on Coq Type Theory features. We did not take into account
some other Type Theory features which are not available in the Coq system.
In particular, we did not try to use the idea of recursion-induction, or tools
described in McBride’s PhD thesis [12] to derive “induction principles” which
are direct elimination rules for function instances.

Our solution that goes through a translation of proof terms is not the only
solution available. An alternative is to rely more on the bijection between the
two representations, thus generalizing the way we have proven the induction
principle new bin ind in this paper. If this approach is taken, then one needs to
show that the bijections between the two representations establish a morphism
with respect to all the operations that take part in the translation. Thus, it is
necessary to prove a theorem that has the following statement:

morphism plus : ∀x, y : bin. BtoN(Bplus(x, y)) = plus(BtoN(x),BtoN(y))

Fortunately, this theorem is easy to obtain from the proofs of the characteristic
equations as done in section 6.3 and the induction principle new bin ind. Once
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the isomorphisms are established, proving the translated theorems is relatively
easy: one simply needs to replace every variable x of type bin in the statement
with the term NtoB(BtoN(x)) and then use the initial theorem by specializing it
on BtoN(x). Complications occur when the statement of the theorem contains
elaborate inductive types, conjunctions, disjunctions, existential quantifications.
We still have to study this method and compare its applicability with the method
described here.

One area where the two methods may have different advantages is the case
when the initial setting and the final setting are not exactly isomorphic. For in-
stance, we still need to compare this with an implementation of natural numbers
where they are really represented with lists of boolean values. In this case, two
different lists may represent the same natural numbers. What happens here is
that the syntactic equality, often called Leibnitz’s equality, is in correspondence
with an arbitrary equivalence relation: terms that can be distinguished in the
final setting correspond to identical terms in the initial setting.
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