Formalizing a Discrete Model of the Continuum in Coq from a Discrete Geometry Perspective


Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (520 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (207 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (34 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (91 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (29 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (114 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (20 entries)

Global Index

B

Bridges_order [library]
Bridges_order2_AX [library]


D

div_m [definition, in Euler]


E

Euler [library]
Euler_it_coq [definition, in Euler]
euler_m [definition, in Euler]


G

g [definition, in Euler]
g_parabole [definition, in Euler]
g_exp [definition, in Euler]
g2 [definition, in Euler]
g35 [definition, in Euler]


H

Heyting_field [library]
HRw [library]
HRwequal [library]
HRwgt [library]
HRw_spec [library]


L

LaugwitzSchmieden [library]
LS [module, in LaugwitzSchmieden]
LSn [module, in w_n]
LSn.ANS3 [lemma, in w_n]
LSn.Aw [lemma, in w_n]
LSn.div_modw3 [lemma, in w_n]
LSn.div_modw2 [lemma, in w_n]
LSn.lim_lt_w [lemma, in w_n]
LSn.w [definition, in w_n]
LSn2 [module, in w_n2]
LSn2.ANS3 [lemma, in w_n2]
LSn2.Aw [lemma, in w_n2]
LSn2.div_modw3 [lemma, in w_n2]
LSn2.div_modw2 [lemma, in w_n2]
LSn2.lim_lt_w [lemma, in w_n2]
LSn2.n_n2bis [lemma, in w_n2]
LSn2.n_n2 [lemma, in w_n2]
LSn2.w [definition, in w_n2]
LSw [module, in w]
LSw.ANS3 [axiom, in w]
LSw.Aw [axiom, in w]
LSw.div_modw3 [lemma, in w]
LSw.div_modw2 [lemma, in w]
LSw.lim_lt_w [axiom, in w]
LSw.w [axiom, in w]
LS_EulerA_m [definition, in Euler]
LS_Euler_stepA [definition, in Euler]
LS.A [definition, in LaugwitzSchmieden]
LS.Abeta [lemma, in LaugwitzSchmieden]
LS.absA [definition, in LaugwitzSchmieden]
LS.absA_morphism [instance, in LaugwitzSchmieden]
LS.abs_max [lemma, in LaugwitzSchmieden]
LS.abs_minus [lemma, in LaugwitzSchmieden]
LS.abs_prod [lemma, in LaugwitzSchmieden]
LS.abs_triang [lemma, in LaugwitzSchmieden]
LS.abs_new2 [lemma, in LaugwitzSchmieden]
LS.abs_new [lemma, in LaugwitzSchmieden]
LS.abs_neg_val [lemma, in LaugwitzSchmieden]
LS.abs_pos_val [lemma, in LaugwitzSchmieden]
LS.abs_pos [lemma, in LaugwitzSchmieden]
LS.ANS1 [lemma, in LaugwitzSchmieden]
LS.ANS2a [lemma, in LaugwitzSchmieden]
LS.ANS2b [lemma, in LaugwitzSchmieden]
LS.ANS4 [lemma, in LaugwitzSchmieden]
LS.a0 [definition, in LaugwitzSchmieden]
LS.a1 [definition, in LaugwitzSchmieden]
LS.beta [definition, in LaugwitzSchmieden]
LS.beta_lim [lemma, in LaugwitzSchmieden]
LS.beta_std [lemma, in LaugwitzSchmieden]
LS.bingo [lemma, in LaugwitzSchmieden]
LS.bingo2 [lemma, in LaugwitzSchmieden]
LS.contradict_lt_le [lemma, in LaugwitzSchmieden]
LS.divA [definition, in LaugwitzSchmieden]
LS.divA_morphism [instance, in LaugwitzSchmieden]
LS.div_le2 [lemma, in LaugwitzSchmieden]
LS.div_idg [lemma, in LaugwitzSchmieden]
LS.div_pos [lemma, in LaugwitzSchmieden]
LS.div_le [lemma, in LaugwitzSchmieden]
LS.div_mod3_abs [lemma, in LaugwitzSchmieden]
LS.div_mod3 [lemma, in LaugwitzSchmieden]
LS.div_mod3b [lemma, in LaugwitzSchmieden]
LS.div_mod3a [lemma, in LaugwitzSchmieden]
LS.div_mod2 [lemma, in LaugwitzSchmieden]
LS.div_mod [lemma, in LaugwitzSchmieden]
LS.equalA [definition, in LaugwitzSchmieden]
LS.equalA_equiv [instance, in LaugwitzSchmieden]
LS.equalA_trans [lemma, in LaugwitzSchmieden]
LS.equalA_sym [lemma, in LaugwitzSchmieden]
LS.equalA_refl [lemma, in LaugwitzSchmieden]
LS.leA [definition, in LaugwitzSchmieden]
LS.leA_morphism [instance, in LaugwitzSchmieden]
LS.le_lt_False [lemma, in LaugwitzSchmieden]
LS.le_id [lemma, in LaugwitzSchmieden]
LS.le_lt_trans [lemma, in LaugwitzSchmieden]
LS.le_mult_neg [lemma, in LaugwitzSchmieden]
LS.le_mult_general [lemma, in LaugwitzSchmieden]
LS.le_mult_inv [lemma, in LaugwitzSchmieden]
LS.le_mult_inv2 [lemma, in LaugwitzSchmieden]
LS.le_mult [lemma, in LaugwitzSchmieden]
LS.le_mult_simpl [lemma, in LaugwitzSchmieden]
LS.le_plus_inv [lemma, in LaugwitzSchmieden]
LS.le_lt_plus [lemma, in LaugwitzSchmieden]
LS.le_plus [lemma, in LaugwitzSchmieden]
LS.le_trans [lemma, in LaugwitzSchmieden]
LS.le_refl [lemma, in LaugwitzSchmieden]
LS.lim [definition, in LaugwitzSchmieden]
LS.lim_lt_beta [lemma, in LaugwitzSchmieden]
LS.lim_morphism [instance, in LaugwitzSchmieden]
LS.ltA [definition, in LaugwitzSchmieden]
LS.ltA_morphism [instance, in LaugwitzSchmieden]
LS.lt_le_2 [lemma, in LaugwitzSchmieden]
LS.lt_le_trans [lemma, in LaugwitzSchmieden]
LS.lt_trans [lemma, in LaugwitzSchmieden]
LS.lt_m1_0 [lemma, in LaugwitzSchmieden]
LS.lt_0_1 [lemma, in LaugwitzSchmieden]
LS.lt_mult [lemma, in LaugwitzSchmieden]
LS.lt_mult_inv2 [lemma, in LaugwitzSchmieden]
LS.lt_mult_inv [lemma, in LaugwitzSchmieden]
LS.lt_plus_inv [lemma, in LaugwitzSchmieden]
LS.lt_plus [lemma, in LaugwitzSchmieden]
LS.lt_le [lemma, in LaugwitzSchmieden]
LS.minusA [definition, in LaugwitzSchmieden]
LS.modA [definition, in LaugwitzSchmieden]
LS.modA_morphism [instance, in LaugwitzSchmieden]
LS.multA [definition, in LaugwitzSchmieden]
LS.multA_morphism [instance, in LaugwitzSchmieden]
LS.mult_pos [lemma, in LaugwitzSchmieden]
LS.mult_le [lemma, in LaugwitzSchmieden]
LS.mult_distr_r [lemma, in LaugwitzSchmieden]
LS.mult_distr_l [lemma, in LaugwitzSchmieden]
LS.mult_absorb [lemma, in LaugwitzSchmieden]
LS.mult_assoc [lemma, in LaugwitzSchmieden]
LS.mult_comm [lemma, in LaugwitzSchmieden]
LS.mult_neutral [lemma, in LaugwitzSchmieden]
LS.nat_Z [lemma, in LaugwitzSchmieden]
LS.non_std [definition, in LaugwitzSchmieden]
LS.not_lt_0_0 [lemma, in LaugwitzSchmieden]
LS.oppA [definition, in LaugwitzSchmieden]
LS.oppA_morphism [instance, in LaugwitzSchmieden]
LS.plusA [definition, in LaugwitzSchmieden]
LS.plusA_morphism [instance, in LaugwitzSchmieden]
LS.plus_opp [lemma, in LaugwitzSchmieden]
LS.plus_assoc [lemma, in LaugwitzSchmieden]
LS.plus_comm [lemma, in LaugwitzSchmieden]
LS.plus_neutral [lemma, in LaugwitzSchmieden]
LS.Radd_assoc [definition, in LaugwitzSchmieden]
LS.Radd_comm [definition, in LaugwitzSchmieden]
LS.Radd_0_l [definition, in LaugwitzSchmieden]
LS.Rdistr_l [definition, in LaugwitzSchmieden]
LS.Rmul_assoc [definition, in LaugwitzSchmieden]
LS.Rmul_comm [definition, in LaugwitzSchmieden]
LS.Rmul_1_l [definition, in LaugwitzSchmieden]
LS.Ropp_def [definition, in LaugwitzSchmieden]
LS.Rsub_def [lemma, in LaugwitzSchmieden]
LS.std [definition, in LaugwitzSchmieden]
LS.stdlib_ring_theory [lemma, in LaugwitzSchmieden]
LS.std_alt_lt_beta [lemma, in LaugwitzSchmieden]
LS.std_lim [lemma, in LaugwitzSchmieden]
LS.std_A0_dec [lemma, in LaugwitzSchmieden]
LS.std_std_alt [lemma, in LaugwitzSchmieden]
LS.std_alt [definition, in LaugwitzSchmieden]
LS.Zle_mult_inv [lemma, in LaugwitzSchmieden]
LS.Zle_mult_inv2 [lemma, in LaugwitzSchmieden]
LS.Zlt_mult_inv2 [lemma, in LaugwitzSchmieden]
LS.Znot_le_lt [lemma, in LaugwitzSchmieden]
_ [notation, in LaugwitzSchmieden]
_ <=A _ [notation, in LaugwitzSchmieden]
_ =A _ [notation, in LaugwitzSchmieden]
_ mod% _ [notation, in LaugwitzSchmieden]
_ / _ [notation, in LaugwitzSchmieden]
_ * _ [notation, in LaugwitzSchmieden]
_ + _ [notation, in LaugwitzSchmieden]
- _ [notation, in LaugwitzSchmieden]
0 [notation, in LaugwitzSchmieden]
1 [notation, in LaugwitzSchmieden]
| _ | [notation, in LaugwitzSchmieden]
LS2n [module, in w_2n]
LS2n.ANS3 [lemma, in w_2n]
LS2n.Aw [lemma, in w_2n]
LS2n.beta_w [lemma, in w_2n]
LS2n.div_modw3 [lemma, in w_2n]
LS2n.div_modw2 [lemma, in w_2n]
LS2n.lim_lt_w [lemma, in w_2n]
LS2n.n_power [lemma, in w_2n]
LS2n.power2 [definition, in w_2n]
LS2n.power2_pos [lemma, in w_2n]
LS2n.w [definition, in w_2n]
Ltac [library]
lub_spec.lt_power_Sn_n [lemma, in LUB_spec]
lub_spec.power_HRwgt [lemma, in LUB_spec]
lub_spec.HRwgt_HRwmult [lemma, in LUB_spec]
lub_spec.power_n1 [lemma, in LUB_spec]
lub_spec.power_0 [lemma, in LUB_spec]
lub_spec.HRw1_3 [lemma, in LUB_spec]
lub_spec.two_thirds_one_third [lemma, in LUB_spec]
lub_spec.step_thirds [lemma, in LUB_spec]
lub_spec.R2_4' [lemma, in LUB_spec]
lub_spec.HRwge_morphism [instance, in LUB_spec]
lub_spec.HRwge_morphism1 [lemma, in LUB_spec]
lub_spec.HRwgt_morphism [instance, in LUB_spec]
lub_spec.HRwgt_morphism1 [lemma, in LUB_spec]
lub_spec.HRwgt_one_third [lemma, in LUB_spec]
lub_spec.test2 [lemma, in LUB_spec]
lub_spec.test1 [lemma, in LUB_spec]
3w [notation, in LUB_spec]
2w [notation, in LUB_spec]
lub_spec.power_lim [axiom, in LUB_spec]
lub_spec.power [definition, in LUB_spec]
lub_spec.nat_like_induction_r2 [axiom, in LUB_spec]
lub_spec.nat_like_induction_r1 [axiom, in LUB_spec]
lub_spec.nat_like_induction [axiom, in LUB_spec]
lub_spec.non_empty [definition, in LUB_spec]
lub_spec.bound_above [definition, in LUB_spec]
lub_spec.upper_bound [definition, in LUB_spec]
lub_spec.subset [definition, in LUB_spec]
lub_spec.XX [module, in LUB_spec]
lub_spec [module, in LUB_spec]
lub_spec_AX.has_limit [lemma, in LUB_spec_AX]
lub_spec_AX.lim_pos_P [lemma, in LUB_spec_AX]
lub_spec_AX.min_def2 [axiom, in LUB_spec_AX]
lub_spec_AX.min_prop [axiom, in LUB_spec_AX]
lub_spec_AX.min_def [axiom, in LUB_spec_AX]
lub_spec_AX.min [axiom, in LUB_spec_AX]
lub_spec_AX.min_lim_prop [axiom, in LUB_spec_AX]
lub_spec_AX.min_lim_def [axiom, in LUB_spec_AX]
lub_spec_AX.min_lim [axiom, in LUB_spec_AX]
lub_spec_AX.extends_id [lemma, in LUB_spec_AX]
lub_spec_AX.extends [definition, in LUB_spec_AX]
lub_spec_AX.ANS5 [axiom, in LUB_spec_AX]
lub_spec_AX.H0 [lemma, in LUB_spec_AX]
lub_spec_AX.ANS4_special [lemma, in LUB_spec_AX]
lub_spec_AX.overspill_principle [axiom, in LUB_spec_AX]
lub_spec_AX.HRwgt_upper_bound_2 [lemma, in LUB_spec_AX]
lub_spec_AX.HRwgt_upper_bound [lemma, in LUB_spec_AX]
lub_spec_AX.HRwgt_1 [lemma, in LUB_spec_AX]
lub_spec_AX.minA_le [lemma, in LUB_spec_AX]
lub_spec_AX.minA_lim [lemma, in LUB_spec_AX]
lub_spec_AX.has_least_upper_bound [definition, in LUB_spec_AX]
lub_spec_AX.least_upper_bound [definition, in LUB_spec_AX]
lub_spec_AX.minA [definition, in LUB_spec_AX]
lub_spec_AX.proof_irr [axiom, in LUB_spec_AX]
lub_spec_AX.XX [module, in LUB_spec_AX]
lub_spec_AX [module, in LUB_spec_AX]
lub_proof.least_upper_bound_principle [lemma, in LUB_proof_AX]
lub_proof.foo [lemma, in LUB_proof_AX]
lub_proof.lim_not_lim [axiom, in LUB_proof_AX]
lub_proof.UU [module, in LUB_proof_AX]
lub_proof [module, in LUB_proof_AX]
LUB_spec [library]
LUB_proof_AX [library]
LUB_spec_AX [library]


M

mBridges [module, in Bridges_order]
mBridges.ANS3bis [lemma, in Bridges_order]
mBridges.Archimedes [lemma, in Bridges_order]
mBridges.contradict_HRwgt_HRwge [lemma, in Bridges_order]
mBridges.HH [module, in Bridges_order]
mBridges.HRwdiff_prop [lemma, in Bridges_order]
mBridges.HRwequal_prop [lemma, in Bridges_order]
mBridges.HRwequal_HRwgt_False [lemma, in Bridges_order]
mBridges.HRwge [definition, in Bridges_order]
mBridges.HRwge_HRwplus_inv_r [lemma, in Bridges_order]
mBridges.HRwge_HRwplus_inv_l [lemma, in Bridges_order]
mBridges.HRwge_HRwopp [lemma, in Bridges_order]
mBridges.HRwge_refl [lemma, in Bridges_order]
mBridges.HRwge_prop2 [lemma, in Bridges_order]
mBridges.HRwge_prop1 [lemma, in Bridges_order]
mBridges.HRwge_prop [lemma, in Bridges_order]
mBridges.HRwgt_HRwge [lemma, in Bridges_order]
mBridges.HRwgt_HRwge_trans [lemma, in Bridges_order]
mBridges.HRwgt_HRwopp [lemma, in Bridges_order]
mBridges.HRwgt_trans [lemma, in Bridges_order]
mBridges.HRwgt_HRwplus_r [lemma, in Bridges_order]
mBridges.HRwgt_HRwplus_l [lemma, in Bridges_order]
mBridges.HRwgt_HRwplus_inv_l [lemma, in Bridges_order]
mBridges.HRwgt_HRwplus_inv_r [lemma, in Bridges_order]
mBridges.HRwminus_one_third [lemma, in Bridges_order]
mBridges.HRw1_HRw0 [lemma, in Bridges_order]
mBridges.HRw2_mult [lemma, in Bridges_order]
mBridges.lemma_HRw3 [lemma, in Bridges_order]
mBridges.lemma1 [lemma, in Bridges_order]
mBridges.lim_opp [lemma, in Bridges_order]
mBridges.one_third [definition, in Bridges_order]
mBridges.rew_a1 [lemma, in Bridges_order]
mBridges.R2_5 [lemma, in Bridges_order]
mBridges.R2_5_aux1 [lemma, in Bridges_order]
mBridges.R2_4 [lemma, in Bridges_order]
mBridges.R2_1 [lemma, in Bridges_order]
mBridges.three_one_third [lemma, in Bridges_order]
mBridges.two_third_prop [lemma, in Bridges_order]
mBridges.two_one_third [lemma, in Bridges_order]
mBridges.two_third [definition, in Bridges_order]
mBridges.w_not_neg [lemma, in Bridges_order]
mBridges.Zge_HRwge [lemma, in Bridges_order]
_ >=w _ [notation, in Bridges_order]
mBridges2 [module, in Bridges_order2_AX]
mBridges2.A0_dec [axiom, in Bridges_order2_AX]
mBridges2.HH [module, in Bridges_order2_AX]
mBridges2.not_HRwgt_HRwge [lemma, in Bridges_order2_AX]
mBridges2.not_le_lt [axiom, in Bridges_order2_AX]
mBridges2.R2_3 [lemma, in Bridges_order2_AX]
mBridges2.R2_2 [lemma, in Bridges_order2_AX]
mHeyting [module, in Heyting_field]
mHeyting.abs_triang2 [lemma, in Heyting_field]
mHeyting.abs_triang4 [lemma, in Heyting_field]
mHeyting.HRwequal_equiv [instance, in Heyting_field]
mHeyting.HRwmult_morphism [instance, in Heyting_field]
mHeyting.HRwmult_inv [lemma, in Heyting_field]
mHeyting.HRwmult_one [lemma, in Heyting_field]
mHeyting.HRwmult_assoc [lemma, in Heyting_field]
mHeyting.HRwmult_comm [lemma, in Heyting_field]
mHeyting.HRwplus_morphism [instance, in Heyting_field]
mHeyting.HRwplus_opp [lemma, in Heyting_field]
mHeyting.HRwplus_zero [lemma, in Heyting_field]
mHeyting.HRwplus_assoc [lemma, in Heyting_field]
mHeyting.HRwplus_comm [lemma, in Heyting_field]
mHeyting.HRwth [lemma, in Heyting_field]
mHeyting.HRw_distr [lemma, in Heyting_field]
mHeyting.KK [module, in Heyting_field]
mHRw [module, in HRw]
mHRwequal [module, in HRwequal]
mHRwequal.HH [module, in HRwequal]
mHRwequal.HRwequal [definition, in HRwequal]
mHRwequal.HRwequal_trans [lemma, in HRwequal]
mHRwequal.HRwequal_sym [lemma, in HRwequal]
mHRwequal.HRwequal_refl [lemma, in HRwequal]
mHRwgt [module, in HRwgt]
mHRwgt.HRwgt [definition, in HRwgt]
mHRwgt.HRwgt_Zgt' [lemma, in HRwgt]
mHRwgt.HRwgt_Zgt [lemma, in HRwgt]
mHRwgt.LL [module, in HRwgt]
_ >w _ [notation, in HRwgt]
0w [notation, in HRwgt]
1w [notation, in HRwgt]
mHRwspec [module, in HRw_spec]
mHRwspec.GG [module, in HRw_spec]
mHRwspec.HRwdiff [definition, in HRw_spec]
mHRwspec.HRwdiff0_diff0_spec [lemma, in HRw_spec]
mHRwspec.HRwdiff0_diff0_spec2 [lemma, in HRw_spec]
mHRwspec.HRwdiff0_diff0_spec_or [lemma, in HRw_spec]
mHRwspec.HRwinv [definition, in HRw_spec]
mHRwspec.HRwminus [definition, in HRw_spec]
mHRwspec.HRwmult [definition, in HRw_spec]
mHRwspec.HRwopp [definition, in HRw_spec]
mHRwspec.HRwplus [definition, in HRw_spec]
mHRwspec.HRw2 [definition, in HRw_spec]
mHRwspec.HRw3 [definition, in HRw_spec]
mHRwspec.lim0 [lemma, in HRw_spec]
mHRwspec.Padd [lemma, in HRw_spec]
mHRwspec.Pdiv [lemma, in HRw_spec]
mHRwspec.Popp [lemma, in HRw_spec]
mHRwspec.Pprod [lemma, in HRw_spec]
_ =w _ [notation, in HRw_spec]
_ *w _ [notation, in HRw_spec]
_ +w _ [notation, in HRw_spec]
-w _ [notation, in HRw_spec]
0w [notation, in HRw_spec]
1w [notation, in HRw_spec]
mHRw.HRw [definition, in HRw]
mHRw.HRw_P [lemma, in HRw]
mHRw.HRw0 [definition, in HRw]
mHRw.HRw1 [definition, in HRw]
mHRw.HRw1_small [definition, in HRw]
mHRw.P [definition, in HRw]
mHRw.Pw [lemma, in HRw]
mHRw.P0 [lemma, in HRw]
mHRw.P1 [lemma, in HRw]
modulo_m [definition, in Euler]


N

Num [module, in Numbers]
Numbers [library]
Numbers_facts [library]
Num_w.div_modw3 [axiom, in Numbers_facts]
Num_w.div_modw2 [axiom, in Numbers_facts]
Num_w.lim_lt_w [axiom, in Numbers_facts]
Num_w.Aw [axiom, in Numbers_facts]
Num_w.ANS3 [axiom, in Numbers_facts]
Num_w.w [axiom, in Numbers_facts]
Num_w [module, in Numbers_facts]
Num_facts.mult_distr_r [lemma, in Numbers_facts]
Num_facts.stdlib_ring_theory [lemma, in Numbers_facts]
Num_facts.Ropp_def [definition, in Numbers_facts]
Num_facts.Rsub_def [lemma, in Numbers_facts]
Num_facts.Rdistr_l [definition, in Numbers_facts]
Num_facts.Rmul_assoc [definition, in Numbers_facts]
Num_facts.Rmul_comm [definition, in Numbers_facts]
Num_facts.Rmul_1_l [definition, in Numbers_facts]
Num_facts.Radd_assoc [definition, in Numbers_facts]
Num_facts.Radd_comm [definition, in Numbers_facts]
Num_facts.Radd_0_l [definition, in Numbers_facts]
Num_facts.minusA [definition, in Numbers_facts]
Num_facts.lim_morphism [axiom, in Numbers_facts]
Num_facts.modA_morphism [axiom, in Numbers_facts]
Num_facts.divA_morphism [axiom, in Numbers_facts]
Num_facts.ltA_morphism [axiom, in Numbers_facts]
Num_facts.leA_morphism [axiom, in Numbers_facts]
Num_facts.absA_morphism [axiom, in Numbers_facts]
Num_facts.multA_morphism [axiom, in Numbers_facts]
Num_facts.oppA_morphism [axiom, in Numbers_facts]
Num_facts.plusA_morphism [axiom, in Numbers_facts]
Num_facts.equalA_equiv [instance, in Numbers_facts]
Num_facts [module, in Numbers_facts]
Num.A [axiom, in Numbers]
Num.absA [axiom, in Numbers]
Num.abs_prod [axiom, in Numbers]
Num.abs_triang [axiom, in Numbers]
Num.abs_new2 [axiom, in Numbers]
Num.abs_new [axiom, in Numbers]
Num.abs_max [axiom, in Numbers]
Num.abs_minus [axiom, in Numbers]
Num.abs_neg_val [axiom, in Numbers]
Num.abs_pos_val [axiom, in Numbers]
Num.abs_pos [axiom, in Numbers]
Num.ANS1 [axiom, in Numbers]
Num.ANS2a [axiom, in Numbers]
Num.ANS2b [axiom, in Numbers]
Num.ANS4 [axiom, in Numbers]
Num.a0 [axiom, in Numbers]
Num.a1 [axiom, in Numbers]
Num.contradict_lt_le [axiom, in Numbers]
Num.divA [axiom, in Numbers]
Num.div_idg [axiom, in Numbers]
Num.div_pos [axiom, in Numbers]
Num.div_le2 [axiom, in Numbers]
Num.div_le [axiom, in Numbers]
Num.div_mod3_abs [axiom, in Numbers]
Num.div_mod3b [axiom, in Numbers]
Num.div_mod3a [axiom, in Numbers]
Num.div_mod3 [axiom, in Numbers]
Num.div_mod2 [axiom, in Numbers]
Num.div_mod [axiom, in Numbers]
Num.equalA [axiom, in Numbers]
Num.equalA_trans [axiom, in Numbers]
Num.equalA_sym [axiom, in Numbers]
Num.equalA_refl [axiom, in Numbers]
Num.leA [axiom, in Numbers]
Num.le_id [axiom, in Numbers]
Num.le_lt_False [axiom, in Numbers]
Num.le_lt_trans [axiom, in Numbers]
Num.le_mult_inv2 [axiom, in Numbers]
Num.le_mult_inv [axiom, in Numbers]
Num.le_mult_neg [axiom, in Numbers]
Num.le_mult_general [axiom, in Numbers]
Num.le_mult [axiom, in Numbers]
Num.le_mult_simpl [axiom, in Numbers]
Num.le_plus_inv [axiom, in Numbers]
Num.le_lt_plus [axiom, in Numbers]
Num.le_plus [axiom, in Numbers]
Num.le_trans [axiom, in Numbers]
Num.le_refl [axiom, in Numbers]
Num.lim [axiom, in Numbers]
Num.ltA [axiom, in Numbers]
Num.lt_le_2 [axiom, in Numbers]
Num.lt_le [axiom, in Numbers]
Num.lt_le_trans [axiom, in Numbers]
Num.lt_trans [axiom, in Numbers]
Num.lt_m1_0 [axiom, in Numbers]
Num.lt_0_1 [axiom, in Numbers]
Num.lt_mult [axiom, in Numbers]
Num.lt_mult_inv2 [axiom, in Numbers]
Num.lt_mult_inv [axiom, in Numbers]
Num.lt_plus_inv [axiom, in Numbers]
Num.lt_plus [axiom, in Numbers]
Num.modA [axiom, in Numbers]
Num.multA [axiom, in Numbers]
Num.mult_pos [axiom, in Numbers]
Num.mult_absorb [axiom, in Numbers]
Num.mult_assoc [axiom, in Numbers]
Num.mult_comm [axiom, in Numbers]
Num.mult_distr_l [axiom, in Numbers]
Num.mult_neutral [axiom, in Numbers]
Num.mult_le [axiom, in Numbers]
Num.not_lt_0_0 [axiom, in Numbers]
Num.oppA [axiom, in Numbers]
Num.plusA [axiom, in Numbers]
Num.plus_opp [axiom, in Numbers]
Num.plus_assoc [axiom, in Numbers]
Num.plus_comm [axiom, in Numbers]
Num.plus_neutral [axiom, in Numbers]
_ < _ [notation, in Numbers]
_ <= _ [notation, in Numbers]
_ %% _ [notation, in Numbers]
_ / _ [notation, in Numbers]
_ * _ [notation, in Numbers]
_ + _ [notation, in Numbers]
_ == _ [notation, in Numbers]
- _ [notation, in Numbers]
0 [notation, in Numbers]
1 [notation, in Numbers]
| _ | [notation, in Numbers]


P

print_1 [definition, in Euler]
print_2 [definition, in Euler]
print_3 [definition, in Euler]


Q

Q [definition, in Ltac]


R

resultA0 [definition, in Euler]
resultA1 [definition, in Euler]


S

seq [module, in sequences_AX]
sequences_AX [library]
seq.allDep [definition, in sequences_AX]
seq.allDep_morph [instance, in sequences_AX]
seq.def_s_b_alpha_beta [definition, in sequences_AX]
seq.fb [definition, in sequences_AX]
seq.fs [definition, in sequences_AX]
seq.Hsn_increasing_aux [lemma, in sequences_AX]
seq.lemma [lemma, in sequences_AX]
seq.Psb [definition, in sequences_AX]
seq.Q [definition, in sequences_AX]
seq.Q_morph [instance, in sequences_AX]
seq.R [definition, in sequences_AX]
seq.section_sequences.Hb0S [variable, in sequences_AX]
seq.section_sequences.Hs0 [variable, in sequences_AX]
seq.section_sequences.b0 [variable, in sequences_AX]
seq.section_sequences.s0 [variable, in sequences_AX]
seq.section_sequences.Hdec [variable, in sequences_AX]
seq.section_sequences.S [variable, in sequences_AX]
seq.section_sequences [section, in sequences_AX]
seq.ssA_args_id [axiom, in sequences_AX]
seq.s_b_alpha_beta_lemma [lemma, in sequences_AX]
seq.thm_Hsn_increasing [lemma, in sequences_AX]
seq.XX [module, in sequences_AX]
sum_plus1 [definition, in Ltac]


W

w [library]
w_2n [library]
w_n2 [library]
w_n [library]


Z

Zmult_lt_reg_l [lemma, in LaugwitzSchmieden]



Instance Index

L

LS.absA_morphism [in LaugwitzSchmieden]
LS.divA_morphism [in LaugwitzSchmieden]
LS.equalA_equiv [in LaugwitzSchmieden]
LS.leA_morphism [in LaugwitzSchmieden]
LS.lim_morphism [in LaugwitzSchmieden]
LS.ltA_morphism [in LaugwitzSchmieden]
LS.modA_morphism [in LaugwitzSchmieden]
LS.multA_morphism [in LaugwitzSchmieden]
LS.oppA_morphism [in LaugwitzSchmieden]
LS.plusA_morphism [in LaugwitzSchmieden]
lub_spec.HRwge_morphism [in LUB_spec]
lub_spec.HRwgt_morphism [in LUB_spec]


M

mHeyting.HRwequal_equiv [in Heyting_field]
mHeyting.HRwmult_morphism [in Heyting_field]
mHeyting.HRwplus_morphism [in Heyting_field]


N

Num_facts.equalA_equiv [in Numbers_facts]


S

seq.allDep_morph [in sequences_AX]
seq.Q_morph [in sequences_AX]



Lemma Index

L

LSn.ANS3 [in w_n]
LSn.Aw [in w_n]
LSn.div_modw3 [in w_n]
LSn.div_modw2 [in w_n]
LSn.lim_lt_w [in w_n]
LSn2.ANS3 [in w_n2]
LSn2.Aw [in w_n2]
LSn2.div_modw3 [in w_n2]
LSn2.div_modw2 [in w_n2]
LSn2.lim_lt_w [in w_n2]
LSn2.n_n2bis [in w_n2]
LSn2.n_n2 [in w_n2]
LSw.div_modw3 [in w]
LSw.div_modw2 [in w]
LS.Abeta [in LaugwitzSchmieden]
LS.abs_max [in LaugwitzSchmieden]
LS.abs_minus [in LaugwitzSchmieden]
LS.abs_prod [in LaugwitzSchmieden]
LS.abs_triang [in LaugwitzSchmieden]
LS.abs_new2 [in LaugwitzSchmieden]
LS.abs_new [in LaugwitzSchmieden]
LS.abs_neg_val [in LaugwitzSchmieden]
LS.abs_pos_val [in LaugwitzSchmieden]
LS.abs_pos [in LaugwitzSchmieden]
LS.ANS1 [in LaugwitzSchmieden]
LS.ANS2a [in LaugwitzSchmieden]
LS.ANS2b [in LaugwitzSchmieden]
LS.ANS4 [in LaugwitzSchmieden]
LS.beta_lim [in LaugwitzSchmieden]
LS.beta_std [in LaugwitzSchmieden]
LS.bingo [in LaugwitzSchmieden]
LS.bingo2 [in LaugwitzSchmieden]
LS.contradict_lt_le [in LaugwitzSchmieden]
LS.div_le2 [in LaugwitzSchmieden]
LS.div_idg [in LaugwitzSchmieden]
LS.div_pos [in LaugwitzSchmieden]
LS.div_le [in LaugwitzSchmieden]
LS.div_mod3_abs [in LaugwitzSchmieden]
LS.div_mod3 [in LaugwitzSchmieden]
LS.div_mod3b [in LaugwitzSchmieden]
LS.div_mod3a [in LaugwitzSchmieden]
LS.div_mod2 [in LaugwitzSchmieden]
LS.div_mod [in LaugwitzSchmieden]
LS.equalA_trans [in LaugwitzSchmieden]
LS.equalA_sym [in LaugwitzSchmieden]
LS.equalA_refl [in LaugwitzSchmieden]
LS.le_lt_False [in LaugwitzSchmieden]
LS.le_id [in LaugwitzSchmieden]
LS.le_lt_trans [in LaugwitzSchmieden]
LS.le_mult_neg [in LaugwitzSchmieden]
LS.le_mult_general [in LaugwitzSchmieden]
LS.le_mult_inv [in LaugwitzSchmieden]
LS.le_mult_inv2 [in LaugwitzSchmieden]
LS.le_mult [in LaugwitzSchmieden]
LS.le_mult_simpl [in LaugwitzSchmieden]
LS.le_plus_inv [in LaugwitzSchmieden]
LS.le_lt_plus [in LaugwitzSchmieden]
LS.le_plus [in LaugwitzSchmieden]
LS.le_trans [in LaugwitzSchmieden]
LS.le_refl [in LaugwitzSchmieden]
LS.lim_lt_beta [in LaugwitzSchmieden]
LS.lt_le_2 [in LaugwitzSchmieden]
LS.lt_le_trans [in LaugwitzSchmieden]
LS.lt_trans [in LaugwitzSchmieden]
LS.lt_m1_0 [in LaugwitzSchmieden]
LS.lt_0_1 [in LaugwitzSchmieden]
LS.lt_mult [in LaugwitzSchmieden]
LS.lt_mult_inv2 [in LaugwitzSchmieden]
LS.lt_mult_inv [in LaugwitzSchmieden]
LS.lt_plus_inv [in LaugwitzSchmieden]
LS.lt_plus [in LaugwitzSchmieden]
LS.lt_le [in LaugwitzSchmieden]
LS.mult_pos [in LaugwitzSchmieden]
LS.mult_le [in LaugwitzSchmieden]
LS.mult_distr_r [in LaugwitzSchmieden]
LS.mult_distr_l [in LaugwitzSchmieden]
LS.mult_absorb [in LaugwitzSchmieden]
LS.mult_assoc [in LaugwitzSchmieden]
LS.mult_comm [in LaugwitzSchmieden]
LS.mult_neutral [in LaugwitzSchmieden]
LS.nat_Z [in LaugwitzSchmieden]
LS.not_lt_0_0 [in LaugwitzSchmieden]
LS.plus_opp [in LaugwitzSchmieden]
LS.plus_assoc [in LaugwitzSchmieden]
LS.plus_comm [in LaugwitzSchmieden]
LS.plus_neutral [in LaugwitzSchmieden]
LS.Rsub_def [in LaugwitzSchmieden]
LS.stdlib_ring_theory [in LaugwitzSchmieden]
LS.std_alt_lt_beta [in LaugwitzSchmieden]
LS.std_lim [in LaugwitzSchmieden]
LS.std_A0_dec [in LaugwitzSchmieden]
LS.std_std_alt [in LaugwitzSchmieden]
LS.Zle_mult_inv [in LaugwitzSchmieden]
LS.Zle_mult_inv2 [in LaugwitzSchmieden]
LS.Zlt_mult_inv2 [in LaugwitzSchmieden]
LS.Znot_le_lt [in LaugwitzSchmieden]
LS2n.ANS3 [in w_2n]
LS2n.Aw [in w_2n]
LS2n.beta_w [in w_2n]
LS2n.div_modw3 [in w_2n]
LS2n.div_modw2 [in w_2n]
LS2n.lim_lt_w [in w_2n]
LS2n.n_power [in w_2n]
LS2n.power2_pos [in w_2n]
lub_spec.lt_power_Sn_n [in LUB_spec]
lub_spec.power_HRwgt [in LUB_spec]
lub_spec.HRwgt_HRwmult [in LUB_spec]
lub_spec.power_n1 [in LUB_spec]
lub_spec.power_0 [in LUB_spec]
lub_spec.HRw1_3 [in LUB_spec]
lub_spec.two_thirds_one_third [in LUB_spec]
lub_spec.step_thirds [in LUB_spec]
lub_spec.R2_4' [in LUB_spec]
lub_spec.HRwge_morphism1 [in LUB_spec]
lub_spec.HRwgt_morphism1 [in LUB_spec]
lub_spec.HRwgt_one_third [in LUB_spec]
lub_spec.test2 [in LUB_spec]
lub_spec.test1 [in LUB_spec]
lub_spec_AX.has_limit [in LUB_spec_AX]
lub_spec_AX.lim_pos_P [in LUB_spec_AX]
lub_spec_AX.extends_id [in LUB_spec_AX]
lub_spec_AX.H0 [in LUB_spec_AX]
lub_spec_AX.ANS4_special [in LUB_spec_AX]
lub_spec_AX.HRwgt_upper_bound_2 [in LUB_spec_AX]
lub_spec_AX.HRwgt_upper_bound [in LUB_spec_AX]
lub_spec_AX.HRwgt_1 [in LUB_spec_AX]
lub_spec_AX.minA_le [in LUB_spec_AX]
lub_spec_AX.minA_lim [in LUB_spec_AX]
lub_proof.least_upper_bound_principle [in LUB_proof_AX]
lub_proof.foo [in LUB_proof_AX]


M

mBridges.ANS3bis [in Bridges_order]
mBridges.Archimedes [in Bridges_order]
mBridges.contradict_HRwgt_HRwge [in Bridges_order]
mBridges.HRwdiff_prop [in Bridges_order]
mBridges.HRwequal_prop [in Bridges_order]
mBridges.HRwequal_HRwgt_False [in Bridges_order]
mBridges.HRwge_HRwplus_inv_r [in Bridges_order]
mBridges.HRwge_HRwplus_inv_l [in Bridges_order]
mBridges.HRwge_HRwopp [in Bridges_order]
mBridges.HRwge_refl [in Bridges_order]
mBridges.HRwge_prop2 [in Bridges_order]
mBridges.HRwge_prop1 [in Bridges_order]
mBridges.HRwge_prop [in Bridges_order]
mBridges.HRwgt_HRwge [in Bridges_order]
mBridges.HRwgt_HRwge_trans [in Bridges_order]
mBridges.HRwgt_HRwopp [in Bridges_order]
mBridges.HRwgt_trans [in Bridges_order]
mBridges.HRwgt_HRwplus_r [in Bridges_order]
mBridges.HRwgt_HRwplus_l [in Bridges_order]
mBridges.HRwgt_HRwplus_inv_l [in Bridges_order]
mBridges.HRwgt_HRwplus_inv_r [in Bridges_order]
mBridges.HRwminus_one_third [in Bridges_order]
mBridges.HRw1_HRw0 [in Bridges_order]
mBridges.HRw2_mult [in Bridges_order]
mBridges.lemma_HRw3 [in Bridges_order]
mBridges.lemma1 [in Bridges_order]
mBridges.lim_opp [in Bridges_order]
mBridges.rew_a1 [in Bridges_order]
mBridges.R2_5 [in Bridges_order]
mBridges.R2_5_aux1 [in Bridges_order]
mBridges.R2_4 [in Bridges_order]
mBridges.R2_1 [in Bridges_order]
mBridges.three_one_third [in Bridges_order]
mBridges.two_third_prop [in Bridges_order]
mBridges.two_one_third [in Bridges_order]
mBridges.w_not_neg [in Bridges_order]
mBridges.Zge_HRwge [in Bridges_order]
mBridges2.not_HRwgt_HRwge [in Bridges_order2_AX]
mBridges2.R2_3 [in Bridges_order2_AX]
mBridges2.R2_2 [in Bridges_order2_AX]
mHeyting.abs_triang2 [in Heyting_field]
mHeyting.abs_triang4 [in Heyting_field]
mHeyting.HRwmult_inv [in Heyting_field]
mHeyting.HRwmult_one [in Heyting_field]
mHeyting.HRwmult_assoc [in Heyting_field]
mHeyting.HRwmult_comm [in Heyting_field]
mHeyting.HRwplus_opp [in Heyting_field]
mHeyting.HRwplus_zero [in Heyting_field]
mHeyting.HRwplus_assoc [in Heyting_field]
mHeyting.HRwplus_comm [in Heyting_field]
mHeyting.HRwth [in Heyting_field]
mHeyting.HRw_distr [in Heyting_field]
mHRwequal.HRwequal_trans [in HRwequal]
mHRwequal.HRwequal_sym [in HRwequal]
mHRwequal.HRwequal_refl [in HRwequal]
mHRwgt.HRwgt_Zgt' [in HRwgt]
mHRwgt.HRwgt_Zgt [in HRwgt]
mHRwspec.HRwdiff0_diff0_spec [in HRw_spec]
mHRwspec.HRwdiff0_diff0_spec2 [in HRw_spec]
mHRwspec.HRwdiff0_diff0_spec_or [in HRw_spec]
mHRwspec.lim0 [in HRw_spec]
mHRwspec.Padd [in HRw_spec]
mHRwspec.Pdiv [in HRw_spec]
mHRwspec.Popp [in HRw_spec]
mHRwspec.Pprod [in HRw_spec]
mHRw.HRw_P [in HRw]
mHRw.Pw [in HRw]
mHRw.P0 [in HRw]
mHRw.P1 [in HRw]


N

Num_facts.mult_distr_r [in Numbers_facts]
Num_facts.stdlib_ring_theory [in Numbers_facts]
Num_facts.Rsub_def [in Numbers_facts]


S

seq.Hsn_increasing_aux [in sequences_AX]
seq.lemma [in sequences_AX]
seq.s_b_alpha_beta_lemma [in sequences_AX]
seq.thm_Hsn_increasing [in sequences_AX]


Z

Zmult_lt_reg_l [in LaugwitzSchmieden]



Section Index

S

seq.section_sequences [in sequences_AX]



Notation Index

L

_ [in LaugwitzSchmieden]
_ <=A _ [in LaugwitzSchmieden]
_ =A _ [in LaugwitzSchmieden]
_ mod% _ [in LaugwitzSchmieden]
_ / _ [in LaugwitzSchmieden]
_ * _ [in LaugwitzSchmieden]
_ + _ [in LaugwitzSchmieden]
- _ [in LaugwitzSchmieden]
0 [in LaugwitzSchmieden]
1 [in LaugwitzSchmieden]
| _ | [in LaugwitzSchmieden]
3w [in LUB_spec]
2w [in LUB_spec]


M

_ >=w _ [in Bridges_order]
_ >w _ [in HRwgt]
0w [in HRwgt]
1w [in HRwgt]
_ =w _ [in HRw_spec]
_ *w _ [in HRw_spec]
_ +w _ [in HRw_spec]
-w _ [in HRw_spec]
0w [in HRw_spec]
1w [in HRw_spec]


N

_ < _ [in Numbers]
_ <= _ [in Numbers]
_ %% _ [in Numbers]
_ / _ [in Numbers]
_ * _ [in Numbers]
_ + _ [in Numbers]
_ == _ [in Numbers]
- _ [in Numbers]
0 [in Numbers]
1 [in Numbers]
| _ | [in Numbers]



Definition Index

D

div_m [in Euler]


E

Euler_it_coq [in Euler]
euler_m [in Euler]


G

g [in Euler]
g_parabole [in Euler]
g_exp [in Euler]
g2 [in Euler]
g35 [in Euler]


L

LSn.w [in w_n]
LSn2.w [in w_n2]
LS_EulerA_m [in Euler]
LS_Euler_stepA [in Euler]
LS.A [in LaugwitzSchmieden]
LS.absA [in LaugwitzSchmieden]
LS.a0 [in LaugwitzSchmieden]
LS.a1 [in LaugwitzSchmieden]
LS.beta [in LaugwitzSchmieden]
LS.divA [in LaugwitzSchmieden]
LS.equalA [in LaugwitzSchmieden]
LS.leA [in LaugwitzSchmieden]
LS.lim [in LaugwitzSchmieden]
LS.ltA [in LaugwitzSchmieden]
LS.minusA [in LaugwitzSchmieden]
LS.modA [in LaugwitzSchmieden]
LS.multA [in LaugwitzSchmieden]
LS.non_std [in LaugwitzSchmieden]
LS.oppA [in LaugwitzSchmieden]
LS.plusA [in LaugwitzSchmieden]
LS.Radd_assoc [in LaugwitzSchmieden]
LS.Radd_comm [in LaugwitzSchmieden]
LS.Radd_0_l [in LaugwitzSchmieden]
LS.Rdistr_l [in LaugwitzSchmieden]
LS.Rmul_assoc [in LaugwitzSchmieden]
LS.Rmul_comm [in LaugwitzSchmieden]
LS.Rmul_1_l [in LaugwitzSchmieden]
LS.Ropp_def [in LaugwitzSchmieden]
LS.std [in LaugwitzSchmieden]
LS.std_alt [in LaugwitzSchmieden]
LS2n.power2 [in w_2n]
LS2n.w [in w_2n]
lub_spec.power [in LUB_spec]
lub_spec.non_empty [in LUB_spec]
lub_spec.bound_above [in LUB_spec]
lub_spec.upper_bound [in LUB_spec]
lub_spec.subset [in LUB_spec]
lub_spec_AX.extends [in LUB_spec_AX]
lub_spec_AX.has_least_upper_bound [in LUB_spec_AX]
lub_spec_AX.least_upper_bound [in LUB_spec_AX]
lub_spec_AX.minA [in LUB_spec_AX]


M

mBridges.HRwge [in Bridges_order]
mBridges.one_third [in Bridges_order]
mBridges.two_third [in Bridges_order]
mHRwequal.HRwequal [in HRwequal]
mHRwgt.HRwgt [in HRwgt]
mHRwspec.HRwdiff [in HRw_spec]
mHRwspec.HRwinv [in HRw_spec]
mHRwspec.HRwminus [in HRw_spec]
mHRwspec.HRwmult [in HRw_spec]
mHRwspec.HRwopp [in HRw_spec]
mHRwspec.HRwplus [in HRw_spec]
mHRwspec.HRw2 [in HRw_spec]
mHRwspec.HRw3 [in HRw_spec]
mHRw.HRw [in HRw]
mHRw.HRw0 [in HRw]
mHRw.HRw1 [in HRw]
mHRw.HRw1_small [in HRw]
mHRw.P [in HRw]
modulo_m [in Euler]


N

Num_facts.Ropp_def [in Numbers_facts]
Num_facts.Rdistr_l [in Numbers_facts]
Num_facts.Rmul_assoc [in Numbers_facts]
Num_facts.Rmul_comm [in Numbers_facts]
Num_facts.Rmul_1_l [in Numbers_facts]
Num_facts.Radd_assoc [in Numbers_facts]
Num_facts.Radd_comm [in Numbers_facts]
Num_facts.Radd_0_l [in Numbers_facts]
Num_facts.minusA [in Numbers_facts]


P

print_1 [in Euler]
print_2 [in Euler]
print_3 [in Euler]


Q

Q [in Ltac]


R

resultA0 [in Euler]
resultA1 [in Euler]


S

seq.allDep [in sequences_AX]
seq.def_s_b_alpha_beta [in sequences_AX]
seq.fb [in sequences_AX]
seq.fs [in sequences_AX]
seq.Psb [in sequences_AX]
seq.Q [in sequences_AX]
seq.R [in sequences_AX]
sum_plus1 [in Ltac]



Module Index

L

LS [in LaugwitzSchmieden]
LSn [in w_n]
LSn2 [in w_n2]
LSw [in w]
LS2n [in w_2n]
lub_spec.XX [in LUB_spec]
lub_spec [in LUB_spec]
lub_spec_AX.XX [in LUB_spec_AX]
lub_spec_AX [in LUB_spec_AX]
lub_proof.UU [in LUB_proof_AX]
lub_proof [in LUB_proof_AX]


M

mBridges [in Bridges_order]
mBridges.HH [in Bridges_order]
mBridges2 [in Bridges_order2_AX]
mBridges2.HH [in Bridges_order2_AX]
mHeyting [in Heyting_field]
mHeyting.KK [in Heyting_field]
mHRw [in HRw]
mHRwequal [in HRwequal]
mHRwequal.HH [in HRwequal]
mHRwgt [in HRwgt]
mHRwgt.LL [in HRwgt]
mHRwspec [in HRw_spec]
mHRwspec.GG [in HRw_spec]


N

Num [in Numbers]
Num_w [in Numbers_facts]
Num_facts [in Numbers_facts]


S

seq [in sequences_AX]
seq.XX [in sequences_AX]



Axiom Index

L

LSw.ANS3 [in w]
LSw.Aw [in w]
LSw.lim_lt_w [in w]
LSw.w [in w]
lub_spec.power_lim [in LUB_spec]
lub_spec.nat_like_induction_r2 [in LUB_spec]
lub_spec.nat_like_induction_r1 [in LUB_spec]
lub_spec.nat_like_induction [in LUB_spec]
lub_spec_AX.min_def2 [in LUB_spec_AX]
lub_spec_AX.min_prop [in LUB_spec_AX]
lub_spec_AX.min_def [in LUB_spec_AX]
lub_spec_AX.min [in LUB_spec_AX]
lub_spec_AX.min_lim_prop [in LUB_spec_AX]
lub_spec_AX.min_lim_def [in LUB_spec_AX]
lub_spec_AX.min_lim [in LUB_spec_AX]
lub_spec_AX.ANS5 [in LUB_spec_AX]
lub_spec_AX.overspill_principle [in LUB_spec_AX]
lub_spec_AX.proof_irr [in LUB_spec_AX]
lub_proof.lim_not_lim [in LUB_proof_AX]


M

mBridges2.A0_dec [in Bridges_order2_AX]
mBridges2.not_le_lt [in Bridges_order2_AX]


N

Num_w.div_modw3 [in Numbers_facts]
Num_w.div_modw2 [in Numbers_facts]
Num_w.lim_lt_w [in Numbers_facts]
Num_w.Aw [in Numbers_facts]
Num_w.ANS3 [in Numbers_facts]
Num_w.w [in Numbers_facts]
Num_facts.lim_morphism [in Numbers_facts]
Num_facts.modA_morphism [in Numbers_facts]
Num_facts.divA_morphism [in Numbers_facts]
Num_facts.ltA_morphism [in Numbers_facts]
Num_facts.leA_morphism [in Numbers_facts]
Num_facts.absA_morphism [in Numbers_facts]
Num_facts.multA_morphism [in Numbers_facts]
Num_facts.oppA_morphism [in Numbers_facts]
Num_facts.plusA_morphism [in Numbers_facts]
Num.A [in Numbers]
Num.absA [in Numbers]
Num.abs_prod [in Numbers]
Num.abs_triang [in Numbers]
Num.abs_new2 [in Numbers]
Num.abs_new [in Numbers]
Num.abs_max [in Numbers]
Num.abs_minus [in Numbers]
Num.abs_neg_val [in Numbers]
Num.abs_pos_val [in Numbers]
Num.abs_pos [in Numbers]
Num.ANS1 [in Numbers]
Num.ANS2a [in Numbers]
Num.ANS2b [in Numbers]
Num.ANS4 [in Numbers]
Num.a0 [in Numbers]
Num.a1 [in Numbers]
Num.contradict_lt_le [in Numbers]
Num.divA [in Numbers]
Num.div_idg [in Numbers]
Num.div_pos [in Numbers]
Num.div_le2 [in Numbers]
Num.div_le [in Numbers]
Num.div_mod3_abs [in Numbers]
Num.div_mod3b [in Numbers]
Num.div_mod3a [in Numbers]
Num.div_mod3 [in Numbers]
Num.div_mod2 [in Numbers]
Num.div_mod [in Numbers]
Num.equalA [in Numbers]
Num.equalA_trans [in Numbers]
Num.equalA_sym [in Numbers]
Num.equalA_refl [in Numbers]
Num.leA [in Numbers]
Num.le_id [in Numbers]
Num.le_lt_False [in Numbers]
Num.le_lt_trans [in Numbers]
Num.le_mult_inv2 [in Numbers]
Num.le_mult_inv [in Numbers]
Num.le_mult_neg [in Numbers]
Num.le_mult_general [in Numbers]
Num.le_mult [in Numbers]
Num.le_mult_simpl [in Numbers]
Num.le_plus_inv [in Numbers]
Num.le_lt_plus [in Numbers]
Num.le_plus [in Numbers]
Num.le_trans [in Numbers]
Num.le_refl [in Numbers]
Num.lim [in Numbers]
Num.ltA [in Numbers]
Num.lt_le_2 [in Numbers]
Num.lt_le [in Numbers]
Num.lt_le_trans [in Numbers]
Num.lt_trans [in Numbers]
Num.lt_m1_0 [in Numbers]
Num.lt_0_1 [in Numbers]
Num.lt_mult [in Numbers]
Num.lt_mult_inv2 [in Numbers]
Num.lt_mult_inv [in Numbers]
Num.lt_plus_inv [in Numbers]
Num.lt_plus [in Numbers]
Num.modA [in Numbers]
Num.multA [in Numbers]
Num.mult_pos [in Numbers]
Num.mult_absorb [in Numbers]
Num.mult_assoc [in Numbers]
Num.mult_comm [in Numbers]
Num.mult_distr_l [in Numbers]
Num.mult_neutral [in Numbers]
Num.mult_le [in Numbers]
Num.not_lt_0_0 [in Numbers]
Num.oppA [in Numbers]
Num.plusA [in Numbers]
Num.plus_opp [in Numbers]
Num.plus_assoc [in Numbers]
Num.plus_comm [in Numbers]
Num.plus_neutral [in Numbers]


S

seq.ssA_args_id [in sequences_AX]



Variable Index

S

seq.section_sequences.Hb0S [in sequences_AX]
seq.section_sequences.Hs0 [in sequences_AX]
seq.section_sequences.b0 [in sequences_AX]
seq.section_sequences.s0 [in sequences_AX]
seq.section_sequences.Hdec [in sequences_AX]
seq.section_sequences.S [in sequences_AX]



Library Index

B

Bridges_order
Bridges_order2_AX


E

Euler


H

Heyting_field
HRw
HRwequal
HRwgt
HRw_spec


L

LaugwitzSchmieden
Ltac
LUB_spec
LUB_proof_AX
LUB_spec_AX


N

Numbers
Numbers_facts


S

sequences_AX


W

w
w_2n
w_n2
w_n



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (520 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (207 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (34 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (91 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (29 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (114 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (20 entries)

This page has been generated by coqdoc