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ABSTRACT

In the field of Volume Rendering, pre-integration techniques for ar-
bitrary transfer functions has certainly led to the most significant
and convincing results both quality and performance wise on stan-
dard PC consumer graphics. By showing that the ideal scalar signal
along the cast rays is better approximated by a succession of poly-
nomial curves as opposed to linear segments, we propose a new
method for pre-integrated volume rendering. This method is based
on a second order polynomial interpolation of the scalar values, al-
lowing it to converge more rapidly towards the integration of a vol-
ume reconstructed by a trilinear filter. This approach manages to
capture the smoothness of the volume’s details without the need of
further ray resampling, and consequently succeeds in reducing the
visual artefacts in comparison to previous techniques. Futhermore,
we adapt an existing technique to compute our pre-integration ta-
bles using the GPU, thus making our approach suitable for transfer
function manipulations.

Keywords: Volume Rendering, Pre-Integration, Newton-Cotes
Formulas, Trilinear Filtering, GPU

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture; I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors

1 INTRODUCTION

Thanks to tremendous improvements in consumer graphics hard-
ware over the recent years, volume rendering can now be made
available on standard, off the shelf, personal computers. In particu-
lar, the range of functionalities brought by programmable graphics
processors yielded a number of improvements in the volume ren-
dering field : given the flexibility of such processors, higher quality
volume rendering techniques can now take advantage of hardware
acceleration.

In this context, many efforts have been spent on approximating
the integration of a volume in a discrete way. For arbitrary transfer
functions, pre-integration of the transfer function [3,18] has proven
to be an efficient way to improve the reconstruction both perfor-
mance and quality wise. In another perspective, the impact of fil-
tering kernels on the rendered images has also been studied [5],
subsequently leading to higher quality rendering techniques. How-
ever, its correlation with the pre-integration of the transfer function
has not yet been investigated to the authors’ knowledge.

In this paper, we study this correlation in the case of a trilin-
ear filtering kernel, currently the only filter available natively on
standard consumer graphics. By observing inherent properties of a
trilinearly reconstructed signal along segments, we derive a method
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based on a 2nd order polynomial for pre-integration. This tech-

nique corresponds to a 2nd order numerical integration scheme, and
we show that higher quality results are achieved without the need
for further ray resampling in comparison to standard pre-integrated
volume rendering.

2 RELATED WORKS

The first hardware accelerated volume rendering technique was in-
troduced more than a decade ago by Cullip et al [2]. It accumulates
object-aligned slices of a volume dataset to perform volume integra-
tion. The algorithm was improved by Cabral et al [1] who proposed
to accumulate world-aligned slices of a 3D texture, thereby improv-
ing the quality of the rendered images. Thanks to the increasing
flexibility of graphics hardware, GPU-based ray casting approaches
have been made possible. These methods can be classified into
two main categories. The first one needs multiple rendering passes
to accumulate the contributions of the fragments [8, 17, 22], while
it uses occlusion queries to identify termination. The second one
exploits the availability of loops and fast conditionals in Shader
Model 3.0 compatible GPUs. These techniques use a single ren-
dering pass [6,20], where one ray is cast for each pixel using a loop
that iterates through the volume and accumulates color values into
a floating point register.

The concept of pre-integrated volume rendering emanates from
the early works on tetrahedral meshes [10, 21]. Roettger et al [18]
extended pre-integration to account for arbitrary transfer functions
in the context of the PT (Projected Tetrahedra) algorithm. The
precomputation of the 3D table has later been accelerated with a
GPU implementation using an iterative scheme [16]. Engel et al [3]
futhermore adapted the technique to the slicing approach of regular
grids. By neglecting the distortion of the segments due to perspec-
tive projection, they used a 2D pre-integration table allowing higher
quality visualization while preserving interactive frame rates. In
order to speed up the computation process of the pre-integration
tables, polynomial approximations of the color values [4] or incre-
mental subrange integration scheme [9] have been proposed. Other
interesting approaches define the transfer function as being gaus-
sian functions [7] or Bernstein polynomials [19], allowing the ana-
lytical resolution of the volume rendering integral while preserving
interactive frame rates.

In the context of isosurface rendering, some methods proposed
to take into account the interpolation scheme related to the dis-
crete scalar field in order to find accurate ray-isosurface intersec-
tions. Regular grids with trilinear reconstruction have been consid-
ered in [13], second-order splines in [15], second-order tetrahedras
in [23–25] as well as spectral/hp elements in [11].

In the field of numerical integration, numerous schemes exist.
Among these, the Newton-Cotes formulas [14] are a group of for-
mulas based on Lagrange polynomials for integrating discrete func-
tions. In an early work [12], three methods have been proposed for
controlling the quality of the approximation of the volume render-
ing integral, two of which being based on the Newton-Cotes formu-
las at respectively order 1 and 2. Given a ray segment contained in
a voxel as well as a user defined error threshold, the remainder term
of the chosen Newton-Cotes formula is used to solve for an appro-
priate subdivision step, the latter allowing to locally integrate the
color and opacity values at the desired precision when reinjected
in the Newton-Cotes formula. However, the coarse estimation of



the derivative bounds as well as the heuristic used for estimating
the global error on the ray does not guarantee optimal results, ease
of implementation and low computational cost having been pref-
ered by the authors. More importantly, this method requires pre-
classification of the volume data which is commonly known to be
subject to artefacts and loss of details. Finally, since no practical
study in terms of visualization has been proposed in this paper, it is
difficult to relate the error reduction to the quality improvements of
the rendered datasets.

In this paper, we propose to use a 2nd order Newton-Cotes for-
mula to achieve post-classified volume rendering with arbitrary
transfer functions. We furthermore provide an explicit analysis of
the integration error to support the theory behind our method, visual
results confirming an improvement over past approaches.

3 ANALYSIS OF EXISTING RENDERING TECHNIQUES

Various hardware accelerated volume rendering techniques have
been developed. In this Section, we classify these techniques ac-
cording to the order of integration after reviewing a non exhaustive
theoretical background in signal reconstruction for volume render-
ing.

3.1 Signal Reconstruction

Visualizing a discrete volume consists in solving for every pixel the
commonly called volume rendering integral :

C =
∫ D

0
c(F (r(t)))τ(F (r(t)))× exp

−

∫ t

0
τ(F (r(t ′)))dt ′

dt (1)

where :

• C is the final pixel color.

• r(t) is the cast ray of length D parametrized by the distance to
the front intersection with the volume.

• F is a reconstruction filter to be convolved with the discrete
dataset in order to retrieve a continuous scalar field.

• scalar values s are mapped to chromaticity vectors c(s) and to
extinction coefficient τ(s), thus defining the transfer function.

Even though it has been proven that more complex filters pro-
vide better volume reconstruction [5], due to their computational
expense, they are inadequate for real-time reconstruction. On the
other hand, the trilinear interpolation filter is widely used in interac-
tive volume rendering techniques as it is currently the only filtering
kernel fully supported in hardware by standard graphic cards.

We consider the case of regular grids with a trilinear filter. Thus,
the scalar value at any position in the volume is determined by
uniquely combining the values of the 8 voxels whose centers are
the closest. More generally, the grid induced by the centers of the
voxels will be called the dual grid, and will hence define dual vox-
els. For a ray segment r(t) included in a dual voxel, it can be easily
proved that the trilinear reconstruction of its scalar values comes
down to a cubic polynomial parametrized by t. This property has
been previously used in isosurface rendering [13].

We observe two interesting mathematical properties in the case
of a trilinearly reconstructed volume :

• the global scalar signal of a ray traversing a volume holds the
property of C 0 continuity, the first derivative differing at the
transition points between two dual voxels.

• the scalar signal relative to a segment lying in a dual voxel is
a C ∞ continuous cubic curve. The derivative of a cubic poly-
nomial being a quadratic polynomial and the latter admitting
at most two real roots, the cubic curve has at most two turning
points.

As no assumptions are made on the volume dataset and on the
transfer function, solving equation 1 analytically is impossible. We
thus have to resort to numerical integration techniques in order to
find an approximation of the solution. We now review how the
volume rendering integral has previously been computed, focusing
on the quality of the scalar approximation with respect to a trilinear
filter.

3.2 Numerical Integration

Let r(t) be a cast ray from the viewer’s position whose length
is D, and which has been sampled at each intersection with the
borders of the crossed dual voxels. We futhermore sample the
ray at the midpoints of each successive pair of samples that have
been previously defined. n is the total number of discrete samples

and ti denotes the distance from the ith sample to the ray origin.
Such a sampling scheme will allow the comparison between a well
defined function (a cubic polynomial) with different numerical
approximations, which accounts for the ideal sampling case.
Notice that the case of constant length sampling will be studied
in Section 5. Furthermore, in order to estimate the quality of
the approximations, we will consider the numerical error term ξ
between an ideal signal and its relative approximation as being
the integral of the absolute value of their differences, which we

compute using a 0th order integration scheme (for its ease of
implementation) at a very high sampling rate (for high precision).
The green areas in Figures 1, 2, 4, 5 depict the signed differences
between the ideal signals and the corresponding approximations,
possibly magnified if so described in the legends.

3.2.1 Zero Order Integration

The most straightforward way of evaluating the volume rendering
integral is by decomposing it into a Riemann sum and by apply-
ing for each successive pair of samples the rectangle rule. Each
slab (r(ti),r(ti+1)) of length ti+1 − ti is considered as being either
of scalar value F (r(ti)) (left Riemann approximation), of scalar
value F (r(ti+1)) (right Riemann approximation) or of scalar value

F

(

r(ti)+r(ti+1)
2

)

(midpoint approximation).
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Figure 1: Trilinearly interpolated scalar signal (in black) along a cast
ray approximated by the midpoint rule (in red).

Such a process is known as a zero-order hold reconstruction, the
approximated scalar density being constant within a ray segment.
Thus, the color and opacity values are also constant for a ray
segment and no further integration is needed relatively to the
transfer function. As shown in Figure 1, the reconstructed signal



is not even C 0 continuous, and the approximation error tends to
be significant. In the field of volume visualization, this leads to
important visual artefacts where the discontinuities are clearly
visible between two consecutive samples.

3.2.2 First Order Integration

In order to capture the high frequencies of the transfer function and
thus improve the overall rendering quality, pre-integration based
volume rendering methods have been proposed [3,18]. The numeri-
cal integration performed on the continuous scalar field corresponds
to the trapezoid rule, the approximated scalar field within a ray seg-
ment being the linear interpolation between its two endpoints. As
the resulting scalar field is no longer constant and has to be com-
posed with the transfer function, further integration is performed
relatively to the chromaticity vector and the extinction coefficient.

Consequently, the sampling distance must be taken into account
as it affects the computation of the color and opacity values, and
thus a 3D table indexed by (s f ,sb, l) is needed to store the pre-
computed integrals (s f being the front sample, sb the back sample
and l the length of a ray segment).
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Figure 2: Trilinearly interpolated scalar signal (in black) along a cast
ray approximated by the trapezoid rule (in red).

Figure 2 illustrates a 1st order approximation of a cast ray where
the scalar field has been trilinearly interpolated. Even though better

convergence is achieved in comparison to a 0th order approximation
(see the differences between the error terms), the reconstructed sig-
nal does not have C 1 continuity inside a dual voxel (between two
black points). However, the global approximation is C 0 continu-
ous, which is the reason behind the capture of the transfer function’s
high frequencies. Notice how within a ray segment the error term
grows proportionally to the distance between the current position
on the ray and the nearest sample.

3.3 Convergence Analysis

In the field of numerical integration, a function f is integrated by es-
timating piecewisely the swept area of successive curves, the curves
being built from a finite number of discrete samples of f , the lat-
ter determining the order of the integration (the higher, the better).
An approximation of the integrated function f is then obtained by
summing up the swept areas. In general, the goal of numerical in-
tegration techniques is the direct estimation of the area swept by a
curve using a definite formula, the equation of the curve being usu-
ally not needed. However, when dealing with the volume rendering
integral, the transfer function is further composed with the scalar

field. As the variables t and t ′ over which we integrate determine
the scalar field (see Equation 1), the chromaticity vector and the ex-
tinction coefficient cannot be factored out of the integrals, implying
further integration relatively to the transfer function.

Thus, when precomputing the rendering integrals as in Sec-
tion 3.2.2, two distinct numerical integrations must be performed,
the first for the scalar field, the second for the transfer function
which operates on the approximated scalar field. Consequently,
what accounts the most when pre-integrating the volume render-
ing integral is the shape of the approximated scalar field as opposed
to its swept area. The interpolation scheme used for approximating
the trilinear signal will determine the correctness of the captured
scalar high frequencies, and thus the correctness of the captured
high frequencies in the transfer function. If the scalar interpola-
tion scheme used for pre-integrating the volume rendering integral
converges poorly towards the ideal trilinear signal when used piece-
wisely along a ray, this leads to visual artefacts as well as omission
of important features of the volume.

1st order approximation
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Figure 3: Comparison between a trilinearly interpolated signal (black
curve) and its 1st order approximation (red segment) after composi-
tion with the extinction component τ(s) of a random transfer function
(blue diagram on top left). The two resulting curves are depicted on
the right with their respective colors.

Figure 3 outlines the latter. This figure shows an example of a
cast ray segment bounded by only two discrete samples. The trilin-
ear signal is approximated by a 1st order interpolation. We compare
both curves after convoluting them with the extinction component
of a transfer function having high frequencies. As one can see,
the two resulting curves show great differences. The resulting er-
ror in terms of visualization would be further increased because
of self attenuation within the segment and by the fact that a pixel
color is defined by the combination of a triplet of primary colors
whose values are computed using such an approximative interpola-
tion scheme. Even though standard pre-integrated volume render-
ing claims to capture the high frequencies of the transfer function,
the approximated pixel colors may greatly differ from what would
have ideally been integrated. Indeed, in the case of high frequen-
cies present in the continuous scalar field, if the sampling rate along
the rays is not high enough, wrong high frequencies of the transfer
function would be captured. This would yield to misleading visual
artefacts.

We show in the rest of this paper that a higher order integration
scheme can greatly improve the approximation of the volume ren-
dering integral without the need of further resampling the cast rays.
For the purpose of direct volume rendering, we also detail how to
build a higher order pre-integration table.

4 SECOND ORDER INTEGRATION

As mentioned in Section 3.1, the trilinear reconstruction of a ray
r(t) traversing a volume possesses interesting properties that are



omitted by the previously described techniques. In order to con-
verge faster towards the accurate signal, a pre-integrated table
should take these properties into account.

Despite the fact that we have analyzed the scalar signal along
cast rays for many volumes whose scalar field has been generated
semi-randomnly (in order to obtain high frequencies in the contin-
uous scalar field), we have not encountered the case where a ray
segment included in a dual voxel has a scalar field with two turning
points. These experiments have led us to the conclusion that such
situations seem extremely rare. In fact, in the worst case, only one
derivative’s sign change has been observed. Such a property is in-

herent to a 2nd order Lagrange polynomial, which is a polynomial
of degree 2 defined by three equispaced points, the resulting curve
passing through each of these points. Due to its polynomial nature,
the shape of the interpolation over a single interval is that of a C inf

continuous curve, and when used piecewisely on numerous sam-
ples, C 0 continuity is achieved at the joint points as the end point
of an interval is the start point of its successor.

In the field of numerical integration, this corresponds to a 2nd

order Newton-Cotes integration (also known as Simpson’s rule)
where the area under the curve is computed in O(1). However,
when applied to volume rendering techniques, scalar interpolation
takes precedence over area computation as we have seen in Sec-
tion 3.2.2, and we will thus focus on the scalar curve obtained from
the 2nd order Lagrange polynomial.
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Figure 4: Trilinearly interpolated scalar signal (in black) along a cast
ray approximated by Simpson’s rule (in red).

As we have chosen to sample the rays at each intersection with
the crossed dual voxels’ borders and by futhermore considering the
midpoints of each previous pair of sample, we will approximate the
trilinear interpolation of a segment bounded by a dual voxel with

a 2nd order Lagrange polynomial. Figure 4 illustrates this piece-
wise interpolation and compares it to the trilinear interpolation of
the volume. We can observe that in comparison to a 1st order ap-
proach, the approximation error is significantly reduced as the orig-
inal signal is more closely matched. The main reason behind the
quality of the approximation is that inside a dual voxel, the trilinear
interpolation is analytically defined as a cubic polynomial and thus
is smooth and well behaved. As noted previously, one turning point
at most has been observed for these bounded segments despite the
presence of high frequencies in the generated datasets, which is a

property of 2nd order polynomials. Faster convergence may there-
fore be achieved without the need of strong ray resampling.

In order to benefit from a 2nd order integration scheme, we pre-
compute the volume rendering integral where the scalar field is de-

fined as a 2nd order Lagrange polynomial. Three equispaced scalar
samples (namely s f , sm and sb) must be considered (respectively
holding for the front, the middle and the back sample). Since we
take self attenuation into account, the length l of the ray segment
over which we integrate must be considered. This leads concep-
tually to a 4D table, as opposed to a 3D table in the case of a 1st

order integration. Equation 2 details how color and opacity values
are computed.

c2(s f ,sm,sb, l) =
∫ 1

0
c(P(t))τ(P(t))l

×exp
−

∫ t

0
τ(P(t ′))ldt ′

dt

τ2(s f ,sm,sb, l) = 1− exp
−

∫ t

0
τ(P(t))ldt

where











A = 2s f −4sm +2sb

B = −3s f +4sm − sb

C = s f

P(t) = At2 +Bt +C

(2)

Thus, the volume rendering integral (equation 1) is approximated
by the following formula where the summation is stepped by 2 since
we now consider triads of sample values instead of pairs of values :

C ≈

n−3

∑
i=0
i+2

c2

(

s f (i),sm(i),sb(i), l(i)
)

×

i−1

∏
j=0
j+2

(

1− τ2

(

s f ( j),sm( j),sb( j), l( j)
))

where











s f (k) = F (r (tk))
sm(k) = F (r (tk+1))
sb(k) = F (r (tk+2))
l(k) = tk+2 − tk

(3)

However, the adaptive sampling scheme that has been used in the
previous examples (see Figures 1, 2 and 4) is more complex than
most of the sampling algorithms used in popular direct volume ren-
dering methods. In fact, constant length sampling of the rays (as
with raycasting or as commonly admitted with slicing) is more effi-
cient with respect to performance. Also, it is simpler to implement.

Consequently, we have to analyze how a 2nd order pre-integrated
table affects the quality of the scalar approximation when samples
along the rays are considered equispaced. This is the purpose of the
next Section.

5 CASE OF CONSTANT LENGTH RAY SAMPLING

In comparison to the previous sampling approach of the cast rays,
constant length sampling implies that the trilinear interpolation be-
tween two endpoints of a ray segment is no longer defined analyti-
cally (i.e. a cubic polynomial). First derivatives may vary abruptly
within a segment as we do not know where the samples will be col-

lected. Theoretically, this could deteriorate the quality of the 2nd

order integration if a point lying on a given ray segment intersects a
dual voxel’s border and has its left first trilinear derivative differing
in sign with its right first trilinear derivative.

Since it is impossible in this case to analytically estimate the ap-

proximation error of a 2nd order integration of the volume render-
ing integral (no assumptions being made on the datasets and on the
transfer function), we have conducted a serie of tests on common
datasets in order to determine the quality of the interpolation. We
show two of the worst cases that we have encountered in practice,

comparing the trilinear interpolation to respectively its 1st and 2nd

order approximation.
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Figure 5: Trilinear signals (in black) obtained from cast rays in the Neghip (top row) and the Silicium (bottom row) datasets. The red curves
illustrate the 1st order approximations (left column) and the 2nd order approximations (right columns) with constant sampling length of the ray.

Figures 5(a) and 5(b) show a cast ray in the neghip dataset, black
dots representing the chosen samples along the ray, blue dots rep-
resenting every intersection with the borders of the crossed dual

voxels. We can see that the 2nd order approximation 5(b) better
converges towards the trilinear signal than the 1st order approxima-
tion 5(a) does, which is reflected by their respective error terms.
Figures 5(c) and 5(d) illustrate the same situation for the Silicium

dataset, with the 2nd order approximation 5(d) also minimizing the
error term in comparison to the 1st order approximation 5(c).

Even though better convergence is achieved when the cast rays
are sampled at the intersections with the dual voxels [22], we have
verified in practice (numerically as well as in terms of visualiza-

tion) that even with equispaced samples, a 2nd order integration of
the scalar field still improves the quality of the rendered volume in

comparison to a 1st order integration. We explain the better results
by the fact that a trilinearly interpolated scalar field along a ray has
the shape of a curve where the magnitude of its curvature is gener-
ally non zero. Intuitively, such a curve is better fitted piecewisely

with 2nd order polynomials (which can have non zero curvature)
than with segments (which corresponds to a 1st order approach,
and where the magnitude of the curvature is always zero within
the segment). Consequently, even in the case of constant length ray
sampling, the discrepancy with the ideal signal is minimized when

using a 2nd order approach in comparison to a 1st order approach,
thus yielding better visual results when the same number of sam-
ples are considered. Regarding pre-integration, the precomputed
table (2) may be reduced from 4D to 3D in this case, the distance
between the end points of a segment being constant. This in turn



is a desirable feature for direct volume rendering as 3D textures are
handled natively by standard consumer graphics.

6 IMPLEMENTATION

We now detail the implementation of our volume renderer which

benefits from a 2nd order integration scheme. The cast rays being

sampled regularly, a 3D 2nd order pre-integration table is enough
for storing the color and opacity values. Both renderer and 3D table
computation make use of the GPU programmability features and
are intended for Shader Model 3.

6.1 Rendering Algorithm

Our volume rendering implementation is inspired by a 3D texture
based raycasting approach with the sampling length d being fixed
and common to all the cast rays.

In a first pass, given a perspective matrix transform, both front
and back facing quadrilaterals of the bounding box are projected to
two distinct 32 bit floating point auxiliary buffers where a fragment
shader writes the interpolated 3D texture coordinates. We make
use of the OpenGL extension GL ARB draw buffers for render-
ing multiple targets, the back-face register allowing to determine
wether a fragment has been generated by a front face or by a back
face.

In a second pass, the two previous auxiliary buffers are bound to
two distinct texture units, and a quadrilateral filling the viewport is
projected. For each pixel of the viewport, the main fragment shader
fetches in the back facing texture if valid texture coordinates are
present. If not, the fragment is discarded, otherwise the front facing
texture coordinates are retrieved in order to compute the step vector
along the ray according to the predefined step length d as well as
the total number of iterations to proceed.
The raycasting phase then begins :
Each slab of thickness 2d is defined by three successive samples
(s f ,sm,sb), the next slab being indexed by (s′f ,s

′

m,s′b) with the cor-

relation s′f = sb. After retrieving the samples (s f ,sm,sb) scalar val-

ues in the 3D volume, the color and opacity values are given by a
3D texture dependant fetch in the 3D pre-integration table. A front
to back compositing algorithm blends the successive slabs to finally
obtain the pixel color.

6.2 3D Tables Computation on GPU

We consider transfer functions defined on an 8 bit scalar domain.
As the pre-integration table will be of size 2563, an orthogonal pro-
jection matrix as well as a 2562 viewport are set.

In order to compute every 2D slice along the depth of the pre-
integration table, we render 256 times a quadrilateral parallel to
the projection plane which fills the viewport. For every pixel, the
fragment shader relates x screen coordinate to the front sample s f ,
y screen coordinate to the middle sample sm as the back sample sb

is given by a uniform variable.

The 2nd order polynomial coefficients A, B and C are thus de-
termined as in (2) before entering the main loop. The shader then
operates a fixed number of iterations over the polynomial’s inter-
val [0,1] to compute the successive scalar values using Horner’s
rule for better numerical accuracy and better perfomance. At each
step, color and opacity values of the current scalar are fetched in the
transfer function, which are then composited using a back to front
algorithm with the previous accumulated color and opacity. Once
the loop has ended, the final color and opacity of the pixel is writ-
ten to the frame buffer. Notice that the number of iterations used in
the shader determines the quality of the pre-integration and is user
defined.

After the viewport has been filled, we perform a copy to texture
operation on the texture unit that is storing the 3D pre-integration
table for the current depth index. Notice also that since we accumu-
late values into a floating point register, the composition of the color

and opacity values is achieved in 32 bit floating point accuracy, only
the final value being clamped to the framebuffer’s precision.

7 RESULTS

All results have been reported on an Athlon64 3200+ processor cou-

pled with a nVIDIA GeForce 7800GTX graphics card. A 2nd order
3D table with 8 bits encoded color and opacity components oc-
cupies 64 MBytes in GPU memory. As our method requires two
times less access to the pre-integration table in comparison to a 1st

order approach, two times more compositing operations are needed
in color space in the latter case. In order to avoid artefacts due
to color quantization errors and thus enforce the comparison be-
tween the two different methods, 16 bits floating point 1st order

pre-integrated tables have been used. The 2nd order pre-integrated
tables have been computed using 256 iterations in order to satisfy
the Nyquist sampling theorem. However, even though a low num-
ber of iterations has led to visible artefacts, we have observed in
practice that independently of the dataset and of the transfer func-
tion, 64 iterations were enough to achieve the same visual results as
an upsampled pre-integrated table.

Figure 7 shows the neghip dataset rendered twice with a 1st or-

der approach (Figures 7(a) and 7(b)) and once with a 2nd order ap-
proach (Figure 7(c)). In both cases, a sampling length of 2 voxels’
width has been used for the cast rays on Figures 7(a) and 7(c).
We can clearly observe that more rendering artefacts are present
in the case of a 1st order approach (blurry regions, deformed iso-

surfaces), most of the latter being successfully removed by the 2nd

order pre-integration method. In order to confirm the correctness of
the convergence, we futhermore compare our results to a 1st order
approach where the sampling rate of the cast rays has been doubled
(see Figure 7(b)).

In a same fashion, we show results for two other datasets; namely
the fuel 8 and the bucky ball 9. First, considering the same sam-
pling length of the rays, 1st order pre-integration based images (re-

spectively Figures 8(a) and 9(a)) are compared evenly to 2nd order
pre-integration based images (respectively Figures 8(c) and 9(c)).
Upsampling of the cast rays for the 1st order approach is futher-
more given in Figures 8(b) and 9(b) to estimate the quality of our
method’s convergence.

Iterations 8 16 32

Computation times 28/0.53 50/0.93 90/1.52

Iterations 64 128 256

Computation times 165/2.74 328/5.14 663/10.88

Figure 6: Pre-integration table computation times for the CPU and
the GPU approaches (in seconds).

Figure 6 presents the computation times for our pre-integrated
table using different number of iterations. A comparison is made
between the CPU approach (left of the cells) and its GPU adaptation
(right of the cells) for increasing numbers of iterations. The GPU
approach performs up to 120 times faster than the CPU one and
thus allows fast transfer function modifications when using a sen-
sible number of steps. We believe that in the near future, standard
graphics hardware will make possible interactive transfer function
manipulation.

Another result worth noticing is that, given the same sampling
rate of the rays, second order interpolation is consistently faster than
first order interpolation despite redundant 3D dependent texture ac-
cesses (which are known to produce bad cache coherency). We ex-
plain this performance benefit by the fact that first order rendering
requires a loop over N iterations in the fragment shader while sec-
ond order rendering requires a loop over N/2 iterations, i.e., half as
much. Indeed, branching is still a penalizing instruction on standard



consumer graphics. In addition, only half of the compositing opera-
tions are needed, thus lowering the computational cost. Notice that
independantly of the order used for pre-integration, the number of
texture accesses to the volume data is always N, the back sample
being cached for further use in the next iteration.

8 CONCLUSIONS AND FUTURE WORKS

We have presented a novel direct volume rendering method based

on the pre-integration of the transfer function using a 2nd order in-
tegration of the scalar field.

We have shown that independently of the sampling scheme em-
ployed for the cast rays (constant or adaptive sampling), this higher
order integration scheme significantly minimizes the discrepancy
between a trilinearly interpolated volume and its piecewise approx-
imation. Scalar high frequencies in the volume are more accurately
captured in comparison to standard pre-integration based methods,
which is reflected on the correctness of the captured transfer func-
tion high frequencies and thus on the volumes’ visualization. For
scientific data or critical datasets where high frequencies are often
encountered, less ray sampling is needed to capture the finest de-
tails, thus implying improvements with respect to both performance

and quality. However, a direct consequence of this 2nd order inte-
gration approach is the memory occupation when pre-integrated. A
4D table must be used when adaptively sampling the rays whereas
a 3D table when the rays are sampled regularly. Consequently, we
plan on reducing the memory occupation of the pre-integrated ta-
bles as well as speeding up the precomputation process. Finally,
we believe that a volume renderer which smartly samples the cast

rays while based on a 2nd order pre-integration table could greatly
improve the quality of the rendered images, the challenges being
to maintain at least interactive frame rates and to fit the 4D pre-
integration table into GPU memory.

From a conceptual point of view, we have shown that depend-
ing on the reconstruction filter, pre-integration techniques should
consider the scalar interpolation scheme used for precomputation
in order to reflect as correctly as possible the behaviour of the ideal
scalar field. Thus, we believe that better reconstruction filters (in
comparison to a trilinear filter) should be studied in correlation with
the pre-integration of the volume rendering integral as the quality
of the visualization could greatly benefit from it.
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editor, Procceedings of IEEE Visualization ’05, pages 223–230. IEEE,

2005.

[7] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun.

Gaussian transfer functions for multi-field volume visualization. In

Proceedings of IEEE Visualization 2003, pages 497–504, 2003.

[8] J. Kruger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In VIS ’03: Proceedings of the 14th IEEE Visual-

ization 2003 (VIS’03), page 38, Washington, DC, USA, 2003. IEEE

Computer Society.

[9] E. Lum, B. Wilson, and K.-L. Ma. High-quality lighting and efficient

pre-integration for volume rendering. The Joint Eurographics-IEEE

TVCG Symposium on Visualization 2004, 2004.

[10] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence

for efficient visualization of 3d scalar functions. In VVS ’90: Pro-

ceedings of the 1990 workshop on Volume visualization, pages 27–33,

New York, NY, USA, 1990. ACM.

[11] B. Nelson. Ray-tracing polymorphic multidomain spectral/hp ele-

ments for isosurface rendering. IEEE Transactions on Visualization

and Computer Graphics, 12(1):114–125, 2006. Member-Robert M.

Kirby.

[12] K. Novins and J. Arvo. Controlled precision volume integration. In

VVS ’92: Proceedings of the 1992 workshop on Volume visualization,

pages 83–89, New York, NY, USA, 1992. ACM Press.

[13] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive

ray tracing for isosurface rendering. In VIS ’98: Proceedings of the

conference on Visualization ’98, pages 233–238, Los Alamitos, CA,

USA, 1998. IEEE Computer Society Press.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, New York, NY, USA, 1992.

[15] C. Rossl, F. Zeilfelder, G. Nurnberger, and H.-P. Seidel. Reconstruc-

tion of volume data with quadratic super splines. IEEE Transactions

on Visualization and Computer Graphics, 10(4):397–409, 2004.
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(a) 1st order, 2 voxels’ width sampling length, 54.0

FPS

(b) 1st order, 1 voxel’s width sampling length, 29.4

FPS

(c) 2nd order, 2 voxels’ width sampling length, 84.2

FPS

Figure 7: Neghip 643 dataset rendered at different integration orders and different sampling rates

(a) 1st order, 2 voxels’ width sampling length, 44.7

FPS

(b) 1st order, 1 voxel’s width sampling length, 23.8

FPS

(c) 2nd order, 2 voxels’ width sampling length, 75.0

FPS

Figure 8: Fuel 643 dataset rendered at different integration orders and different sampling rates

(a) 1st order, 4 voxels’ width sampling length, 80.0

FPS

(b) 1st order, 1 voxel’s width sampling length, 24.6

FPS

(c) 2nd order, 4 voxels’ width sampling length, 111.3

FPS

Figure 9: Bucky Ball 643 dataset rendered at different integration orders and different sampling rates


