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Abstract
Ambient occlusion techniques were introduced to improve data comprehension by bringing soft fading shadows to
the visualization of 3D datasets. They consist in attenuating light by considering the occlusion resulting from the
presence of neighboring structures. Nevertheless they often come with an important precomputation cost, which
prevents their use in interactive applications based on transfer function editing. This paper explores parallel
solutions to reach interactive framerates with the use of a multi-GPU setup. Our method distributes the data
to the different devices for computation. We use bricking and load balancing to optimize computation time. We
also introduce two repartition schemes: a static one, which divides the dataset into as many blocks as there are
GPUs and a dynamic one, which divides the dataset into smaller blocks and distributes them using a producer-
consumer way. Results, using an 8-GPU architecture, show that we manage to get important speedups compared
to a mono-GPU setup.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors—
I.3.1 [Computer Graphics]: Parallel processing—I.3.3 [Computer Graphics]: Display algorithms—

1. Introduction

Shading is an important technique improving data compre-
hension when rendering volume datasets using Direct Vol-
ume Rendering (DVR), where there are multiple more or
less transparent and interleaved layers. It helps the human
eye perceiving the relative position and shapes of the dif-
ferent layers extracted by classification using the transfer
function. In this context, one can use either direct illumi-
nation techniques like Phong Shading [Pho75], or indirect
illumination techniques, that are usually more computation-
ally expensive. Ambient Occlusion techniques fall into this
second category. They bring comprehensive cues to volume
rendering by providing soft and smoothly varying shadows,
which emphasize the shape of structures in the volume. Fig-
ure 1 illustrates this difference by comparing Phong lighting
only and Phong lighting combined with Ambient Occlusion
(see improved nose bone cavity perception). Previous works
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have introduced this method as an additional precomputa-
tion step that produces a volume containing light attenuation
factors. This volume is then used during the visualization
step to modulate the color of the corresponding voxels. The
main problem with this technique is that it remains expen-
sive in terms of precomputation time. In addition, a new
Ambient Occlusion volume must be recomputed whenever
the transfer function is modified. Once it is precomputed,
final rendering is as fast as classical DVR. Precomputation-
free screen-space approximations merge occlusion computa-
tions with the rendering step like Schott et al. [SPH∗09] and
Šoltészová et al. [ŠPBV10]. But they affect the final render-
ing performance and only take into account a partial cone of
data.

To preserve final rendering framerates, we propose to
keep the computation of Ambient Occlusion as a precom-
putation step. Our contribution is to speed it up using a par-
allel implementation. We focus on multi-GPU architectures
as they become widely spread. They are a cheaper alterna-
tive to clusters and provide parallel computational capabil-
ities with the help of specific programming languages like
CUDA or OpenCL. Nevertheless, data transfers between the
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Figure 1: Comparison of DVR with Phong shading without
(left) and with (right) additional ambient occlusion.

GPUs and CPUs have to be cautiously taken into account, as
they might affect the performance of the whole process. To
parallelize Ambient Occlusion computation on such a setup,
we propose to distribute this computation to multiple GPUs.
This raises the following issues: how do we scatter the data
on the different devices, how do we ensure a good balance
of the load and how do we manage to minimize data trans-
fers between the different GPUs. Our main focus here is to
provide solutions for these issues. We also show that this
parallelization is compatible with a sort-last multi-GPU ren-
dering pipeline, which has already been addressed in previ-
ous works.

This paper is organized as follows. Section 2 presents
related works in the areas of Ambient Occlusion and multi-
GPU techniques both applied to the context of direct vol-
ume rendering (DVR). In Section 3, we present the Ambi-
ent Occlusion formulation on which is based our technique
in DVR. Section 4 introduces a bricking technique allowing
to reduce the precomputation times. Section 5 then intro-
duces our multi-GPU parallelization technique for Ambient
Occlusion. Section 6 presents results and performance dis-
cussions. Finally, Section 7 concludes and discusses future
works.

2. Related works

2.1. Ambient Occlusion for DVR

Light contributions from surrounding features bring impor-
tant cues to the human eye as experimentally tested by
Langer et al. [LB00]. Ambient Occlusion was introduced
by Zhukov et al. [ZIK98] as the notion of obscurance to
bring ambient illumination to objects without the cost of
global illumination. As opposed to classical shading or shad-
owing methods, this technique is independent of lights and
viewpoint. Stewart [Ste03] is the first to work on Ambi-
ent Occlusion applied to DVR. In his method called “vicin-
ity shading”, he proposes to precompute visibility factors
based on voxel densities. Ruiz et al. [RBV∗08] extend Stew-
art’s work to the obscurance model, in which the distance
to the occluder is used. To reduce computations, Hernell
et al. [HLY07] compute Ambient Occlusion by considering
only local spheres around voxels. They throw rays along

which they accumulate opacities. The factors are stored in a
3D texture used in a final rendering pass to modulate colors.
They further extend their previous works in [HLY10], by
modifying the opacity of the transfer function to increase/de-
crease the shadowing effect. Ritschel [Rit07] bases his work
on spherical harmonics to compute visibility in the volume
dataset. With a precomputation time reduced by using the
GPU, he produces soft shadows and attenuation. Desgranges
et al. [DE07] try to evaluate the most frequent distances
between so called “full” voxels through histogram compu-
tation. They then compute occlusion volumes based on a
summed area volume. The final occlusion volume is ob-
tained by blurring previously obtained occlusion volumes.
Rezk Salama [Sal07] uses Ambient Occlusion and subsur-
face scattering in the context of isosurface rendering to pro-
duce high-quality renderings. Ropinski et al. [RMSD∗08]
compute the interaction of neighboring voxels using his-
tograms, built independently of any transfer function. They
combine a reduced number of histograms and a transfer
function in the rendering pass to interactively render Ambi-
ent Occlusion and color bleeding effects. Meß and Ropinski
[MR10] further improve the previous work and its precom-
putation cost by porting part of the technique on the GPU
using CUDA. Schott et al. [SPH∗09] propose a directional
occlusion method, where light and view positions coincide.
As it is an image space approach, no precomputations are
required. Šoltészová et al. [ŠPBV10] further improve this
technique by allowing the free placement of the light source.
Correa and Ma [CM09] propose to use Ambient Occlusion
to help with the classification. Ancel et al. [ADM10] pro-
pose to reduce the darkening introduced by Ambient Oc-
clusion by separating the different layers to visualize and
by computing Ambient Occlusion separately for each layer.
Ruiz et al. [RSKU∗10] compute Ambient Occlusion using
the bounding box of the tangent sphere to the considered
voxel by evaluating the portion that in unoccluded.

2.2. Multi-GPU

The use of multi-GPU setups for computation is a recent area
of research, as the increasing programmability of graphic
cards and the introduction of CUDA and OpenCL ease the
use of such configurations. In the volume rendering field,
several research areas have investigated the use of multi-
GPU.

Direct volume rendering can benefit from multi-GPU con-
figurations, as they allow the visualization of big datasets
that do not fit in the memory of a single GPU. Marchesin
et al. [MMD08] propose an experimental study comparing
multi-GPU and cluster for sort-last volume rendering using
big datasets. More recently, Fogal et al. [FCS∗10] propose a
method for visualizing large datasets using a cluster of multi-
GPU computers. In the context of isosurface rendering, Mar-
tin et al. [MSM10] also use multi-GPU clusters to generate
isosurfaces.
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Regarding to the specific area of Ambient Occlusion and
to our knowledge, no work has been conducted on paralleliz-
ing the computation of Ambient Occlusion on a multi-GPU
setup.

3. Ambient Occlusion

Theory – In classic triangle-based rendering, Ambient Oc-
clusion computation is based on the analysis of objects
neighboring the considered point. This is represented as the
integration of a visibility function V in the hemisphere de-
scribed by the solid angle ω centered on normal N at consid-
ered point p:

AOp =
1
π

∫
Ω

Vp,ω(N ·ω)dω (1)

Ambient Occlusion in DVR is accurately computed by
raycasting to sample the neighborhood as in the previous
works conducted by Hernell et al. [HLY07]. They thus de-
fine the light arriving at the center xv of voxel v from direc-
tion l by:

Il(xv) =
∫ RΩ

a

1
RΩ−a

· exp
(
−

∫ s

a
τ(u)du

)
ds (2)

with a an initial offset, which allows one to lower the in-
fluence of nearest neighbors, RΩ the considered sphere ra-
dius and τ the optical depth. This equation defines an occlu-
sion region which is a shell of thickness RΩ−a centered on
each voxel. It is approximated using M samples for a front-
to-back compositing scheme with an opacity αi, obtained via
the transfer function:

Il(xv) =
M

∑
m=0

1
M

m−1

∏
i=0

(1−αi) (3)

As this formula implies the Ambient Occlusion factors de-
pend on the classification done with the transfer function,
these factors need to be recomputed with each change of the
function.

Obtaining the Ambient Occlusion factor for voxel v is fi-
nally a matter of raycasting and combining the contributions
computed per-ray for a set of L rays in the following way:

AO(v) =
1
L

L

∑
l

Il(xv) (4)

Implementation – Our implementation of Ambient Oc-
clusion relies on CUDA. We divide the dataset into 2D
CUDA blocks virtually mapping a part of each slice in Z
direction. The CUDA grid is then built by putting in the

first dimension the number of blocks in a Z-slice and in the
second one the number of slices to process.

At launch and for a given ray direction, each kernel then
processes a voxel, computes its Ambient Occlusion factor
for the current ray direction and sums it to a float accumu-
lation buffer. Each value of this texture will then finally be
divided by the number of rays and at the same time resam-
pled to 8 bits for storage means. This method is based on
the OpenGL method used by Hernell et al. [HLY07]. The
kernel function is very simple as it only consists in a loop
fetching opacity values in a texture using post-classification
along a ray direction. In terms of optimization, it does not
reuse data and does not use global memory, so it cannot be
further optimized on the code side.

4. Bricking

To decrease Ambient Occlusion computation times, an ef-
ficient solution consists in skipping empty areas caused by
classification. Indeed, when rendering the volume dataset,
there is often some part of the voxels that are made invis-
ible by the transfer function and thus do not contribute to
the visualization. The aim of bricking is to avoid comput-
ing Ambient Occlusion values for these voxels. We do this
by bricking the dataset into equal-sized cubic bricks. Each
brick is marked with a binary information: either 1 for a full
brick, i.e. a brick in which we will compute Ambient Oc-
clusion factors for each voxel it contains, or 0 for an empty
brick that does not contribute to the final rendering and thus
can be skipped. As for Ambient Occlusion factors, the con-
tent of a brick depends on the transfer function, so it must be
recomputed each time the latter is modified.

Computing brick information – The binary information
associated with each brick is computed on the GPU by iterat-
ing over the voxels contained in a brick until a non transpar-
ent voxel is found (in this case the brick value is 1) or all the
voxels in the brick are processed (in this case the brick value
is 0). Each GPU receives from the CPU the same amount
of bricks to process by subdividing the dataset into n equal-
sized blocks Bi (see top of figure 2). The result of the com-
putation is a binary texture containing either 1 for a full brick
or 0 for an empty brick. Since the processing of each block
is the same, no explicit load balancing is necessary in this
case. In addition, as it will be shown in the results section,
this computation is very fast and represents only a fraction of
the computation time of Ambient Occlusion. To be efficient,
bricking is also computed in a parallel way by processing
equal-sized blocks on each GPU.

Artifacts prevention – The creation of bricks has to be
done cautiously as we might have empty bricks neighboring
full bricks and subsequently a voxel that needs an Ambient
Occlusion factor neighboring a voxel that needs no factor.
During the final rendering step, we are using trilinear in-
terpolation, so we need to compute an Ambient Occlusion
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value for voxels contained in empty neighboring bricks, to
prevent visual artifacts in the form of shading discontinu-
ities. To solve this problem, we use an overlap for each brick,
so that we take into account neighboring voxels. We have
experimented different brick sizes, as described in section 6.

The bricks are then used in the Ambient Occlusion pre-
computation pass. When a voxel is processed, we fetch the
corresponding brick value: if the value indicates a full brick,
we compute an Ambient Occlusion factor for this voxel, oth-
erwise we exit the kernel. This results in performance im-
provement for the precomputation time.

5. Parallelizing Ambient Occlusion computation

Since Ambient Occlusion is computationally expensive, and
therefore prevents interactive transfer function editing, we
parallelize this computation on a multi-GPU architecture.
We consider an architecture composed of n GPUs. In the fol-
lowing, we first discuss the general parallelization strategy
that we apply in section 5.1. We then introduce two com-
putation distribution strategies: static in section 5.2 and dy-
namic in section 5.3, while discussing their respective bene-
fits and drawbacks.

5.1. Choosing the right loop

When analyzing the Ambient Occlusion computation of for-
mula 4, we see that there are several loop levels involved as
described in Algorithm 1.

Algorithm 1 Algorithm describing the ray casting process
associated with Ambient Occlusion computation.

CPU: For each r a y d i r e c t i o n
GPU: For each v o x e l i n t h e d a t a s e t
GPU: For each sample t a k e n
GPU: Accumulate o p a c i t y a l o n g t h e r a y

The different loops process respectively 1) the ray direc-
tions to sample the neighborhood, 2) the voxels to obtain an
Ambient Occlusion value for each and 3) samples along the
ray. The third loop is not easily parallelizable as there is
an order dependency between the samples taken along the
ray. So, there are mainly two possibilities: parallelization
according to ray directions or according to voxels.

The first possibility consists in parallelizing the computa-
tion according to the ray directions. To do so, we can split
the set of ray directions into n subsets, n being the number of
available GPUs on the computer. Each GPU computes the
Ambient Occlusion value corresponding to the sphere sam-
pling induced by its ray subset. We then have to merge the
different Ambient Occlusion values computed into a single
value according to formula 4. This can be done either in a
software manner, by transferring and merging every Ambi-
ent Occlusion volume on the CPU, or in a hardware manner,

where one GPU would be in charge of merging sub-volumes
that the other GPUs would send. In either way, this method
implies prohibitive data transfers.

The second possibility is more interesting as it matches
a natural sort-last parallel rendering pipeline. It consists in
splitting the dataset into as many blocks as there are GPUs.
The blocks are chosen to be parallelepipeds in order to keep
all subsequent computations efficient in terms of data local-
ity and cache usage. Each block is transfered to the associ-
ated GPU, where the corresponding Ambient Occlusion vol-
ume is computed. This volume does not need to be trans-
fered back, since the same GPU can then directly perform
the volume rendering of this block. Only the corresponding
image must be transfered to a master GPU for final image
compositing. Nevertheless, one has to pay attention con-
cerning the way blocks are defined. Indeed, Ambient Occlu-
sion computation on one single voxel involves taking into
account a large part of neighboring voxels because of RΩ

(see formula 2). This neighborhood must be taken into ac-
count when splitting the block. To do so, we add an overlap
to the defined blocks in every direction. It corresponds to
the number of voxels along the radius RΩ of the sampling
sphere.

We note that an additional parallelization approach could
be used according to the work of Ancel et al. [ADM10], in
which they propose to compute Ambient Occlusion factors
based on a feature separation of the dataset used to improve
the perception of different structures. This work adds an ad-
ditional loop on features before iterating over the ray direc-
tions. This loop can be parallelized by computing Ambient
Occlusion values for each feature on a different GPU. How-
ever, when combined with bricking, processing features in
parallel might result in severe unbalanced load, because the
sizes of the features are generally uneven, thus resulting in
different computation requirements.

5.2. Static distribution

In this section, we describe a method for statically distribut-
ing Ambient Occlusion factors computation. In the follow-
ing, we discuss three main aspects : data distribution, load-
balancing and rendering.

5.2.1. Data distribution

With a static distribution the dataset is decomposed into n
blocks (for n GPUs), each block being assigned to one GPU,
which computes all Ambient Occlusion factors related to
this block. If the block is larger than the corresponding avail-
able GPU memory, it is further divided into sub-blocks that
are then processed sequentially within the GPU.

A naive approach consists in splitting the dataset into
equal sized blocks Bi with i ∈ [1,n]. All voxels of block Bi
are then scanned and Ambient Occlusion values computed
according to formula 4. Once this computation is completed,
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we can render the block and send back the corresponding
image for compositing. The parallel computation of Ambi-
ent Occlusion factors is possible, since they are independent
from each other. But this approach is not efficient, since it
does not exploit empty spaces. The bricking technique in-
troduced in section 4 allows us to take into account empty
spaces to improve global performance. Empty spaces intro-
duce unbalance in the computation times since correspond-
ing empty bricks might not be equally distributed among the
different blocks Bi. We propose a technique to address this
issue by choosing a load-balancing criterion. In the next sec-
tions, we respectively describe how bricking is performed
and how the load balancing issue is addressed.

5.2.2. Addressing the load balancing issue

CPU GPU 0

(Master)

GPU 1

Dataset Brick Computation Brick Computation

BSP Computation

Load-balancing

AO Computation AO Computation

Brick block 2

Brick block 1

Brick block 1

Brick block 2

Count number of

full bricks

Count number of

full bricks

Figure 2: Load-balancing process for computing Ambient
Occlusion.

Depending on the classification resulting from the transfer
function, one can get large empty areas in the dataset, result-
ing in empty bricks that are skipped during Ambient Occlu-
sion computation. The distribution of empty bricks depends
on both the dataset and the transfer function. Subdividing the
dataset into equal-sized blocks results in unbalanced work-
load, since some blocks are likely to contain more empty
bricks than others. To improve load-balancing, we have to
improve the block distribution on the GPUs, in a way such
that the Ambient Occlusion computation would take approx-
imately the same time on each GPU.

To perform load balancing, we first need a criterion that
allows us to evaluate the computation cost of a given block.
This criterion is linked to the number of full bricks inside
this block. We thus need to count the number of full bricks
in a given block. This task can be done in parallel by the
different GPUs. Once we have set up a criterion, we can use

it to compute a subdivision into blocks resulting in similar
workload for each GPU. Section 5.2.3 describes our load-
balancing criterion and section 5.2.4 shows how to compute
the number of full bricks required by this criterion.

The load balancing method that we have implemented
works as follows. In a first step, we split the dataset into
adjacent blocks using a BSP-tree. In a second step, we move
the splitting plane between blocks according to the criterion.
These two steps are respectively described in section 5.2.5
and section 5.2.6.

5.2.3. Load-balancing criterion

Let us assume that block Bi contains ni
f full bricks and ni

e
empty bricks. The time to compute an empty brick is de-
noted by Te and the one to compute Ambient Occlusion fac-
tors on a full brick is denoted by Tf . Te is almost com-
pletely negligible compared to Tf since one only has to
check whether the brick is empty or not, whereas Tf is a con-
stant depending on the size of the brick and on the radius RΩ.
We thus propose to use as single criterion to evaluate the cost
for block Bi: ni

f , i.e. the number of full bricks in Bi. We then
can evaluate the balancedness between two different blocks
Bi and B j (i 6= j) by computing D(Bi,B j) = [ni

f ]− [ni
f ]. The

aim of global load balancing is to bring the result of this for-
mula towards 0 for all pairs (Bi, B j) with (i, j) ∈ [1,n]2 and
i 6= j. Formally, this can be expressed as finding out the set
of blocks S = {Bk|k ∈ [1,n]} among℘, the set of all possible
partitions of the dataset into n blocks, such that it minimizes
the maximum value of D(Bi,B j) for all pairs of blocks:

S = {Bk | k ∈ [1,n]} ∈℘|MS = min
{

MSq | Sq ∈℘
}

(5)

MSq = max
{
|D(Bi,B j)| | ∀(Bi,B j) ∈ S2

q, i 6= j
}

(6)

This equation is a mathematical translation of the fact
that all blocks should have roughly the same amount of full
bricks. Load balancing is a matter of determining the op-
timal set S according to this equation. The problem is that
there are many possible partitions, i.e many ways of subdi-
viding a 3D dataset into blocks. The cost of finding out the
optimal subdivision should not exceed the gain finally ob-
tained by load balancing compared to a naive subdivision
for which the cost is null. For finding out S we need to com-
pute amounts of full bricks, which is very costly. Exploring
all possible subdivisions to keep the best one, using for in-
stance dynamic programming, is obviously too expensive.
We propose to use a simple algorithm based on some heuris-
tics along with a fast iterative procedure. The algorithm con-
sists of two steps. In a first step, the dataset is split using a
BSP-tree. In a second step, we iteratively move the splitting
plane between blocks according to the values of D(Bi, B j)
until we reach a local balanced state for the two correspond-
ing blocks.
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5.2.4. Computing the number of full bricks in a block

Computing the number of full bricks in a given block Bk is an
operation ordered by the CPU to the different GPUs. As de-
scribed in section 4, each GPU has already computed its own
set of bricks (recall that bricking is performed in parallel on
the GPUs). So each GPU is able to compute at least its own
number of full bricks for this set (or for a part of it). Since a
block Bk might contain bricks spread on different GPU(s),
the computation must also be distributed accordingly. In
other words, for each block for which we want to compute
the number of full bricks, the CPU simply splits the compu-
tation on the corresponding GPU(s). To compute the partial
number of full bricks on one GPU, we use an optimized re-
duction algorithm from the NVIDIA CUDA SDK [Har08]
using shared memory within multi-processors. Determin-
ing the number of bricks is then done by copying the sub-
texture in which we want to count this number into a new
memory area, and then perform a reduction on this mem-
ory area. Because our iterative algorithm moves a splitting
plane in one or the other direction to add or remove bricks
from blocks (see next two sections), the CPU can update
the corresponding number of full bricks in an incremental
way, which avoids redundant computations. In other words,
the GPU re-computes only the number of full bricks for the
added / removed parts. In fact, only the initial step (initial
set of blocks) requires a full computation.

5.2.5. Splitting the dataset

The first step of our dataset subdivision technique consists
in choosing an initial set of blocks {Bk|k ∈ [1,n]} using a
binary space partitioning tree (BSP). This is motivated by
the fact that the BSP allows us to split data in the same di-
rection multiple times, as opposed for instance to KD-trees.
We also assume in the following that n is an integer power
of two. At each node of the BSP tree, we split the corre-
sponding dataset part into two equal subparts (in terms of
number of voxels) using a median plane chosen among di-
rections X , Y or Z. The root node corresponds to the entire
dataset. We then recursively build the tree by splitting the
successive blocks along a single direction. We choose the
direction corresponding to the highest resolution in terms of
voxels, i.e. for a block of resolution (128× 64× 64) for in-
stance, we will choose the X direction. This operation ends
when we have a tree with n leaves. The choice of the highest
resolution is motivated by the fact that it is likely to provide
most flexibility in terms of splitting plane displacement (see
second step). The subparts of the dataset corresponding to
the leaves of the tree represent the initial set of blocks.

Given the heuristic we use, we make sure that the amount
of full bricks is not too disparate for these blocks. This first
step generally already allows us to coarsely load balance the
computation for datasets that have an equiprobable distribu-
tion of full bricks.

5.2.6. Adjusting adjacent blocks

Based on the initial set of blocks and the corresponding BSP
tree, the second step uses the criterion D(Bi, B j) to move the
splitting plane between adjacent blocks Bi and B j associated
with two siblings in the BSP-tree. The goal is to converge
towards a final set of blocks that better matches the desired
equality of number of full bricks.

This process iterates over each internal node of the BSP-
tree in a top-down fashion. It is repeated until the tree is
considered balanced or a processing time limit is reached
(fixed at 100ms in our case). At each node, we compute the
load-balancing criterion D(Bi,B j), where Bi and B j are the
two blocks associated to its two child nodes. If |D(Bi,B j)| is
larger than a threshold value, then the two blocks are consid-
ered unbalanced, and the splitting plane is moved according
to the sign of D. This process is repeated until |D(Bi,B j)| is
below the threshold or the sign of D(Bi,B j) changes.

5.2.7. Rendering

A static distribution allows to directly use a classical sort-
last parallel direct volume rendering method. Partial render-
ing is performed on each device. We then arbitrarily mark a
GPU as the master GPU. This GPU will then be in charge
of recombining the partial images by sorting them according
to the position of the data block (back to front) and merg-
ing them using alpha blending. This process is illustrated in
Figure 3.

5.3. Dynamic distribution

With this second distribution scheme, we consider a classi-
cal producer-consumer approach. The dataset is split into
fixed-size blocks. The number of blocks generated is strictly
greater than the number of GPUs of the targeted computer
and such that it entirely fits into the GPU memory. Note that
the blocks must be enlarged by the size of the radius RΩ. The
blocks and their associated bricks are then dynamically dis-
tributed to idle GPUs for computing using a critical section.
The Ambient Occlusion factors are then read back on the
CPU side, which maintains the global array for computed
factors. This strategy allows us to reduce the footprint of
Ambient Occlusion computations as it uses smaller blocks
for computation. It also allows us to get load-balanced re-
sults as the GPUs are always busy with computations: even
if some blocks take more time for processing, others GPUs
are still busy with the consumer-producer approach. This
can be beneficial on heterogeneous architectures, where each
GPU does not have the same computational power. How-
ever, if the size of blocks is chosen too small compared to
radius RΩ there will be an important data transfer overhead.
Indeed, Ambient Occlusion needs all neighboring voxels in-
side the radius RΩ for computation. If a block is composed
of a single voxel for instance, the actual transfered data block
must be a cube of width, height and depth (2RΩ +1).
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CPU GPU 0

(Master)

GPU 1

Dataset Brick Computation Brick Computation

AO Computation AO Computation

Partial rendering Partial rendering

Recombination

Partial image

Partial image

Figure 3: Illustration of the multi-GPU rendering process.

6. Results

All tests were performed on a computer with two hexacore
Intel X5650, 72 Gb of Ram and 8 NVIDIA Tesla C2050 with
3071 Mb of inboard RAM. The parallel programming uses
OpenMP on the CPU side and CUDA on the GPU side.

We conducted our tests on following datasets (see Figure
4): the Foot (256× 256× 256), the CT Knee (379× 229×
305), the Backpack (512× 512× 373), the Colon Phantom
(512× 512× 442) and the Stag beetle (832× 832× 494).
In the total times measured, we take into account the trans-
fer times, the reduction processing times (for computing full
bricks), the Ambient Occlusion computation times and the
bricking times for each GPU. Regarding Ambient Occlusion
parameters, we use an initial ray offset and step of 1 voxel
and a sphere radius RΩ of 32 voxels. For the bricking con-
figuration, we use bricks with 43 voxels with an overlap of
1 voxel. Series of tests on our multi-GPU setup have shown
that the 43 brick size results in most efficient computation
times.

In the following, we present the impact of the block size
on the computation time in the dynamic repartition. Then we
analyze the performance and the scalability of our solution
on the different GPUs.

Dynamic distribution – Figure 5 illustrates the timings
measured for the dynamic distribution using bricking for dif-
ferent block sizes : from 32 to 256. We notice that the bigger
the dataset gets, the more it becomes interesting to choose a
greater block size, as demonstrated by the Stag beetle. Too
small blocks imply a transfer overhead and less texture cache
exploitation, as the number of blocks is more important and
we have to append an RΩ overhead to each of them. Too
large blocks, on the other hand, result in load unbalance
(i.e. more computation time), because the global number
of blocks can reach the global number of GPUs. In such a
case the static distribution scheme improves load balancing.

Figure 5: Influence of the block size for the dynamic distri-
bution given in sec.

Parallel computation time analysis – Using the back-
pack dataset, Figure 6 shows the different computation
times: single GPU without (a left) and with (a right) brick-
ing, the naive subdivision on 8 GPUs without bricking (b),
the naive subdivision using bricking (c) and finally the static
distribution including load balancing (d). A first observation
is that the time taken by the Ambient Occlusion computa-
tion (in orange) is the most costly part, respectively taking
from (a) to (d) ~98%, 84% to 88%, 23% to 81% and 59% to
71% of the total time. The bricking step takes less than one
percent (not even visible on the figure). The data transfer
time participates in 1% to 12%, and the load balancing step
takes 7% of the computation time in the last case. The sec-
ond observation is that the use of bricking and load balanc-
ing do both improve performances. The global computation
is decreased by 260 ms between a naive approach using no
bricking (b) and the optimized one (d).

Table 1 shows computation times for different datasets. In
each subtable, we present computation times using one GPU
without bricking (reference time), naive static paralleliza-
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Figure 4: Transfer functions for the different datasets used.

tion, static parallelization with bricking, static paralleliza-
tion with bricking and load-balancing and finally dynamic
parallelization with bricking using blocks of size 1283. The
second column shows the different computation times in the
following form ttotal (tmin, tmax), where ttotal is the computa-
tion time of the whole process, with the bricking and transfer
times included, tmin and tmax are respectively the minimum
and maximum computation times, but only for the raycast-
ing process computing Ambient Occlusion, since this always
represents the most costly part. The parallelized times are
produced using 8 GPUs. We also presents speedups noted S
in the last column. It is computed as the division of the total
time taken using a single GPU over the current total time.
Notice first that going from one GPU setup to either static
or dynamic parallelization with 8 GPUs greatly reduces the
computation times. However, the time reduction is not pro-
portional to the number of GPUs in the computer as illus-
trated by the presented speedups. This can be explained in
several points. First we add transfer times between the dif-
ferent GPU and the CPU. These transfer times are further
increased by the fact that we need to take into account the
Ambient Occlusion radius RΩ when splitting the dataset into
blocks. Bricking also substantially helps reducing computa-
tion times, although it also introduces some additional pre-
processing. Nevertheless, the combination of bricking and
multi-GPU allows to get super-linear speedups when com-
paring the mono-GPU implementation to either the paral-
lelized and optimized static or dynamic versions for the pre-
sented datasets.

Scalability – Figure 7 illustrates the scalability of Ambi-
ent Occlusion precomputation times for the Colon Phantom
dataset using an increasing number of GPUs. We also com-
pare static and dynamic distribution with and without using
bricking. The scalability is good for all techniques. Note that
static and dynamic distributions lead to very similar perfor-
mance. This is explained by the fact that the overhead re-
sulting from the computation of load balancing in the static
case (counting full bricks) seems to be similar to the over-
head of data transfer related to the dynamic case (provided
the blocks are sufficiently large).

7. Conclusion & Future works

We introduced and compared two multi-GPU data distribu-
tion strategies for efficiently computing Ambient Occlusion-

ttotal (tmin, tmax) S
Foot (256×256×256)

Single GPU 1.871 (1.847) 1.0
Static Naive 0.290 (0.221, 0.238) 6.45

Static Bricked 0.201 (0.055, 0.121) 9.30
Static Load-balanced 0.204 (0.090, 0.106) 9.17

Dynamic Bricked 0.280 (0.036, 0.197) 6.68
Knee (379×229×305)

Single GPU 2.906 (2.809) 1.0
Static Naive 0.448 (0.341, 0.356) 6.48

Static Bricked 0.407 (0.115, 0.279) 7.14
Static Load-balanced 0.457 (0.187, 0.233) 6.35

Dynamic Bricked 0.354 (0.186, 0.225) 8.20
Backpack (512×512×373)

Single GPU 10.235 (10.108) 1.0
Static Naive 1.458 (1.223, 1.285) 7.01

Static Bricked 1.341 (0.298, 1.095) 7.63
Static Load-balanced 1.197 (0.717, 0.857) 8.55

Dynamic Bricked 1.096 (0.662, 0.867) 9.33
Colon Phantom (512×512×442)

Single GPU 12.794 (12.642) 1.0
Static Naive 1.815 (1.466, 1.648) 7.04

Static Bricked 1.654 (0.211, 1.373) 7.73
Static Load-balanced 1.289 (0.717, 0.920) 9.92

Dynamic Bricked 1.142 (0.804, 0.850) 11.20
Stag beetle (832×832×494)

Single GPU 35.479 (35.038) 1.0
Static Naive 4.956 (4.322, 4.441) 7.15

Static Bricked 1.866 (0.317, 1.158) 19.01
Static Load-balanced 1.766 (0.317, 0.891) 20.09

Dynamic Bricked 1.508 (0.525, 0.608) 23.52

Table 1: Comparison of computation times in seconds for
different datasets on our 8-GPU setup. For each dataset, we
show computation times for one GPU without bricking (ref-
erence) and our optimization strategies. Regarding to the
times presented, the first number is the total time to com-
pute Ambient Occlusion and the number in parenthesis are
respectively the minimum and maximum computation times
of the raycasting part only. We also present the associated
speedups in the last column. They are computed using total
times.
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(a) (b)

(c) (d)

Figure 6: Precomputation times in seconds for the Backpack
dataset with Ambient Occlusion on 8 GPUs. Histogram (a)
shows results on 1 GPU without and with bricking. His-
tograms (b) and (c) illustrate the static naive parallel Am-
bient Occlusion without and with bricking. The last one (d)
shows Ambient Occlusion with bricking and load-balancing.
The last line is the legend common to all histograms.

Figure 7: Scalability of the static and dynamic distribution
schemes for an increasing number of GPUs (in sec.).

based shading in the context of parallel direct volume ren-
dering. Ambient Occlusion is a time consuming shading
technique that greatly improves data perception by adding
soft shadows. Our setup allows us to reach interactive fram-
erates on low end PCs equipped with multiple GPUs. The
two distribution schemes take benefit of the use of a brick-
ing technique. The static strategy proceeds in two steps. We
first divide the dataset using a BSP-tree and then refine the
load-balancing by moving the previously computed split-
ting planes. The dynamic strategy consists in breaking the
computation into small blocks and distribute them to avail-
able GPUs using a producer-consumer approach. Using five
datasets, we have tested both distribution strategies for up to
8 GPUs. The results show a good scalability as the speed
up is almost linear. Both strategies are also fully compatible
with a classical parallel sort-last rendering algorithm.

Regarding future works, we would like to investigate
asynchronous transfers to overlap computations. An im-
portant point will consist in experimenting this method on
a multi-GPU cluster and on heterogeneous setups (different
GPUs with different computational power). Moreover, the
evolution of GPU technology could give more opportunities
to further optimize Ambient Occlusion algorithms.
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