
Pre-Integrated Volume Rendering with Non-Linear Gradient
Interpolation

Amel Guetat, Alexandre Ancel, Stephane Marchesin, and Jean-Michel Dischler

Abstract—Shading is an important feature for the comprehension of volume datasets, but is difficult to implement accurately. Current
techniques based on pre-integrated direct volume rendering approximate the volume rendering integral by ignoring non-linear gradient
variations between front and back samples, which might result in cumulated shading errors when gradient variations are important and
/ or when the illumination function features high frequencies. In this paper, we explore a simple approach for pre-integrated volume
rendering with non-linear gradient interpolation between front and back samples. We consider that the gradient smoothly varies along
a quadratic curve instead of a segment in-between consecutive samples. This not only allows us to compute more accurate shaded
pre-integrated look-up tables, but also allows us to more efficiently process shading amplifying effects, based on gradient filtering.
An interesting property is that the pre-integration tables we use remain two-dimensional as for usual pre-integrated classification.
We conduct experiments using a full hardware approach with the Blinn-Phong illumination model as well as with a non-photorealistic
illumination model.

Index Terms—Ray casting, pre-integration, Phong shading, volume rendering.

1 INTRODUCTION

Volume rendering is a well-known method for exploring 3D scalar
fields by using a simplified light transport theory. It expresses the
color of a pixel as an integral along the viewing ray traversing the
volume. However rendering should not only be fast to ensure inter-
activity, it must also be of good visual quality to avoid artifacts while
making internal features well perceptible. In the worst case, artifacts
might lead to wrong interpretation of the data. High regular or adaptive
sampling rates lead to accurate results but drive accordingly very high
computational costs, often limiting framerates, especially for large
datasets. By exporting some computations to a pre-processing step,
pre-integration is a widely used technique for improving numerical
accuracy without increasing the computational requirements (see re-
lated works). Since shading is generally considered as an important
issue, Lum et al. [8] suggested to further improve pre-integration by
linearly interpolating intensity values between the front and back sam-
ple points, thus guaranteeing continuity of shading from one slab to
the next. This approach can be considered as a volumetric extension
of Gouraud shading on surfaces. Gouraud shading, however, is known
to overblur surface aspects, while discontinuities in the derivative are
visible. In the case of volume rendering, such effects are less per-
ceptible on iso-surfaces, because gradients are computed densely on
a per-voxel basis (when gradients are pre-computed and stored as 3D
texture, the GPU also applies a tri-linear filtering, thus interpolating
the gradient inside the voxel). In addition, contributions are mixed
and accumulated along the ray depending on the opacity, which po-
tentially smoothes results further. Yet, errors in the form of a loss of
luminous energy are introduced in two cases: high frequency gradi-
ent variations and high frequency shading functions (for example the
specular part of lighting models). Unfortunately, it is not possible to
perform accurate pre-integration by considering gradients on front and
back samples because of practical issues: a table taking the front and
back normals into account would require four additional dimensions
(two dimensions per normal when representing the vector as Euler an-
gles).

• A. Guetat, University of Strasbourg.
• A. Ancel, University of Strasbourg.
• S. Marchesin, UC Davis.
• J.M. Dischler, University of Strasbourg.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

Our technique is based on a non-linear shading interpolation be-
tween front and back samples, and thus significantly reduces shading-
related errors. It uses a quadratic curve to interpolate the gradients
between the front and back samples. Such an interpolation leads to
a cubic polynomial under the integral, which allows accurate com-
putation of two-dimensional pre-integration tables. Our experimental
study demonstrates that an interpolation of the gradients along a curve
(close to a circle) between samples results in more accurate rendering,
especially in the presence of important local gradient variations and
/ or of high frequency lighting functions. In the case of the Blinn-
Phong lighting model, we process specular highlights by replacing the
usual cosine lobes by cosine cones. We show that the latter do well
preserve visual cues, but are computationally much simpler. Because
of improved overall accuracy, our technique can be used to process
visual effects related to gradient filtering more efficiently, especially
techniques that amplify local gradient variations, for instance to im-
prove small scale details perception. Our approach is furthermore
compatible with many other local illumination models, including non-
photorealist techniques, as far as these are related to gradients (normal
vectors on surfaces).

The remaining parts of this paper are structured as follows. We first
present related works concerning pre-integrated classification, shad-
ing models and gradient filtering for detail enhancement. Section 3
describes some background and motivations. Then, in Section 4, we
describe our approach for non-linear interpolation of gradient vectors
between two consecutive samples along the ray. In particular, we pro-
pose to analyze errors introduced when gradients are just linearly inter-
polated between front and back samples. Next, we show how our inter-
polation can be used along with the Blinn-Phong illumination model
as well as pre-integrated classification. We also discuss extensions to
other local illumination models. Finally, before concluding, results are
given in Section 6.

2 RELATED WORKS

2.1 Pre-integrated classification

Different strategies for numerically solving the volume rendering inte-
gral were discussed by Max et al. [10]. Their idea was to precompute
and tabulate the indefinite rendering integral between values defined at
the vertices of the polyhedra for the cell projection method, assuming
that the density scalar function varies linearly along the ray. Improve-
ments were further discussed by Williams et al. [20]. They calculate
the volume rendering integral cell by cell assuming that the transfer
function varies piecewise linearly along a ray segment within each
cell. Later, simplifications were derived by Stein et al. [21]. They de-



velop a faster but less accurate method, where they assume the opacity
varies linearly along the ray segment and the color is constantly equal
to the average of the color at the front and the back of the ray segment.
This was an approximation, since the opacity along a ray segment
hides the far color more than the near one, but it was much quicker
to evaluate. Roettger et al. [15] applied this technique as an enhance-
ment to the Projected Tetrahedra algorithm using 3D texture hardware
for enabling the use of arbitrary transfer functions and for rendering
isosurfaces without reconstructing them geometrically. Compared to
Stein, Roettger et al. develop a scheme to approximate the volume
rendering integral for different sampling distances which allows one to
pre-integrate the contribution of the volume rendering integral within
the considered interval by a 2D look-up table instead of a 3D look-up
table. Engel et al. [2] name this technique pre-integration and ex-
tend it by computing the colors in the same way as Roettger et al.,
but considering their modulation by diffuse and specular shading. For
the normals, they average the normals of the two subsequent sampling
points under consideration. However, to accelerate the computation
of the pre-integration tables, they hold the distance between sample
points constant and neglect the attenuation within the segment inter-
vals. Later improvements [13] consider an optimized look-up table-
generation and final rendering using 2D texture hardware. Roettger et
al. [14] improve the algorithm by introducing super-sampling and ac-
curate clipping in order to achieve a better image quality around high
frequency transfer function and data variations. This can also signif-
icantly improve shading by doing super-sampling where normal vari-
ations are important. An application of pre-integration to Shear Warp
algorithms was suggested by Schulze et al. [18]. They render slabs
between adjacent slices instead of individual slices using a buffer slice
to store interpolated scalar values of the back slice, and store the result
into a 2D lookup table considering a constant distance. They improve
image quality at the expense of the algorithm performance. Lum et al.
[8] improved pre-integration for shading by linearly interpolating the
lighting in the front and back sample points. Further suggestions were
given for computing the pre-integration look-up tables. [11] restricts
transfer functions to piecewise linear functions which allows one to
precompute a pre-integration table independent of classification. Re-
cently, El Hajjar et al. [5] derived a method based on a second order
polynomial for pre-integration at constant sampling steps. But they
need to use a 3D table even though considering equidistant samples.
Providing a better approximation of shading has not been considered
by this approach.

With regard to shading combined with pre-integration, two main
strategies can be differentiated: approaches based on super-sampling
to compute more samples on high frequency variations and approaches
based on illumination interpolation. The former can lead to excessive
computations and needs to consider variable sampling distances, e.g.
3D tables, and the latter may introduce numerical errors on regions
where the gradient variations are locally important. Our motivation is
to provide a method that avoids both drawbacks by considering a true
gradient interpolation for computing the tables.

2.2 Local illumination models

Local illumination simulates the interaction of light with surfaces. The
empirical Phong [12] illumination model is the most frequently used
in volume rendering. It computes the light reflected by a surface as a
combination of ambient, diffuse and specular terms where each term
is represented as an RGB triplet. The specular term depends on the
viewing vector V and on R the direction of a perfect reflection. The
Blinn-Phong model proposes to compute more efficiently the specular
term by introducing a vector H, which is the halfway between V and
L, where the latter represents the light source direction. More recently
other local illumination models have been proposed, for instance in the
field of non-photorealistic rendering, to provide new graphical effects.
Gooch et al. ’s model [3] for instance adds a subtone linearly ranging
from a cool (blue) to warm (yellow) color. Such illumination models
can be used with direct volume rendering as done in [1] for instance.

2.3 Gradient computation and filtering
For computing gradient approximations a popular technique consists
in applying the Sobel operator, e.g. a discrete differentiation of neigh-
boring voxels, but higher order interpolation polynomials can be used
instead. However, these are often time consuming and can hardly be
computed on the fly in real-time. Gradients are therefore generally
pre-computed. Fast hardware compatible higher order interpolation
techniques have been explored in [4]. Other techniques attempt to re-
inforce the perception of details by adjusting light directions, which
can be considered as an adjustment of normal / gradient vectors in-
stead [16].

3 BACKGROUND AND MOTIVATION

3.1 Volume Rendering Integral
The transport theory of light [6, 17, 7] is the basis for many volume
rendering methods and ends up in following volume rendering inte-
gral:

I(ρ) =
∫

ρ

0
q(t) e−σ(0,t)dt. (1)

I is the intensity at position ρ along a ray, ρ ∈ [0,B] (in three-
dimensional space ρ = B is the location of the background). q is the
scattering function that can be identified with different models, and σ

is the optical depth defined as

σ(t1, t2) =
∫ t2

t1
κ(t ′) dt ′, (2)

where κ is the absorption function. For numerical evaluation, this in-
tegral defined on the interval [0,B] is further subdivided into small not
necessarily equidistant subintervals [tk, tk+1], k = 0, . . . ,N− 1, where
t0 = 0 and tN = B.

For the visualization of a continuous scalar field g(x) (x is any point
inside the data volume), a classification is further introduced to map
scalar values to color c(g) and to absorption κ(g). The scattering
function q generally uses c(g), along with a local shading model to
compute the color contribution of a point in space according to light
sources.

3.2 Shading with a local surface illumination model
Shading introduces a color variation according to given light sources.
When using the Blinn-Phong lighting model the previous Equation 1
can be written as:

I(ρ) =
∫

ρ

0
[c(g(t))(Ka +Kd(

∇g(t)
‖∇g(t)‖

·L))

+cs(g(t))Ks(H ·
∇g(t)
‖∇g(t)‖

)nδ ]e−σ(0,t)dt (3)

Ka, Kd , Ks and nδ respectively represent the ambient, diffuse, specu-
lar and shininess scalar coefficients of the Blinn-Phong model. In this
equation, cs is a specular color. A frequent choice is to assume it is
white, thus removing it from the equation. But any specific specular
color can be used if desired. An important point is the fact that Equa-
tion 3 is generally not used as such because of practical issues. The dot
product between the light direction and the normalized gradient vec-
tor might become negative. Two solutions are generally possible. The
first one consists in applying a maximum operator with zero (single-
sided illumination). The second one consists in mirroring the gradient
(double-sided illumination).

One condition is that the shading varies continuously to avoid vis-
ible discontinuity bands. Unfortunately, true pre-integrated gradient-
based lighting is not realizable due to the high table dimension (the
table requires 4 additional entries if we represent the normals as a pair
of Euler angles, on top of the two scalar values). Lum et al. [8] pro-
posed a solution consisting in linearly interpolating intensity values
computed only on the front and back sample points. For this purpose,
two tables are used: one fades front sample intensity out, while the



other fades the back sample intensity in. Each table represents shad-
ing weighted respectively towards front and back samples by a linear
ramp. The rendered result is computed as a sum of the contribution of
the two samples. Two more tables are necessary if specular highlights
are further considered, as well as the usual pre-integrated table for the
ambient term. Using a linear ramp is equivalent to interpolating the
gradient along a segment between front and back samples. If the an-
gle between two consecutive samples is important, this can introduce
shading errors. Our approach aims at avoiding these errors. In what
follows, we consider only directional lighting, e.g. the lighting vec-
tor L is constant over the whole scene. For illumination, we use the
normalized gradient of the scalar density function g(x(t)) on point x
at position t upon the ray. To simplify notations because of subdivi-
sion into subintervals [tk, tk+1], we further denote g(x(tk + t)) by g(t).
We also assume the absorption function in Equation (2), depending
on g(t). In what follows, we show how gradients can be non-linearly
interpolated between front and back samples.

4 NON-LINEAR GRADIENT INTERPOLATION BETWEEN SAM-
PLES

Phong normal interpolation on surfaces is a well studied problem [19].
As discussed in [19], a common solution for interpolating between two
normals consists in applying a linear interpolation (a weighted sum)
followed by normalization. In the case of volume rendering, gradients
are generally interpolated and normalized on the fly using the avail-
able hardware trilinear filter. With pre-integrated volume rendering,
there are two gradients to consider at the front and back of the slab.
A solution that consists in using only one of them (or an average of
both) to compute shading produces shading discontinuities, which is
not desirable. A better solution consists in applying a linear interpola-
tion: N(t) = Nbt/D+N f (1− t/D) with t ∈ [0,D] (t = 0 means front
and t = D back) to smoothly vary from the front gradient N f towards
the back gradient Nb for a slab of size D. The resulting equation is:

C̃ =
∫ D

0
[c(g(t))(Ka +Kd ·

(Nbt +N f (D− t))
D

·L)

+Ks(H ·
(Nbt +N f (D− t))

D
)nδ ]e−σ(0,t)dt

However, since Nb and N f are both normalized, the resulting norm
of the interpolated vector N(t) is always lower than one. It is therefore
important to introduce a normalization term η(t) = ‖N(t)‖, as sug-
gested in [19], during the integration from front to back, e.g. to divide
N(t) by η(t). The equation is then:

C̃ =
∫ D

0
[c(g(t))(Ka +Kd ·

(Nbt +N f (D− t))
D ·η(t)

·L)

+Ks(H ·
(Nbt +N f (D− t))

D ·η(t)
)nδ ]e−σ(0,t)dt

Applying a linear interpolation of illumination between front and
back samples instead of applying an illumination along an interpolated
normalized vector, is equivalent to assuming the term η(t) is always
equal to 1 in-between the front and back samples. Subsequently, such
an approach necessarily introduces a loss of energy during integra-
tion. This loss of energy is proportional to the angle between Nb and
N f . Indeed, the committed error increases as the dot product between
N f and Nb becomes smaller, e.g. the angle between both vectors be-
comes greater. An example of illumination error introduced by assum-
ing η(t) = 1 between two consecutive samples is shown in Figure 1.
Note that the error is further increased when the illumination model
has a high frequency component, like specular lobes. This figure com-
pares the illumination evolution along the ray if correct normalization
is used (a), e.g. η(t) = ‖N(t)‖ and if no normalization is used (b), e.g.
η = 1. We show the diffuse and specular components, as well as both
together. Part (c) is our own solution, as will be explained below. Part
(b) corresponds to the approach of Lum et al. [8]. As can be seen, the

a) 
normalized 
gradient
interpolation

diffuse

specular

b) 
linear 
gradient
interpolation

diffuse

specular

diffuse

specular

c) 
quadratic 
gradient
interpolation

Fig. 1. Comparing results according to the type of gradient interpolation
used between front and back samples. (a) interpolation with normaliza-
tion (ground truth result). (b) linear interpolation without normalization.
(c) non-linear polynomial interpolation (our solution).

Nf

Nb

(t)

N(t)
N(t)

(t)

Fig. 2. Evaluating the normalization term η(t) between front and back
gradients.

error might become in some cases very high, compared to a correct
reference result on (a).

By dividing N(t) by η(t), the resulting vector no longer moves
along a straight line but along an arc of circle, as shown by Figure 2.
This corresponds to a non-linear interpolation of the gradient vector
between front and back samples. As can be seen, the maximum value
for η(t) is reached at half way between N f and Nb. η(t) can be ex-
pressed as follows:

η(t) =
cos(α)

cos(β (t)−α)
(4)

where α = acos(N f ·Nb)/2. Because of linear interpolation, β (t)
is an angle that varies linearly from 0 to 2α , e.g. β = 2αt/D. We
note that for an angle of α = 45◦, assuming η = 1 introduces an error
that reaches 41% at halfway between Nb and N f , since at half-way
1/η = 1/cos(π/4) = 1.414.

To estimate if it is worth introducing a non-linear interpolation be-
tween front and back samples for visualizing volume datasets, we first
have to evaluate how large angles between gradients of consecutive
sample points are effectively, for a given ray traversal. Figure 3 shows
such an evaluation for the CT head dataset. The angle variation mainly
depends on the technique used to compute the gradients, as well as on
the sampling distance (the greater the distance, the more the gradients
are likely to be different between front and back samples). On this fig-
ure the three rows show results for three different gradient computation
techniques. The left column shows the rendered dataset. The middle



and right visualizes the gradient variation along the ray for respec-
tively 1 voxel sampling step and 0.5 voxel sampling step, for angles α

greater than 30 degrees and 45 degrees respectively (this means an an-
gle of 60, respectively 90 degrees between the front and back sample
gradients). Dark zones depict the amount of samples that have such
angles. That is, the darker the zones are, the more there are consec-
utive samples with angle greater than 60 and 90 degrees respectively
along the ray. The first row uses gradients that were pre-computed
using a Sobel operator. The second row illustrates the use of a cu-
bic spline interpolation to compute gradients. Finally, the last row
illustrates exaggerated shading as inspired by [16]. In our case, to ex-
aggerate the perception of details, we have increased for each sample
the angle between the actual gradient on this sample with respect to
a mean gradient around this sample for a given neighborhood of vox-
els. That is, calling Nm the average gradient around sample (i, j,k)
in a given neighborhood and N the gradient on (i, j,k), we replace the
latter by N’ = N+ε(N−Nm), where ε >= 0 is the amplitude of exag-
geration (0 means no exaggeration). For the example of Figure 1, we
used ε = 1 and a neighborhood of 53 voxels. Exaggerated shading im-
proves the perception of small scale details and increases the gradient
variation between front and back samples.

All of these examples show that datasets can contain locally im-
portant gradient variations between front and back samples (further
increased when the sampling step is high, or when details are exagger-
ated). For such cases, it seems important to apply a correct gradient
interpolation to avoid introducing shading errors.

To do pre-integrated classification with non-linear gradient varia-
tion between front and back samples, a brute force approach could
consist in using tables that would be further depending on α . In
practice this means using 3D pre-integration tables instead of two-
dimensional tables, the third index being α . However, 3D tables are
not very practical, because they can only hardly be updated at real
time rates during transfer function changes, especially if more than
a single table must be pre-computed (as for the diffuse and specular
terms). In addition, 3D tables are texture memory consuming, while
datasets with pre-computed gradients may already require much tex-
ture memory. In addition, variable sample steps would become almost
impossible to process with GPU hardware, since it would result in 4D
tables. For all of these reasons it seems desirable to keep the tables
two-dimensional.

Our solution consists in exploiting the fact that a correctly inter-
polated normal N(t) moves along a circle (as visible in Figure2). A
circle arc can be quite well approximated by a quadratic polynomial
function. We propose to use following approximation:

η(t) =
cos(α)

x2(cos(α)−1)+1
,x = (β (t)−α)/α = 2t/D−1 (5)

Note that we have for t = 0, β = 0 and η = 1, for t = 0.5D, β = α and
η = cos(α) and for t = D, β = 2α and η = 1. These three cases are
matching the exact values. By using such a normalization term, the
error becomes very low with respect to a real arc of circle, compared
to an interpolation along a straight line (e.g. taking η = 1). Indeed, for
an angle of 90◦, the maximal error is now about 0.3% (compared to
the previous 41% without any normalization). An example of shading
variation using such a normalization term is shown on bottom row
of Figure1. The difference with the top row (correct interpolation) is
negligible.

Using the previous approximate normalization term, we end up with
following final expression for the normalized gradient between front
an back samples:

∇g(t)
‖∇g(t)‖

≈
(1+(2 t

D −1)2(cos(α)−1))( ∇g(0)
‖∇g(0)‖ t +

∇g(D)
‖∇g(D)‖ (D− t))

D · cos(α)
(6)

5 PRE-INTEGRATED CLASSIFICATION INCLUDING BLINN-
PHONG SHADING

In this section, we describe how pre-integrated volume rendering can
be realized by considering the previously defined gradient interpola-

tion scheme between the front and back samples. We first consider
the Blinn-Phong illumination model. As for classical pre-integration,
we assume the scalar values between two consecutive sampling points
change linearly. For rendering, we pre-compute gradients from the
density function g(t).

The ambient contribution of the volume rendering integral (equa-
tion 3) between two sample points can be computed with traditional
pre-integrated volume rendering and needs no further discussion. In
the following two subsections we describe respectively the diffuse and
specular parts.

5.1 Diffuse term
By calling N f and Nb the normalized gradients on the two consecutive
front and back samples and by using the previous gradient interpola-
tion scheme (equation 6), the corresponding diffuse part of equation 3
for a sampling step of length D is:

C̃d = Kd

∫ D

0
[c(g(t))

(2t/D−1)2(cos(α)−1)+1
cos(α)

·
(Nbt +N f (D− t))

D
·L)]e−σ(0,t)dt

The variable substitution s′ := g(t) where g(t) = t(Sb − S f )/D+
S f and ds′ = (Sb − S f )/D · dt leads to the following pre-integrated
formulation:

C̃d(S f ,Sb) = Kd ·d
∫ Sb

S f

[c(s′)
(2s−1)2(cos(α)−1)+1

cos(α)

·(Nb ·Ls+N f ·L(1− s))]e−dσ(S f ,s′)ds′ (7)

with d = D/(Sb−S f ) and s = (s′−S f )/(Sb−S f ) = t/D.
Using the following notation:

Ik(S f ,Sb) = d
∫ Sb

S f

c(s′) · sk · exp(−dσ(S f ,s′))ds′

(k is an integer exponent value for s) and by separating the constant,
linear (s), quadratic (s2) and cubic (s3) terms, the equation becomes:

C̃d = Kd(a0(L)I0 +a1(L)I1 +a2(L)I2 +a3(L)I3) (8)

where

a0(L) = N f ·L
a1(L) = Nb ·L− (1+ r)N f ·L
a2(L) = r(2N f ·L−Nb ·L)
a3(L) = r(Nb ·L−N f ·L)

r =
4(cos(α)−1)

cos(α)

All Ik terms in this equation depend only on S f and Sb, and thus can
be calculated and tabulated into 2D look-up tables. During rendering
the four tables can be accessed and then the constants ak computed,
and finally the sum performed. This yields the diffuse component of
shading taking into account an interpolation of the gradient with neg-
ligible error compared to an interpolation along a circle even if α is
important, e.g. even if Nb and N f are very different (for example 90◦).

As mentioned in section 3.2, Equation 7 is generally not used as
such because of negative dot product values. We must either apply
a maximum operator with zero or a mirroring of the gradient to make
sure values are positive. For the first case, we have to further introduce
a max( ,0) function into the integral, but such a function is not easy to
integrate. To circumvent this difficulty, we distinguish three cases:

• if N f ·L> 0 and Nb ·L> 0, the previous formulation can be used
without max operator.



1 voxel 0.5 voxel

= 30 = 30= 45 = 45

Fig. 3. Gradient variation between consecutive front and back samples for the CT head dataset using three different gradient computation tech-
niques and two different sampling steps (1 and 0.5 voxel).

• if either N f ·L < 0 or Nb ·L < 0, we use an approximation that
consists in fading in or out the non-negative value, e.g. (Nb ·
Ls+N f ·L(1− s))/η(t) is replaced by Nb ·Ls or N f ·L(1− s).
We thus obtain C̃d(S f ,Sb) = KdN f ·L(I0− I1) and C̃d(S f ,Sb) =
KdNb ·LI1 respectively.

• if N f ·L < 0 and Nb ·L < 0, the result is just 0.

For the second case, we can just mirror the gradient responsible for the
negative value and apply the interpolation as usual. But this will in-
troduce an approximation for slabs where one gradient (whether front
or back) is correctly oriented and the other one is inverted with re-
spect to the light. Indeed, on such slabs, an accurate interpolation is
no longer a single arc of circle but two arcs of circles, joining at a
vector perpendicular to the light (at the location where the gradient
becomes inverted, the shading must be null). Applying a straight in-
terpolation with an inverted gradient, thus tends to add some energy in
this particular case.

5.2 Specular term
Let us now consider the case of specular reflection. Under the same
assumptions used to compute the diffuse reflection, the specular part
can be written as:

C̃s(S f ,Sb) = Ks ·d
∫ Sb

S f

(
(2s−1)2(cos(α)−1)+1

cos(α)

·(Nbs+N f (1− s)) ·H)nδ e−dσ(S f ,s′)ds′ (9)

It is difficult to evaluate this integral numerically because of the
power nδ . We therefore propose to replace the usual specular lobe
by a specular cone. That is, we use the approximation (1 + a)n =
1+ na+ o(x). This slightly modifies the shape of the specular high-
light without, however, removing visual cues. Calling N ·H = cos(θ),
we replace cos(θ)nδ by 1+ nδ (cos(θ)− 1). As shown by Figure 4,
this approximation does not affect the perception of specular high-
lights. The left represents the classical lobe and the right the approx-
imated cone. In particular in both cases, the derivative on θ = 0 (e.g.
on the maximal value of the highlight) is 0, which ensures a smooth
spot. A visual difference is noticeable on a perfect sphere (second
row), but this represents an extreme case. Indeed, as soon as there
are local geometric variations (see noisy sphere ), the visual difference

becomes almost non-perceptible. Figure 5 shows an example on the
skull dataset. The left is rendered with a classical Phong lobe and the
right with a cone setting nδ = 20. When zooming in, slight differences
are visible, but visual cues remain globally well preserved. The advan-
tage of using a cone instead of a lobe is that it allows for an accurate
straightforward integration.

Fig. 4. Replacing the specular lobe (left) by a cone (right) for nδ = 10.
The visual difference on 3D surfaces is low, and specular hightlights
remain well perceptible.

By using a cone instead of a lobe for the specular term, we obtain:

C̃s(S f ,Sb) = Ks ·d
∫ Sb

S f

[1+nδ (
(2s−1)2(cos(α)−1)+1

cos(α)

·(Nbs+N f (1− s)) ·H−1)]e−dσ(S f ,s′)ds′

As for the diffuse case, we introduce the notation:

I′k(S f ,Sb) = d
∫ Sb

S f

sk · exp(−dσ(S f ,s′))ds′

and separate the constant, linear (s), quadratic (s2) and cubic (s3)
terms. The equation finally becomes:

C̃s = Ks(I′0 +nδ (a0(H)I′0 +a1(H)I′1 +a2(H)I′2 +a3(H)I′3)−nδ I′0 (10)



Fig. 5. Comparing a specular lobe (left) with a cone (right) in the case
of the skull dataset for nδ = 20. Differences are just noticeable on the
zooms, but do not affect global visual cues.

As for the diffuse case, values might become negative depending
on the dot product between N(s′) and H and depending on nδ . So,
we likewise have to invert gradients or introduce a max( ,0) function
to avoid such negative values. The values become negative when the
dot product between H and the interpolated gradient N(s′) is lower
than thresh = (nδ − 1)/nδ . For the max( ,0) function, we have to
distinguish following three cases:

• if N f ·H > thresh and Nb ·H > thresh, the previous formulation
can be used, since all values are positive.

• if either N f ·H < thresh or Nb ·H < thresh, we use an ap-
proximation that consists in fading in or out the non-negative
value, e.g. we use C̃s(S f ,Sb) = Ks(I0(1−nδ )+nδ Nb ·LI1) and
C̃s(S f ,Sb) = Ks(I0(1+nδ (N f ·L−1))−nδ N f ·LI1 respectively.

• if N f ·L < 0 and Nb ·L < 0, the result is different from the dif-
fuse case, just 0, since there might be a highlight in-between the
front and back samples. To compute the relative position t ′ where
the maximum specular value is reached, we can use the deriva-
tive of the cubic form, which is a quadratic form, and solve the
corresponding equation of second degree. Note that a similar
technique has been used in [9] in order to find out the maxi-
mal shading value of an analytical form. Then, we can check
whether the solution t ′ is in [0,1] or not, and compute the value
of the corresponding specular term on t ′. If it is positive, there is
a maximum on t ′, and subsequently a highlight between the front
and back samples. A way of doing integration would consist in
fading in the specular value from 0 to t ′ and then fading it out
towards 1. But this is an impractical solution, since there would
be as many tables as positions of t ′. Therefore, we propose to
introduce an approximation using a single additional table I′′:

I′′(S f ,Sb) = d
∫ Sb

S f

(s < 0.5?2s : 2−2s) · exp(−dσ(S f ,s′))ds′

The last approximation consists in assuming that the maximum spec-
ular value is reached at half-way between the front and back samples,
that is for t ′ = 0.5. This will make sure that there will be a visible
highlight between the front and back samples, but not at the exact po-
sition between the samples, which makes it either a bit too visible or
a bit less visible with respect to the actual position on the concerned
slab because of occlusion.

5.3 Other shading functions

The Blinn-Phong lighting model that we used in the previous subsec-
tions is not the only available local surface lighting model. Since our
technique is based on a gradient interpolation between front and back
samples, it can be used a priori with any other lighting model, pro-
vided it can be expressed as a polynomial form. In what follows, we
take the example of the illustrative Gooch et al. [3] lighting model.

This model modifies Equation 3 as follows:

I(ρ) =
∫

ρ

0
[(

1
2
(cblue +a · c(g(t))Kd)(1+N ·L)

+
1
2
(cyellow +b · c(g(t))Kd)(1−N ·L) )]e−σ(0,t)dt (11)

where coefficients a and b control the prominence of the object color
and strength of luminance shift (for instance a = 0.2 and b = 0.6) and
cblue and cyellow determine the subtone.

In its pre-integrated form, the diffuse part of the previous equation
can be written in this case as:

C̃d = a0(L)IGooch
0 +a1(L)IGooch

1 +a2(L)IGooch
2 +a3(L)IGooch

3

with

IGooch
k (S f ,Sb) =

d
2

∫ Sb

S f

(cblue− cyellow +Kdc(s′)(a−b))

·sk · exp(−dσ(S f ,s′))ds′

Note that for this shading model negative values of the dot product
N.L do not need to be processed specifically, since the final resulting
shading values are always positive.

6 RESULTS

We conducted our tests using OpenGL and GLSL with a viewport of
800x800 pixels on an Intel Core 2Quad Q9300, with 4GB RAM and
with a Nvidia GeForce GTX 280 graphics board (with 1Gb memory).
We implemented a GPU-based ray casting rendering scheme on the
fragment shader without optimization except early ray termination.
All pre-integration tables use a 16bit unsigned short representation on
the GPU memory. In the following, we first discuss visual quality
issues and make a comparative study with existing techniques.

Figure 6 shows a set of results obtained for different datasets and
pre-integration schemes. From top to bottom, we show the bonsai
dataset (256x256x256), the CT Head dataset (256x256x225) and the
Knee dataset (379x229x305). The parameters for Phong lighting are
Ka = 0, Kd = 1, Ks = 2, nδ = 50 for the bonsai dataset and Ka = 0,
Kd = 1, Ks = 3, nδ = 80 for the CT Head and the Knee datasets. For
all examples, we use a Phong cone instead of a Phong lobe. The first
column (a) shows a reference image obtained without pre-integration
and with a true gradient interpolation between front and back samples
using a high sampling rate (20 sub-samples). The remaining columns
show respectively results obtained using: (b) a constant gradient (the
average between front and back gradient values), (c) a linear gradient
interpolation (e.g. the approach of [8]), and (d) our approach (non-
linear gradient interpolation). We also show close up views as well as
difference images to the reference (a): low differences result in black
color values during ray traversal. As visible in these images, (c) and
(d) are systematically closer to the reference compared to (b). With
our approach (d) the difference is almost everywhere null (difference
images are almost completely black). However, there are a few visible
differences on some locations for the Knee dataset. In fact, our ap-
proach tends to exaggerate intensity around specular highlights, which
is related to the fact that the quadratic curve used for interpolation is
not exactly an arc of circle. The normalization term might be too low,
which, in turn, results in vectors that have a norm greater than one.
Hence, some energy is added. For rendering, we have used respec-
tively a large 2-voxel sampling step (2/256) for the bonsai dataset and
a 1-voxel step (1/256) for the CT Head and Knee datasets. At far dis-
tance, differences between the three different pre-integration schemes
are hardly perceptible. But, on the zooms three types of benefits result-
ing from using a non-linear gradient interpolation are visible. The first
one (first row, bonsai dataset), is that for large sampling steps (here,
2-voxels) remaining stripes are less obvious because of the smooth-
ness of shading. We note that, pre-integration does not necessarily
remove all visible stripes, especially for large sampling steps, as it has
been shown in [14]. The smoother shading reduces the visibility of



(a) (b) (c) (d)

5.1fps 56.3fps 51.2fps 47.19fps

4.2fps 35.2fps 32.8fps 29.7fps

4.6fps 26.2fps 24.1fps 20.7fps

Fig. 6. Comparing different pre-integration schemes. (a) accurate gradient interpolation using a high sub-sampling rate between samples and no
pre-integration (reference image), (b) constant gradient using the mean between front and back values, (c) linear gradient interpolation, (d) our
approach.

these stripes, compared to constant gradient and linear gradient inter-
polation. The second benefit (second row, CT Head dataset) is that it
reduces a kind of apparent noise that appears when the frequency of
specular highlights is high (individual small bright dots), which is also
related to an improved global smoothness. Finally, the last, probably
most important benefit, is that the contours of specular highlights are
more accurately depicted. This is an important issue for the correct
visual comprehension of underlying objects shapes. Concerning tim-
ings (provided within the figure), our approach is about 10% to 20%
slower than a linear gradient interpolation, which we explain by the
fact that we must use two more texture accesses (only two additional
tables are used, given the fact that for the specular color we use only a
single color channel, since we assume the specular color is white).

In order to better perceive the difference between the three pre-
integration schemes at global object scale, we further used a dataset
with an object of low curvature (accordingly the lighting also changes
slowly, along with committed shading errors) and with a thin layer
so as to maximize the gradient variation between front and back sam-
ples. The engine dataset meets well these criteria. Figure 7 illustrates
the comparative study for this dataset. The left shows a ground truth
result obtained using a very low sampling step of 0.1/256 without
pre-integration. Then, we show respectively the gradient variation,
our result, the approach of [8] and pre-integration with constant gra-
dient. The first row is for a sampling step of 1/256 , the second one
for a sampling step of 0.5/256. In this case, differences between the
pre-integration schemes are better perceivable. These differences de-
crease as the sampling rate becomes greater, since the variation of the
gradients also becomes smaller (due to trilinear interpolation on vox-
els). Yet, even for a 0.5/256 step, our approach remains closer to the
ground truth (see upper right corner of the engine).

Figure 8 finally shows two examples of illustrative rendering using
the Gooch et al. [3] local shading model using two different datasets:
top is the aneurism (256x256x256) dataset and bottom is the CT head
dataset. The left shows the reference and the right our result obtained
for a sampling step of 0.5/256. Nearly no difference is visible be-
tween our result and the reference. For the aneurism the reference
(left) has a 1.8 fps framerate for a sampling step of 0.1/256 and our

result (right) a 16.3 fps framerate for a sampling step of 0.5/256. For
the CT head the reference (left) has a 3.3 fps framerate for a sampling
step of 0.1/256 and our result (right) a 18.7 fps framerate for a sam-
pling step of 0.5/256.

7 CONCLUSIONS AND FUTURE WORK

In this paper, it has been shown that non-linear gradient variations
along front and back samples can be integrated into the pre-integrated
volume rendering framework for improved shading computation accu-
racy. Improvements are obtained when gradients are strongly varying
and/or shading functions have high frequency components. Concern-
ing the specular term of the Phong shading model, we have replaced
the lobe by a cone. From a visual point of view the cone is close
to the lobe and well preserves similar visual cues. Our technique is
also compatible with other local surface shading models, like non-
photorealistic ones, as long as these can be expressed as polynomials.

Our approach requires more tables than an approach based on shad-
ing interpolation (linear gradient interpolation), which requires some
more texture accesses in hardware implementations. Performance
degradation remains however low. An interesting property is that ta-
bles remain two-dimensional, so that they can be straightforwardly
updated during transfer function editing.

Using a non-linear interpolation scheme, as we proposed, does im-
plicitly increase the degree of the signal reconstruction for the shading
part. Therefore, such approaches not only avoid visual shading discon-
tinuity bands, but further improve the global smoothness compared to
methods that use a constant gradient or a linear gradient interpolation.
However, as for all pre-integration techniques, we assume the under-
lying signal is piecewise linear for computing the occlusion and color
components. As it has been already shown in previous works, there
might remain visible stripes if the integration step is set too large. Our
approach reduces the visibility of these stripes, but does not remove
them. To further improve results in such cases, it seems important
to improve the reconstruction of the signal in-between front and back
samples. However, the problem that must be solved in this case, is the
resulting increase of dimensionality.



48,8fps

28,5fps

56,5fps

33,2fps

60,4fps

38,8fps

Fig. 7. Rendering of the engine dataset using different pre-integration schemes. Top is for 1 voxel sampling step. Bottom is for 0.5 sampling step.

Fig. 8. Two examples of datasets rendered using an illustrative lighting
model. Left is reference image (no pre-integration using a high sampling
rate) and right is our result using a 0.5/256 sampling step.

ACKNOWLEDGMENTS

This work has been funded by the french national science fundation
(ANR) under project ATROCO number ANR-07-MDCO-001.

REFERENCES

[1] D. Ebert and P. Rheingans. Volume illustration: non-photorealistic ren-
dering of volume models. In VIS ’00: Proceedings of the conference on
Visualization ’00, pages 195–202, 2000.

[2] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In HWWS ’01:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 9 – 16, 2001.

[3] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic
lighting model for automatic technical illustration. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pages 447–452, 1998.

[4] M. Hadwiger, I. Viola, T. Theussl, H. Hauser, and H. Hauser. Fast and
flexible high-quality texture filtering with tiled high-resolution filters. In
In Proceedings of Vision, Modeling, and Visualization, 2002.

[5] J.-F. E. Hajjar, S. Marchesin, J.-M. Dischler, and C. Mongenet. Sec-
ond order pre-integrated volume rendering. In Visualization Symposium,
2008. PacificVIS ’08. IEEE Pacific, pages 9–16, 2008.

[6] J. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, 1986.

[7] W. Krueger. The application of transport theory to visualization of 3d
scalar data fields. Proc. IEEE Visualization, pages 273–280, 1990.

[8] E. Lum, B. Wilson, and K. Ma. High-quality lighting and efficient
pre-integration for volume rendering. In Proceedings of the Joint
Eurographics-IEEE TVCG Symposium on Visualization 2004, pages 25–
34, 2004.

[9] S. Marchesin and G. C. de Verdiere. High-quality, semi-analytical vol-
ume rendering for amr data. IEEE Transactions on Visualization and
Computer Graphics, 15:1611–1618, 2009.

[10] N. Max, P. Crawfis, and P. Hanrahan. Area and volume coherence for ef-
ficient visualization of 3d scalar functions. SIGGRAPH Comput. Graph.,
24(5):27–33, 1990.

[11] K. Moreland and E. Angel. A fast high accuracy volume renderer for
unstructured data. In VV ’04: Proceedings of the 2004 IEEE Symposium
on Volume Visualization and Graphics, pages 9–16, 2004.

[12] B. T. Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311–317, 1975.

[13] S. Roettger and T. Ertl. A two-step approach for interactive pre-integrated
volume rendering of unstructured grids. In VVS ’02: Proceedings of the
2002 IEEE symposium on Volume visualization and graphics, pages 23 –
28, 2002.

[14] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart
hardware-accelerated volume rendering. In VISSYM ’03: Proceedings
of the symposium on Data visualisation 2003, pages 231 – 238, 2003.

[15] S. Roettger, M. Kraus, and T. Ertl. Hardware-accelerated volume and
isosurface rendering based on cell-projection. In VIS ’00: Proceedings of
the conference on Visualization ’00, pages 109 – 116, 2000.

[16] S. Rusinkiewicz, M. Burns, and D. DeCarlo. Exaggerated shading for
depicting shape and detail. ACM Trans. Graph., 25(3):1199–1205, 2006.

[17] P. Sabella. A rendering algorithm for visualizing 3D scalar fields. SIG-
GRAPH Comput. Graph., 22(4):51–58, 1988.

[18] J. P. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating pre-integration
into the shear-warp algorithm. In VG ’03: Proceedings of the 2003 Eu-
rographics/IEEE TVCG Workshop on Volume graphics, pages 109 – 118,
2003.

[19] C. van Overveld and B. Wyvill. Phong normal interpolation revisited.
ACM Trans. Graph., 16(4):397–419, 1997.

[20] P. Williams and N. Max. A volume density optical model. In Proceedings
of the 1992 workshop on Volume visualization, pages 61–68, 1992.

[21] P. Williams, N. Max, and C. Stein. A high accuracy volume renderer
for unstructured data. IEEE Transactions on Visualization and Computer
Graphics, 4(1):37 – 54, 1998.


