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Figure 1: Multi-scale assemblage is a random pattern generation process generalizing sparse convolution. It allows users
to design interactively new types of texture basis functions (noise-like functions) and / or structured patterns by preserving
all advantages of procedural definitions, namely infinity without repetition, definition independency and extreme compactness.
These textures require no texture memory and fit entirely into the shader program.

Abstract
A procedural pattern generation process, called multi-scale “assemblage” is introduced. An assemblage is defined
as a multi-scale composition of “multi-variate” statistical figures, that can be kernel functions for defining noise-
like texture basis functions, or that can be patterns for defining structured procedural textures. This paper presents
two main contributions: 1) a new procedural random point distribution function, that, unlike point jittering, allow
us to take into account some spatial dependencies among figures and 2) a “multi-variate” approach that, instead
of defining finite sets of constant figures, allows us to generate nearly infinite variations of figures on-the-fly. For
both, we use a “statistical shape model”, which is a representation of shape variations. Thanks to a direct GPU
implementation, assemblage textures can be used to generate new classes of procedural textures for real-time
rendering by preserving all characteristics of usual procedural textures, namely: infinity, definition independency
(provided the figures are also definition independent) and extreme compactness.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: procedural texturing, noise, procedural object distribution function, GPU shader

1. Introduction

Content creators tend to design larger and larger virtual
worlds characterized by a huge amount of visual details,
which are commonly modeled using textures. However,
while increasing texture complexity improves visual qual-
ity, it also raises more and more problems concerning: 1)
excessive storage requirements and 2) prohibitive synthe-

sis timings. Many popular texture synthesis techniques, like
synthesis “by example” [WLKT09] or “physical simulation”
[DRS08] do not scale well, since the memory consumption
as well as the computational complexity grow proportion-
ally w.r.t the surface size and the texture definition. Procedu-
ral textures [EMP∗98] intrinsically avoid the two previous
problems. Instead of fetching texture values from massive
pre-computed data arrays, a little program directly computes
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the values independently for all coordinates of parameteri-
zation space at constant time complexity. Since there is no
need to reference previous calculations, procedural textures
are not depending on the surface size. Their most interest-
ing advantage is the ability to generate visual complexity
with quasi-infinite variation at arbitrary definition while re-
quiring only a marginal memory cost. Impressive GPU im-
provements could furthermore explain the recent renewed
interest for these kinds of textures. In particular, the study
of [OHL∗08] outlines that, during the past decade, GPU
computational power grew very fast, whereas GPU memory
bandwidth did not grow at the same rate. Thus, putting ef-
forts on “on-the-fly” computations instead of “out-of-core”
memory management seems promising for managing virtual
scenes with ever-increasing visual complexity.

Unfortunately, the creation of procedural textures is not a
simple task. The classes of patterns that can be represented
is limited by the narrow range of available procedural ba-
sis functions, the most common ones being noise and turbu-
lence (a sum of noises) [Per85]. As only low-order statistics
(related to the spectral energy) are considered, many kind
of structured stochastic patterns cannot be directly modeled
using these functions. Procedural basis functions must often
be combined with other mathematical functions to produce
structured patterns. For example, [Per85] combines turbu-
lence with a sine wave (resp. with splines) to create marble
veins (resp. cloudy sky). Choosing the right combination of
functions to produce a given visual result raises many dif-
ficulties for most users, as good mathematical and (often)
programming knowledge becomes almost mandatory.

In that respect, our motivation is to propose a novel
stochastic procedural pattern generation process (similarly
to [RB85]) called multi-scale assemblage. The objective is
to facilitate the creation of structured stochastic procedu-
ral patterns (noise-like basis functions and textures) by ex-
tending the simpler principle of sparse convolution. The ter-
minology of assemblage has been borrowed from an artis-
tic process, which consists in creating art compositions by
putting together diverse objects. Multi-scale assemblage is
based on two contributions: a new procedural point distri-
bution function and a dynamic stochastic figure generation
process, a figure being a function (or an image) to which we
apply the convolution operation. We propose to define our
random point distribution function by using higher dimen-
sioned topological primitives, like polygonal cells (2-D), in-
stead of directly “jittering” points (0-D). The centers of the
cells are used to define positions, while cell edges are used to
set up dependencies among figures. Other spatial relations,
such as alignments, are also addressed by using other prim-
itives such as curves (1-D). The core issue is to be able to
create infinite random variations of primitives and figures,
without using repetition. To do so, we define a hierarchical
statistical shape model, which allows us to represent shape
variations, using statistical modes.

Our hierarchical extension allows us to compose com-
plex figures on the basis of simpler randomly generated sub-
figures. Based on this model, an assemblage consists of hi-
erarchical compositions of “multi variate” figures, positions
and figures being computed from a linear combination of
randomly weighted principal modes (multi variate means
in our case that we use multiple independent random vari-
ables). The principal modes are “statistically learned” from
user-edited sets of basis figures and primitives. All manip-
ulations thus remain purely interactive and no mathemati-
cal / programming knowledge is required for users. Figure 1
shows examples of procedural patterns generated using our
assemblage technique.

The rest of the paper is organized as follows. Section 2
gives a short overview of works related to procedural tex-
turing. Section 3 introduces the hierarchical statistical shape
model we use. Section 4 presents our point distribution func-
tions. Section 5 describes our procedural multi-scale assem-
blage technique. In particular, we show how textures can be
efficiently rendered at real-time rates using a GPU imple-
mentation. Before concluding, section 6 presents results and
discusses limitations.

2. Related Works

Procedural textures, as defined in [EMP∗98], should not be
confused with the more general concept of “iterative pro-
cedures” (algorithms) for texture synthesis. In this specific
context, procedural means that texture values are explic-
itly computed by functions at run-time instead of fetching
them from data arrays (texture maps). An important property
is: the functions are accessed at constant time and memory
complexity, independently of previous calculations, for any
random location of the entire continuous and infinite space
without using periodicity. As corollary, memory consump-
tion and synthesis timings become completely independent
of surface size and texture definition. Generally, procedu-
ral textures use “quasi-infinite” stochastic procedural basis
functions. These functions are not truly infinite since they
are based on hash-coding. But because they have an ex-
tremely large period, they nevertheless can be considered
as infinite for usual runs. The two main categories of ba-
sis functions are noise (see survey [LLC∗10]) and random
point distributions. Random point distributions are funda-
mental for procedural texturing, since they represent a sup-
port function for several other procedural basis functions:
sparse convolution noises [Lew89, vW91, LLDD09], cellu-
lar noises computed using n-th closest distances [Wor96] and
bombing patterns consisting of randomly “dropped” figures,
that are for example textured quads in [Gla04]. Bombing
has inspired a tremendous amount of texture synthesis tech-
niques in computer graphics, “figures” being alternatively
called bombs, sprites, textons, particles, etc. (see for instance
[DMLG02, LHN05]). However, instead of using procedural
distribution functions, most of these methods compute ex-
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Figure 2: Workflow of our method. Left: the user edits figures that are associated to cells (top) defining rectilinear tesselations
of the plane. Middle: a statistical shape model is computed from the user input. Right: the resulting model is stored in GPU
memory (geometric elements and sets of displacement vectors), along with an acceleration map to compute assemblage textures.
The final rendering (right) uses either a distance function, sub-figures or patterns.

plicit sets of figures and positions using more or less com-
plex iterative (for instance relaxation-based [DZ06]) mecha-
nisms.

Point distribution functions are procedural when they
avoid the explicit storage of positions by generating infi-
nite sets of points “on-the-fly”. Jittering is the most common
technique, as it is simple and fast (see GPU implementations
of [Gla04, LLDD09]). However, it has the drawback of be-
ing unable to consider higher-order dependencies. [LD05]
replaces jittering with a random process inspired by scan-
line stochastic tiling [CSHD03]. The process is called direct
stochastic tiling. Some global spatial dependencies can be
taken into account. In particular, [LD05] generates infinite
and non-periodic point sets characterized by a Poisson-disk
distribution, i.e. a distribution in which no two points are
closer than a threshold distance. The drawback is that, un-
like jittering, specific tiles must be pre-generated and stored.
Because the pre-computed set of tiles is finite, some type
of “repetition” necessarily occurs: the same tiles are re-used
again and again at different locations. Our approach avoids
repetition. As for jittering, we propose to generate random
variations on-the-fly.

Manipulating stochastic basis functions and mathematical
functions for modeling textures with desired visual charac-
teristics is not straightforward in most cases. To make the
modeling of procedural textures easier for users, mainly two
categories of approaches have been proposed. The first one
exploits the fact that large “texture shader” databases already
exist [BD04,LLD12]. They mainly provide tools to improve
shader parameter browsing. Such methods are however lim-
ited by the content of the available databases. The second
category attempts to derive procedural textures by using ex-
ample images [WLKT09,LVLD10,GDS10,GLLD12]. They
consist in adjusting the parameters of underlying sums of
noises by analyzing the power spectrum. Since noise func-
tions, standing alone, do cover only a narrow range of low-

order statistics, purely noise-based methods are limited to
a narrow range of stochastic “micro-patterns”. Our assem-
blage approach avoids this limitation by composing random
figures / kernel functions in a “structured” way. The figures
are generated hierarchically and dynamically while taking
into account shape dependencies with neighbors. It can be
considered as a kind of extension of sparse convolution, the
latter being in our framework a particular case of single-
scale assemblage with no dependencies among neighboring
kernels.
The creation of visual variations of geometric objects is a
vast and active research area, but most methods are specific
to some types of parametric, for example grammar-based,
objects like leaves [PTMG08] or buildings [MGHS11]. In
our case, we use a statistical shape model combined with
a simple random process. Random processes, especially
Markov processes, are already widely used in computer
graphics. See for example cell-structured / bombing mod-
els [SA79] for random pattern generation, stochastic subdi-
vision for terrain synthesis [FFC82], random walks for tex-
ture synthesis “by example” [ZG02], etc. Conversely, the use
of statistical shape models has not been yet applied, to the
best of our knowledge, to procedural texture synthesis. In
computer graphics, it has been used successfully to generate
human body animations by “statistical learning” from 3D
scans [ASK∗05]. An overview of statistical shape models
for vision and pattern recognition can be found in [DM98].

3. Hierarchical statistical shape models for dynamic
figure synthesis

Figure 2 summarizes our approach for creating / editing pro-
cedural textures. In this section, we show how random vari-
ations of figures, that we will call instances, can be dynam-
ically created (left and middle parts of figure 2). We first
introduce statistical shape models for single-scale figures.
Then, we extend our figure model to multi-scale definitions.

c© 2012 The Author(s)
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In a second step (next section), these figures are distributed
more or less randomly over the infinite 2D plane (right part
of figure 2) so as to create procedural textures by assem-
blage.

(a) (b) (a) (b)

Figure 3: Continuous figures (or kernel functions) are de-
fined on the basis of sets of discrete geometric elements of 2D
Euclidian space. (a) shows examples of elements: polygons
and polylines. (b) examples of resulting continuous functions
using distance computations and interpolations.

(a)

a  =01a  =-3 1 1 a  = 3 1 1

a  =02a  =-3 2 2 a  = 3 2 2

...

(b)

Figure 4: Single-scale statistical shape model for creat-
ing random figure variations. (a) using the two first prin-
cipal modes. (b) A few examples of corresponding random
instances.

3.1. Single-scale statistical figures

We consider that a figure Φ is defined on the basis of sets
of discrete geometric elements of 2D Euclidian space: poly-
gons and polylines that can be connected or isolated. A con-
tinuous figure or kernel function can be derived from these
discrete elements using for instance splines, recursive sub-
division schemes or potential (distance) functions for im-
plicit modeling. We denote the resulting continuous figure
R(Φ). Some examples are shown in figure 3. For each set

of elements Φ, we show a corresponding continuous func-
tion R(Φ). We focus on statistical variations of elements,
that will infer variations ofR(Φ), independently of the way
these figures are made continuous w.r.t. their corresponding
discrete elements. In the remaining parts of the paper, we
use equally the term figure for the “set of discrete geomet-
ric elements” Φ as well as for the corresponding continuous
representationR(Φ).
Φ is defined by a set of vertices {vi = (xi,yi)}, i ∈ [1,nV ]
and a set of edges, an edge e being a binary relation between
vertices: e = {vι1 ,vι2}, ι1,2 ∈ [1,nV ] and ι1 6= ι2.
To be able to compute any statistical shape model, we need
multiple figure “samples” Φk, k∈ [1,N]. These samples must
have the same amount of edges and vertices so that they
only differ by the vertices positions. In our case, all fig-
ures have been edited / painted by using an own interactive
vector graphics drawing tool. Our tool allows one to cre-
ate and modify polygons and polylines. The user first de-
signs a basis figure and then creates the “samples” by in-
teractively displacing the vertices. But a priori, any other
commercial / free vector graphics tool could be used instead,
provided the file format allows one to register correctly the
figure samples that must effectively have the same amount
of vertices. To be representative, the number of edited fig-
ures should not be too low. We used at least ten figure sam-
ples. A sample figure is thus defined by a vector of 2nV
elements Φk = [xk

1,x
k
2, · · · ,x

k
nV ,y

k
1,y

k
2, · · · ,y

k
nV ]

T . The corre-
sponding shape space is then obtained by applying singular
value decomposition (SVD). The goal is to express the in-
put set of sample figures in a uncorrelated orthogonal frame
defined by matrix [Ψ j], i.e. such that:

Φk = Φ+
N

∑
j=1

wk[Ψ j] (1)

where

Φ =
1
N

N

∑
k=1

Φk = [x1,x2, · · · ,xnV ,y1,y2, · · · ,ynV
]

and wk is a vector of weights corresponding to sample figure
Φk. The new frame is built from the covariance matrix:

ΣΦ =
1
N

N

∑
k=1

[Φk−Φ][Φk−Φ]T

such that ΣΦ = [Ψ j]ΣΨ[Ψ j]
T , where ΣΨ represents the diag-

onal matrix of eigenvalues λ j.
With this formulation, an eigenvector Ψ j corresponds to a
set of displacement vectors used to apply a deformation to
the mean shape Φ. All original sample figures are expressed
as weighted sums of displacement vectors applied to the
mean figure, the displacements being ordered by decreas-
ing deformation energy. The amplitude of deformation re-
sulting from each Ψ j can be evaluated by making the vector
of weights vary at the corresponding eigenvalue λ j, while
setting all other weights to 0: w = (0, · · · ,0,a j,0, · · · ,0).
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For example, we can take a j ∈
{
−3
√

λ j,+3
√

λ j
}

. Mod-
ifying one component at a time defines the corresponding
mode, the first mode representing the most dominant vari-
ations. We show examples of two principal modes in fig-
ure 4(a). The middle column of part (a) shows the mean
figure, i.e. using a j = 0. We exploit this statistical shape
model to generate arbitrary random figures Φ(r), that we call
random instances, while preserving basic correlations w.r.t
the figure’s shape. We just have to choose random weights
w = (ξ1, · · · ,ξM ,0, · · · ,0) between some bounds, for exam-
ple ξ j ∈ [−3

√
λ j,+3

√
λ j]. Part (b) shows examples of ran-

dom instances obtained using two principal modes only (the
modes of part (a)). Since the eigenvalues decrease rapidly, a
few principal modes M << N generally turn out to be suffi-
cient for defining variations. Of course the actual variety of
random figures strongly depends on the variety of the user
supplied samples. The more these samples are visually “dif-
ferent”, the greater the variety.

3.2. Multi-scale figures

The fractal geometry of nature [Man83] suggests that many
natural objects can be described as recursive compositions
of similar sub-objects. So, instead of increasing the global
complexity of individual figures by increasing their amount
of vertices and edges, we propose to define more complex
figures using compositions (unions) of nS transformed sub-
figures:

Φ =
nS⋃

m=1
Am

Φ
m
(r) (2)

Φ
m
(r) is a random instance of subfigure Φ

m and Am a
corresponding transformation matrix. The subfigures may
be themselves recursively defined as compositions of sub-
subfigures and so forth.
In order to define random visual variations, the transforma-
tions are not deterministic but are chosen to be stochastic.
Controlling statistics for defining the Am can be achieved by
using again a statistical shape model, as done for the fig-
ures. The key point is that we do not need to introduce a
new specific model for the matrices Am. We can just straight-
forwardly use random figure instances, as previously de-
scribed, provided we are able to define a relation between
both: ΦA,(r) →

{
Am
(r)

}
. ΦA,(r) is a random instance of a

given figure ΦA, the latter being defined by a statistical shape
model using formula 1. To define a relation between figures
and transformations, we can add some more dimensions to
the figure representation, i.e. each vertex i ∈ [1,nV ] of fig-
ure ΦA can be defined for example by five scalars instead of
two: {vi = (xi,yi,αi,sxi,syi)}, α and (sx,sy) being respec-
tively an angle (defining an orientation) and scales along the
x and y axes. This additional information allows us to derive
nV transformations (nV being the number of vertices of fig-
ure ΦA) that are compositions of rotations (using the angle
αi), scalings (using sxi,syi) and displacements (using xi,yi).

The transformation is then represented as a matrix, where
the different coefficients are directly computed from the vi.
Each novel random instance of ΦA infers a novel set of trans-
formations Am. By using a continuous extension of ΦA, it is

a  =01a  =-3 1 1 a  = 3 1 1

a  =02a  =-3 2 2 a  = 3 2 2

Figure 5: Example of two-scale statistical shape model for
creating random daisy flower variations. Top: two shape
models are used, (first row) for defining sub-figures (these
are the petals), the other (second row) for defining jittered
positions along a circle. Bottom: six random instances ob-
tained using this model.

furthermore possible to jitter points pi instead of using di-
rectly its vertices vi. Instead of fixing a constant value nS for
defining Φ (formula 2), we can choose it randomly within a
minimal and maximal bound. Figure 5 illustrates a example
of two-scale figure construction Φ that aims at representing
a daisy flower. Φ is defined by arranging sub-figures Φ

m
(r)

(that are petals, see first row) more or less along a circle,
defined using a continuous extension of a polygon ΦA (see
second row). Using the statistical shape model, each petal
might have a slightly different shape. The statistical shape
model also defines variations for the transformations Am,
i.e. for the positions, orientations and scales of the petals,
which is illustrated as arrows in the second row of figure 5.
The dashed line in the middle represents the continuous ex-
tension of the polygon, i.e. the mean curve. The number of
petals has been randomly chosen : nS ∈ [18,25]. Examples
of random instances of daisy flowers are shown in the bot-
tom part of figure 5. We note that we added a yellow dot, just
to make the result look more like flowers.

When ΦA is defined by a set of nS polygons P j, we can
use these polygons to define more complex transformations
Am that are not just rotations and scalings. In fact we can
make the shape of subfigure instances Φ

j
(r) always “fit” the

shapes of the polygons P j. To do so, we just have to express
the vertices vi of Φ

j relatively to the vertices of P j, which

c© 2012 The Author(s)
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can be done by using a barycentric coordinates system, simi-
lar to classical 2D texture mapping coordinates, provided the
polygons are convex. Using such a coordinates system, each
deformation of P j will infer a corresponding deformation
of Φ

j
(r). An example is shown in figure 6. The left column

shows two instances of a Y-shaped figure (in red) associated
to a triangle. Any transformation of this triangle infers a cor-
responding transformation Am of the figure (right column).

Figure 6: Left: two random instances of a Y-shaped figure
(in red) assigned to a triangle. Right: when deforming the
triangle, the figure instance can be deformed accordingly by
using barycentric coordinates.

4. Procedural object distributions

In this section we show that the previous statistical figure
model can be used to generate procedural basis functions
consisting in defining structured random object distributions
over <2. The challenge is to make the distribution proce-
dural, i.e. infinite without using repetition and computable
at any location of space independently of other locations at
constant time complexity. Our distribution function uses un-
derlying periodic sets of rectilinear cells, each cell contain-
ing one figure Φ as defined by formula 1. Φ represents a
geometric primitive that is used to define object positions,
similarly to the way we used figures to define transforma-
tions Am for placing sub-figures in formula 2. Since the con-
tents of our cells are all different, the distributions are not
repetitive. This is similar to jittering, where the content of
each lattice square is different and computed on-the-fly.

In our case, a cell C is defined as a polygon. It may have
any arbitrary shape (convex or not). The only condition is
that the set of cells forms a periodic rectilinear tessellation
of the plane, i.e. there are no gaps and no overlaps between
cells. A single cell can be used. Let be SC =

{
Ci
}

the mini-
mal set of cells defining the tessellation. SC can be centered
and rescaled so as to fit within one unit square. Since we as-
sume rectilinearity, SC represents one period of cells that can
be shifted along the two unit x and y axes vectors, so as to
cover entirely <2. Each cell Ci ∈ SC contains a single-scale
figure ΦCi as defined by formula 1. The figure’s boundary
may or may not directly match the shape of the cell. Parts of
ΦCi may even by partly located outside the cell. Using the
tessellation, it becomes straightforward to define infinite ob-
ject distributions. One just has to generate for all cells of<2,
a corresponding random figure instance ΦCi,(r) and then use

this instance to derive a corresponding set of positions Am

(more generally transformations, i.e. positions, scales and
orientations) using the relation: ΦCi,(r)→

{
Am
(r)

}
.

(a) (a)

(b) (b)

(c) (c)

Figure 7: Using periodic rectilinear cell-based tessellations
to define object distributions. (a) a single cell representing a
tessellation of the plane. (b) associating a figure Φ to the cell
(in red). Φ can be composed of polygons (left) or polylines
(right). (b) shows the mean shape Φ̄, without deformations,
hence the result is periodic). Periodicity is avoided by us-
ing random instances of Φ. (c) shows the first mode, i.e. the
highest deformation amplitude compared to (b).

Figure 7 illustrates two examples of rectilinear tessella-
tions. For each example we use a unique cell shown in part
(a). The arrows represent the two unit x and y vectors. To
each cell, we associate a figure composed of polygons for
the left side and polylines for the right side. The mean fig-
ure Φ̄C is shown in part (b). The first mode corresponding
to 3
√

λ1 is shown in part (c). The left example allows us to
define object distributions using the centers of the polygons.
The shape of the object may also be influenced by the shape
of the polygons. For the second example, we can compute
object distributions by jittering points along the curves. Be-
cause the curves are mainly horizontal, it produces object
distributions characterized by strong horizontal alignments.

c© 2012 The Author(s)
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5. Designing and rendering procedural assemblage
textures

Designing noise-like texture basis functions or procedural
textures N(x,y) can be done using the same mathematical
formulation as for sparse convolution. The latter consists in
convolving kernel functions K(x,y), that have a finite spatial
support, with random point distributions p(x,y):

N(x,y) = K(x,y)∗ p(x,y) = ∑K(x− x j,y− y j)

where ∗ denotes the convolution operation. In our case the
kernel functions are defined by multi-scale figures K =
R(Φ), Φ being defined by formula 2. The difference with
sparse convolution is that we do not use equiprobable ran-
dom point distributions (i.e. approximations of white noise).
Our distribution is defined using the previously described set
of cells SC, each cell Ci being associated with a single-scale
figure ΦCi used to derive positions (or more generally trans-
formations). By drawing the set of figure samples used for
statistical learning, for both the cells and the kernels, the user
directly and interactively models a corresponding procedural
texture.

As for sparse convolution, our assemblage technique can
be directly implemented in modern GPUs at fragment level.
In our case, figures are defined by sets of vertices corre-
sponding to the mean shape, as well as sets of displacement
vectors, defining the principal modes. All geometric data
can a priori be stored in the form of uniform variables in
the GPU shader. To compute a texture value at position
(x,y), we first determine the corresponding cell C, which
can be done by using the fractional parts of (x,y). Next,
we compute the corresponding random figure instance of
ΦCi so as to define positions, on which the kernels will be
dropped. The kernels are also random instances of figures
Φ as defined by formula 2. The main problem is that, as
for usual sparse convolution techniques, extensively testing
all positions and kernels for each rendered fragment might
become excessively time consuming and break rendering
performance, especially if there are many positions in one
cell and/or if the spatial support of the kernels is large
so that also neighboring cells must be considered. The
problem is to get a fast access to the “closest” kernels that
will effectively be useful for computing the convolution.
Therefore, we propose an optimization that consists in
reducing the number of tests by pre-computing a map where
each texel contains a stack of potential figure candidates.
We first define a map that allows us to determine which
cell C is concerned (if there is a single cell such a map is
not necessary). A second map, in fact one for each cell,
is then used to determine which figures are concerned
inside this cell. Given that each random figure instance
is defined by principal modes, it allows us to compute
a maximal bounding box for each figure. The map then
simply precomputes indices to closest figures in the worst
case (i.e. for the largest possible figure). These maps can
be pre-computed by rasterizing the bounding box of each

figure and storing indices directly into GPU memory using
OpenGL Image Load Store extension mechanism. An
illustration of acceleration map is shown in figure 2.

6. Results

(1)

(2)

(3)

(a) (b)

Figure 8: Comparing classical noise patterns (a) with our
new noise patterns (b). For the classical noises of (a) we
used point jittering [LLDD09] (left column) and Poisson-
disk distributions [LD05] (right column).

All results in this section have been obtained with a PC
using a NVidia GeForce GTX 480 for an average resolu-
tion of 1920× 1200 pixels. Figure 8 shows examples of
resolution independent texture basis functions. A compari-
son with the two available procedural random point distri-
bution functions, i.e. jittering of points [Gla04, LLDD09]
and the Poisson-disk distribution of [LD05] is shown in part
(a). These two distributions are respectively used in the first
and second column. They have been 1) convolved with an
isotropic Gaussian kernel function, which produces Gaus-
sian noise patterns and 2) convolved with a cardinal sinus
function, which also produces noise-like patterns. In row
3), we used the closest Euclidian distance to derive cellu-
lar functions as suggested in [Wor96]. On the right part (b),
we show results obtained with our approach. These texture
basis functions represent new classes of structured random
patterns that cannot be directly obtained with the point dis-
tributions shown in part (a). All random patterns are based on
a tessellation using a single periodic cell. The first two top
examples are obtained using the tessellation shown in fig-
ure 7 (left). Note that unlike the cellular texture basis func-
tion of [Wor96], users can control the shapes of the polyg-
onal cells. The second row has been obtained using figures
that correspond to stochastic triangulations of the plane. The
underlying triangular structure remains just noticeable. In
the last row, the left example has also been obtained using
a random triangulation. In this case each triangle contains
the mean Y-shape of figure 6, thus generating a flakes-like
structure. Finally, the right example illustrates the case of
figures composed of segments, to which we computed dis-
tances. This generates a cellular pattern that looks similar
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Figure 9: Associating patterns to figures. The patterns can
be defined using specific sub-figures by adding a color di-
mension to the vertices or by using noise-based patterns /
texture images.

to [Wor96], but with the new visual characteristic that re-
sulting cell edges are aligned. Our texture basis functions
can be directly used for texturing objects, which is shown
in figure 1. The patterns are shown in the upper left cor-
ners and are applied to a 3D torus object. Instead of using
distance / kernel functions to create resolution independent
texture basis functions, we can also associate “patterns” to
figures and sub-figures, which is similar to classical bomb-
ing [Gla04]. Two examples are illustrated in figure 9. For the
top example, we used the daisy flower model defined in fig-
ure 5. The grass pattern as well as the yellow pattern in the
center of the flower are defined by Gabor noises using an ap-
proach similar to [GDS10]. This way no texture memory is
required. The entire texture remains totally procedural. For
the second example, representing a mosaic-stone pattern, we
used texture images. These texture images require less than
20Kb texture memory. The final procedural texture is non-

(a) (b) (c)

Figure 10: Contrary to simple repetition of texture input
(b), our assemblage method can be used to non-repetitively
texture large surfaces (c).

Figure 11: By associating texture images to figures and sub-
figures, our assemblage technique can produce a great vari-
ety of appearances for real-time applications (70 fps).

repetitive and quasi-infinite (see textured Dragon model). It
uses the single cell model of the first column of figure 7. Fig-
ure 10 further illustrates that repetition is avoided with our
approach, provided the statistical deformation model permits
a sufficiently large shape variety. The middle illustrates the
use of the mean figure only. Despite a random selection of
patterns, periodicity appears. The right shows the use of all
modes. Periodicity is no longer visible.

Finally, figures and subfigures can be associated to crops
of texture photographs to produce high definition virtual tex-
tures for real-time rendering application. The leaves-covered
floor shown in figure 11 shows the variety of appearances
and phenomena, such as ageing, that can be represented us-
ing our technique. Here, using [PTMG08], each leaf can be
rendered at real-time (70 fps) with a unique appearance by
using a stochastic combination of two subfigures (with a
stochastic palettized coloration)stored in GPU texture mem-
ory. Furthermore, our method can also be used to generate
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Figure 12: Our method can also be used with displacement
or vector mapping for high-quality non-repetitive 3D details.
Top : 2D rendering using our assemblage technique (180
fps), bottom : Assembled texture with on-the-fly tessellation
and displacement mapping (60 fps).

on the fly high-definition non-repetitive 3D details by asso-
ciating height maps or vector maps to figures.

Figure 12 shows an example of 3D details using the tes-
sellation unit at 60 fps instead of 180 fps for simple 2D tex-
turing (the performance hit is mostly due to the heavy tes-
sellation of the base surface). Our assemblage method can
also be used as a high-definition interactive texturing tech-
nique (40/100 fps with/without displacement mapping), as
shown by the close-ups of the tree in figure 13. The texture
images associated to the figures are crops of photographs
stored in two 1024×1024 RGBA textures (for color and nor-
mal/height information) and can therefore be used to gener-
ate various appearances. All assemblage textures are gener-
ated in 2D space, and are thus prone to the usual stretch-
ing and discontinuity problems linked to 2D parameteri-
zations. While discontinuities could be avoided for simple
shapes by forcing textures to be periodic (i.e. well-tiling),
a parameterization-aware texturing scheme should be used
for more complex shapes (for instance, by extending figures
across seams).

One current limitation of our method is the need to design
“samples” of figures by hand for statistical learning. Multi-
ple sample figures must be designed for object distributions
and for defining visual elements (sub-figures). For complex
textures, this task can be long. Another limitation is that we
pre-defined a finite set of interpolation / distance functions
for creating resolution independent texture basis functions.
For defining other (more complex) functions it will require
some programming efforts for users. Furthermore, filtering
for antialiasing remains a difficult task with our method. For
far-away view, a mip-mapped texture image representing a
periodic distribution of figures can be used. While this is ef-
ficient in some cases, our method still lacks a complex filter-

ing scheme to account for variations and a multi-scale defi-
nition.

7. Conclusion

Creating procedural textures is not a simple problem in com-
puter graphics, especially when dealing with structured pat-
terns that cannot be well represented using only noise func-
tions. We presented a new multi-scale approach that allows
users a better control of visual structures characterized by
more complex dependencies among placements and kernel
shapes. We used the concept of statistical shape model for
defining both point distributions and kernel functions. The
GPU implementation we presented allows us to texture at
real-time rates very large, potentially infinite surfaces at low
memory cost without repetition. As for classical bombing,
complex natural textures can be defined by using textured
polygons instead of kernel functions (which are rather used
to define resolution independent texture basis functions).
As we have already mentioned, our approach is purely in-
teractive and might require some efforts from users. A next
step would consist in using our assemblage textures to com-
pute procedural textures automatically from example pho-
tographs. In this case, the problem would consist in extract-
ing “figures” from the example, these figures defining both
distributions and visual elements (texture features). Another
future work will consist in extending our 2D assemblage
technique to the 3D case, so as to be able to edit procedu-
ral solid textures.
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