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Abstract

Noisy volumetric details like clouds, grounds, plaster, bark, roughcast, etc. are frequently encountered in nature
and bring an important contribution to the realism of outdoor scenes. We introduce a new interactive approach,
easing the creation of procedural representations of “stochastic” volumetric details by using a single example
photograph. Instead of attempting to reconstruct an accurate geometric representation from the photograph, we
use a stochastic multi-scale approach that fits parameters of a multi-layered noise-based 3D deformation model,
using a multi-resolution filter banks error metric. Once computed, visually similar details can be applied to ar-
bitrary objects with a high degree of visual realism, since lighting and parallax effects are naturally taken into
account. Our approach is inspired by image-based techniques. In practice, the user supplies a photograph of an
object covered by noisy details, provides a corresponding coarse approximation of the shape of this object as
well as an estimated lighting condition (generally a light source direction). Our system then determines the corre-
sponding noise-based representation as well as some diffuse, ambient, specular and semi-transparency reflectance
parameters. The resulting details are fully procedural and, as such, have the advantage of extreme compactness,
while they can be infinitely extended without repetition in order to cover huge surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Using photographs for creating complex photo-realistic ob-
jects and textures is currently a topic of great interest in com-
puter graphics and rendering, as it reduces and eases the
work of artists and content creators. Moreover it generally
leads to improved rendering results with respect to realism.
However, there are difficulties gathering textures from pho-
tographs, as textures are provided already mapped onto 3D
surfaces. Textures with underlying relief (bark, roughcast,
etc.) raise even more problems, due to masking, parallax and
lighting effects at texture scale. Obviously, for such textures,
cropping a part of the photograph and reproducing it with
classical 2D texture synthesis without considering underly-
ing relief does not produce satisfactory rendering results: it
looks like wallpaper while the small-scale relief impression
at texture scale is lost. To be rendered realistically, textures
with geometric details require some 3D information along
with a specific 3D rendering technique, like for example

displacement mapping [Coo84] or volumetric texture map-
ping [KK89]. In other words, for such textures, a 3D geo-
metric information must be recovered from the photograph.

Recovering some geometric and/or relief information
from a single photograph at texture scale is clearly a difficult
problem, traditionally solved by texture measurement or vi-
sion techniques. Unfortunately, these methods often require
complex manipulations involving specific hardware devices
or imposing drastic constraints on the surface reflectance and
on the lighting and viewing condition. They do not generally
work for arbitrary structures, especially when small scale de-
tails are involved.

In this paper we propose a solution that avoids an
explicit geometric reconstruction at texture scale, by fo-
cusing only on noisy (stochastic) small-scale details. Such
details are very frequent in natural scenes (as presented
in the various real-world examples of figure 1) and can
generally be well represented by noise functions [Per85].
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Figure 1: Photographs of real-world objects covered by
various stochastic details.

Practically, we propose an interactive solution inspired by
image-based modeling and rendering (IBMR) techniques.
No pre-existing shader database is required, nor do users
need any shader programming knowledge. As in previous
works, our model uses a weighted sum of noise functions
at different scales. To determine the parameters of this sum,
we use an iterative error minimizing technique, that bears
some similarity with [BD04], but with a different metric
based on multi-scale filter responses. Such filters are better
suited for processing the non-stationary aspect of 3D details.
However, unlike classical image-based techniques that only
re-map color textures, the details recovered with our method
are real 3D, thus allowing zooming and relighting with
masking and parallax effects.

2. Related works

Noise and procedural textures. Noise has been intro-
duced to the computer graphics community by Perlin
in [Per85] more than two decades ago. Since then, it
has been used to model various natural phenomena
and textures [EMP∗98]. Recent works (see for in-
stance [Per02, GZD08, LLDD09, LLC∗10]) demonstrate
that procedural textures remain highly useful for rendering
applications. Procedural details have the major advantage
that they can be used to visually enhance huge environments
without towering memory requirement.

Unfortunately the creation of procedural models can be
tedious and often requires programming knowledge. There-
fore, some approaches attempt to automatically match pa-
rameters to examples, like in [BD04]. However, this method
only considers color patterns and does not create new
shaders but relies on a pre-existing shader database, thereby
limiting the scope of the application. Other methods exploit
some spectral properties of recent noise functions [LLDD09]
to create procedural textures ( [LVLD09], [GDS10]). But
again, no photographs are used and only color textures with
no geometric details are considered. Such methods are thus

ill suited to realistically render complex natural effects, like
the examples of figure 1.

Texture acquisition and measurement. Texture synthe-
sis by example generally ignores volumetric effects. Never-
theless, it is possible to create solid textures from 2D color
samples. By empirically associating a given transparency
to some color bands, volumetric and geometric effects can
be rendered, as done for instance in [KFCO∗07]. Yet such
an approach fails for most volumetric cases based on pho-
tographs. An alternative and accurate solution therefore con-
sists in making measurements. Many measurement systems,
along with corresponding texture models have been pro-
posed, especially by using view and/or light dependent ap-
proaches, like polynomial textures [MGW01] or bidirec-
tional textures [DvGNK99]. Such techniques improve re-
alism and implicitly take into account underlying texture
relief. Unfortunately, using sophisticated measurement de-
vices and digitization protocols is far more complex than
using a single example photograph. It also involves lots of
technical constraints.

Textures from photographs. Extracting textures from
photographs is a broad and common technique used in the
field of image-based modeling and rendering (IBMR). Users
create a coarse approximation of the real-world 3D object
and overlap it with its photograph in order to extract one
corresponding color texture map or even view-dependant
maps [DTM96]. Individual patterns might also be extracted
and then reproduced using texture synthesis. In this case,
texture distortions due to surface curvature and perspective
have to be considered [ELS08]. However, this technique
does not consider geometric effects at texture scale, thus
hindering the recovery of consistent parallax and lighting
effects for textures where underlying geometry and relief
prevail. In fact, most image-based techniques just ignore
small-scale geometry at texture scale.

To the best of our knowledge, methods that attempt to re-
construct volumetric details from a single image are rare,
probably because of the extreme difficulty of this problem.
Most methods focus on specific features like trees [TFX∗08]
or hair [PCK∗08, WYZG09, BPvdP∗09] and use statistical
approaches instead of an accurate 3D reconstruction. The
approach of [DG97] can be considered as the closest to
our concern: it uses examples to create displacement tex-
tures and creates procedural models based on a sum of noises
at different scales. However, this method does not use pho-
tographs as input examples. It is limited to 1D profiles,
e.g. curves. Our approach also uses elements of IBMR, like
in [ELS08], since we place a virtual object over the picture.
We also use an iterative parameter fitting technique similar
to [BD04], but with a new error metric.
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(a) (b) (c) (d) (e)

Figure 2: Workflow of our method. Using an example photograph (a), the user gives a coarse approximation of the geometry
(b) and chooses a relevant zone for analysis (c). Results consist of a set of parameters for a procedural representation (d), which
can be applied to any shape (e).

3. Method principles

The basic principle of our approach is summarized by fig-
ure 2. The user supplies a photograph Ip of an object covered
by noisy 3D details. He then provides a simple 3D shape O
(parallelepiped, ellipsoid, etc.) matching some parts of the
real object as well as an estimated lighting condition. In
our case, the user further delineates a validity mask, since
there is generally no exact match between O and the real
object. Only pixels of this zone will be considered for com-
putation. The remaining steps are then fully automatic. They
consist in computing a set of parameters for a multi-scale
noise representation of the details. The user also gets the pa-
rameters for a simple ambient, diffuse and Phong specular
reflectance model, including, if desired, semi-transparency.
Obtained details are 3D and can be transferred to any shape
and rendered under new lighting and viewing conditions, in-
cluding environment map-based lighting.

In the remaining parts of this paper we focus on the auto-
matic part of our procedure, the manual part being a human-
computer interaction task out of our scope. We note that we
will also decouple two texture aspects: color patterns and ge-
ometric details. Many textures unify both aspects, e.g. color
and relief. Unfortunately, decorrelating both is a difficult
problem because of shading/lighting conditions. Indeed, it
is hard to evaluate in a photograph whether an intensity vari-
ation is due to small-scale relief or to a local change of the
color of the object. Color patterns do not represent the core
topic of our paper: we will use an existing method [GDS10]
to create procedural color patterns in order to further en-
hance the visual similarity with the photograph.

Our details extraction technique relates to the fact that
many natural 3D phenomena are based on random processes
acting at different scales on objects (erosion, corrosion,
stochastic motion, etc.). We shall assume, in our case, that
the 3D details are resulting from a random process that can
be expressed as a stochastic “perturbation” function r(x), re-
turning a random value normalized between [0,1] for any
point x = (x,y,z) of space. We further assume that any given
random function R(x) can be expressed as a linear combina-

tion of simpler “basis” random functions at different scales
(we will call this basis function noise):

R(X) =
n

∑
i=0

wiFn( fiX) (1)

where Fn denotes the noise function, wi weights and fi
scales. Our objective is to express r(x) in the form of R(x).
Such a multi-scale expression matches the fractal geome-
try of nature and has been used for years to model vari-
ous natural phenomena (terrains, clouds, etc.). Contrary to
Fourier or wavelet decompositions, multi-scale coefficients
cannot be computed in a deterministic way in the case of
stochastic processes. In fact, R does not need to verify:
r(x) = R(x)+ ε(x)∀x. We just want r(x), the original ran-
dom process, and R(x), the corresponding multi-scale ex-
pression, to be “close” from a purely statistical point of view.
Let C be a corresponding set of statistical characteristics. In
fact, we want C(r)≈C(R) instead of r(x)≈ R(x).

For our 3D details synthesis application, we have to se-
lect a suitable noise function Fn as well as a set of statis-
tics C. The corresponding parameters of R can then be com-
puted using an optimization technique that iteratively fits
the parameters of equation 1 using gradient descent, so as
to minimize the error e = |C(r)−C(R)|. Unfortunately, in
our case, we do not have access to the random function r.
So, we cannot compute any statistics C. Instead, we have
a photograph of the result of the random process r on an
object. We thus have to transfer statistics for random sig-
nals to statistics for pictures. Therefore, we must introduce a
picture metric M(I, I′) that measures the similarity between
two texture images I and I′. Based on this metric, we can
first compute a synthetic image Is using the user-defined vir-
tual object O enhanced with stochastic details obtained from
function R. This image is then compared to the picture of
the photographed object Ip characterized by details resulting
from random process r. In the next three sections, we discuss
respectively the choice of the noise function, the choice of
the texture similarity metric M and the method to compute Is
with O and R before describing our iterative technique used
to fit parameters.
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4. Random Basis Function

The choice of the noise function Fn influences the range of
stochastic phenomena that we will be able to represent. The
spatial and spectral (i.e. Fourier power spectrum) domains
are often used to characterize noise functions. The former
matches the probability distribution function (PDF), while
the latter matches autocorrelation. An efficient noise func-
tion unifying both aspects is a function based on sparse con-
volution, e.g. based on a set of randomly distributed points
convolved with a given kernel function (Linear ramp, Gaus-
sian, Gabor, etc.) using a given distance metric (Euclidian,
Manhattan, etc.).

To address a wide range of natural phenomena, we pro-
pose to use a formulation unifying cellular noise [Wor96]
and Gabor noise [LLDD09] in a single expression. That
is, we consider a convolution with all k − th to k′ − th
(1 <= k <= k′) closest points, using a simplified Gabor ker-
nel function. Our unified noise N(x), x = (x,y,z) is defined
as:

Nk,k′,φ,θ(x) =
k′

∑
i=k

e
−D(Pi ,x)

2σ cos(2πφ(xcos(θi)+ ysin(θi)))

(2)
Pi represents the i-th closest point to x (points are ordered
by increasing distance), D(x,y) a distance metric (we use
an Euclidian distance), σ the standard deviation of the
Gaussian envelope, φ the cosine frequency and θi ∈ [0,θ]
a random cosine stripes orientation. σ controls the radius
of influence of the convolution kernel, and thus should be
set according to the spatial distribution of the points Pi.
This is an implementation dependant parameter that will
be selected once and for all, thus removing it from the set
of parameters of N(x). To control anisotropy and scaling,
we introduce a diagonal 3D matrix S defined by (sx,sy,sz).
Orientation is then further given by a 3D orthonormal frame
matrix Q. We can now substitute Fn by Nk,k′,φ,θ(Q(S(x))) in
equation 1.

To avoid a combinatorial explosion during the param-
eter fitting step (section 7), we must keep the amount of
parameters of R as low as possible. Therefore, we propose
to consider only “harmonic” sets of noises. Harmonics rep-
resent a common technique for creating multi-scale natural
phenomena (such as Perlin’s turbulence function). Indeed,
for many natural phenomena, the frequency distribution
in spectral domain matches a Gaussian shape, which is
well accounted for with harmonics. Subsequently, the noise
functions of formula 1 do all share the same parameters k,
k′, θ and φ. The coefficients wi and fi are replaced by a
single factor m > 0.

The PDF, which corresponds to a visually prominent part,
is an important factor to be taken into account. In order to
efficiently control the PDF, we introduce a function H(t),

t ∈ [−1,1], returning a value between 0 and 1 that will shift
the values of noise, so as to modify its basic PDF.

The final formulation of R is then:

R(x) = H

(
1
η

n

∑
i=0

1
mi Nk,k′,φ,θ(m

iQ(S(x)))

)
(3)

where η is a constant normalization factor. The parameters
of R are n, m, k, k′, φ, θ, Q, (sx,sy,sz), plus parameters
defining H. To keep the number of parameters of H as low
as possible, we use a piece-wise linear function, depending
on a little number of equally spaced control points hi, i ∈
[0,nH ]. H is defined as: H(t) = hbt/nHc ∗(1− f rac(t/nH))+
hbt/nHc+1 f rac(t/nH), where f rac() means the fractional
part and b c the integer part.

5. Texture similarity metric

In this section we describe the similarity metric M that we
use to compare the photographed details (i.e. the supplied
picture Ip) resulting from random process r, with the syn-
thetic details (i.e. the computed picture Is) resulting from
function R (equation 3). There is a large amount of litera-
ture concerning the discrimination and classification of tex-
tures. In [DG97, BD04], a combined spectral and histogram
metric has been used to compare an example texture with a
synthetic procedural texture. But such an approach assumes
that the texture is stationary. In our case, according to the
object’s shape, the viewer’s position, the lighting condition
and the geometry of the details, the visual aspect of the same
texture can vary a lot on Ip. Computing a global histogram
and Fourier transform of Ip consequently makes little sense.

Instead, we propose to use a metric based on local filter re-
sponses, such as Gabor filters and windowed Fourier trans-
forms, which have been widely studied in the past [DH95,
RHS99, AWY97]. These filters are interesting for our tex-
ture metric, since they unify both spatial and spectral infor-
mation. Concretely, we use a filter of finite support, based
on a convolution mask of size (2ms)

2, applied at multiple
image resolutions. Let us call Il the l-th level of a Gaussian
pyramid of an image I, such that I0 = I. The filter response
ρ around pixel (i, j) at level l for discrete frequencies (u,v)
is defined by the following windowed Fourier transform:

ρi, j,l(u,v) =
ms

∑
a=−ms+1

ms

∑
b=−ms+1

Il(a+ i,b+ j) · (4)

e
−(a2+b2)

2σ2 e
−2iπ((a+ms−1)u+(b+ms−1)v)

2ms

The window is an isotropic Gaussian function centered on 0.
The filter result ρ is a complex number characterized by its
amplitude and phase.

We consider that two images I and I′ depict similar
stochastic details (textures), if the distribution of amplitude
of filter responses applied for different frequencies (u,v) and
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levels l are similar. This similarity is measured by compar-
ing histograms hu,v,l(I) composed of hn bins. The histogram
value hb

u,v,l(I) associated with a given bin b is defined by the
normalized number of values of ρl(u,v) that fall within the
range [vb,vb+1[ corresponding to b for all (i, j) of image I.
The texture comparison metric M between two images I and
I′ is thus defined by following mean squared error (MSE) :

M(I, I′) = ∑
b,u,v,l

(
hb

u,v,l(I)−hb
u,v,l(I

′)
)2

The histograms are depending on frequencies u,v and on
level l.

Figure 3 shows the actual set of histograms we used for
characterizing textures. Three texture examples are shown,
with three sets of histograms for levels 0, 1 and 2. For each
level we have a set of 17 histograms (each composed of 32
bins). These histograms correspond to frequencies (u,v) ∈
{(0,0),(1,0),(1,1),(0,1),(1,−1),(2,0),(2,2),(0,2),(2,−2),
(2,1),(1,2),(−2,1),(1,−2),(3,0),(0,3),(3,3),(3,−3)}.
We used a Gaussian window of size ms = 4 (i.e. 8× 8
pixels). The two first examples (top and middle row),
are extracted from the same image. They correspond to
the same texture. Note the similarity of the histograms,
which is confirmed by the low MSE of 0.9, 2.3 and 6.4
respectively for levels 0, 1 and 2 (the global MSE is 9.6).
The third texture has similar frequencies in spectral domain,
but is visually different, which is also confirmed by the
histograms. In this case the MSE with the first row is 11.5,
17.2 and 30.1 for the same levels (the global MSE is 58.8).
For all examples in this paper, we used the same set of 17
frequencies with three levels of scale.

l = 0 l = 1 l = 2

Figure 3: Histograms resulting from an analysis of visually
similar (first two rows) and different (last row) textures.

6. Computing volumetric details

In this section, we describe how R (equation 3) can be as-
sociated to a virtual object O so as to compute an image Is
that will be compared with the photograph Ip during the it-
erative error minimization procedure. In order to synthesize

the details, we propose to use two common approaches. The
first is displacement mapping, which consists in shifting sur-
face points along their normal: P′ = P+AdR(P)NP, where P
represents the surface point, NP its normal, Ad an amplitude
of displacement and P′ the resulting shifted point. R can be
limited to a 2D scalar function defined on the object surface
in this case. But it can also be a 3D function, to avoid the
need for a surface parameterization.

The second is a generalization of displacement mapping
to full volumetric objects [PH89]. This technique is called
hypertexturing. In our case, points are shifted along the gra-
dient of density: P′ = P+AdR(P)G(P), where P represents
the point to be shifted (including object interior points) and
G the normalized gradient of density on P. In this case the
function R must be defined in full 3D space. To apply such a
generalized displacement, we use the hardware accelerated
method of [KPH∗03]. It consists in applying a direct volume
rendering technique to an object stored as 3D density texture
on the GPU.

To compute picture Is we also need a local lighting
model, as well as a transparency transfer function th which
associates semi-transparency with density values d(P) of
O [KPH∗03]. As lighting condition, we use the one pro-
vided by the user (generally a single light source direction).
To simplify the transfer function, we use a power function
depending on a single coefficient dh: th(x) = pow(d(P),dh).
We then apply a local shading model based on ambient, dif-
fuse and specular coefficients, respectively Ka, Kd and Ks.

7. Iterative parameters fitting technique

An iterative optimization technique is used to determine the
parameters of the random function R. The optimization con-
sists in determining the global minimum of the image com-
parison metric M(Ip, Is), which is a scalar function depend-
ing on R. The latter is defined by parameters: n, m, k, k′,
φ, θ, Q, (sx,sy,sz), and the control points hi of H. All other
parameters are set by the user: the object O, the lighting con-
dition and the amplitude Ad of displacement. The user also
decides whether or not there is semi-transparency and / or a
specular component in the reflectance model.

Figure 4: Initial set of control points used for H.

A common numerical approach for solving such a multi-
dimensional function consists in starting from an initial
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Figure 5: Examples of noise results for various parameters.
Each column corresponds to noise generated with the fol-
lowing parameters : (first) k,k′=(1,50), φ = 0, θ = 0; (sec-
ond) k,k′=(1,50), φ = 2, θ = π; (third) k,k′=(1,2), φ = 0,
θ = 0. For each row, examples respectively use the first,
third, fourth and seventh function of figure 4.

guess and then refining this guess by using a gradient descent
based on the Jacobian matrix. The key issue is to provide a
good initial guess to avoid falling into a local minimum, in-
stead of the desired global one. Unfortunately, the amount
of parameters of R is high. This excludes a naive approach
that would consist in subdividing the parameter space into
a finite set of samples, and then compute M for all possible
combinations of these samples. It is therefore important to
make use of heuristics.

The first heuristic we have chosen consists in estimat-
ing the anisotropy of R, e.g. Q and (sx,sy,sz). The latter
is obtained by orienting Q such that the z axis matches
the normal of the virtual object on the center of the user
painted matching zone. Then, an anisotropy factor f is com-
puted between x and y using the spectral domain around this
center (the mean energy distribution ratio between the two
main frequency axes). (sx,sy,sz) is thus replaced by a sin-
gle unknown global scaling factor s such that (sx,sy,sz) =
(s · f ,s,s). Another heuristic consists in limiting values for
n, k and k′, which are discrete. Because of the limited size
of the example image, we also limited n to a range between
1 and 4. We noticed that for many couples (k,k′) the vi-
sual difference of the corresponding noises is low. Hence,
we limited values to the sets (1,50),(1,2), (2,2) and (2,3).
Because of the rapid amplitude decrease of harmonics, the
values of m are also initially limited to a small set: 1.5, 2 and
4. Likewise, the frequencies of the cosine stripes of the noise
function are limited to following discrete values: 0, 2 and 4.

One important parameter is H. We empirically fixed the
amount of control points to 11, and used a starting set of
classical mathematical functions (power, smooth step, etc.).
This set is shown on figure 4. Examples of initial noise func-
tions along with the resulting effect on a planar surface (us-
ing displacement mapping) are shown in figure 5 (we show a
single harmonic, i.e. n = 1). The rows illustrate the influence
of H, while the three columns represent noises obtained re-
spectively with k,k′=(1,50), φ = 0, θ = 0, with k,k′=(1,50),
φ = 2, θ = π and with k,k′=(1,2), φ = 0, θ = 0. The remain-
ing parameters are finally all coarsely sampled.

The iterative procedure starts by computing images us-
ing a combination of these initial values. The metric is only
computed for the highest levels. A finite set of n-closest con-
figurations is then kept (the ones that give the lowest values
for M). For each retained configuration, we start a gradient
descent-based refinement. At the end the result providing the
lowest error M is kept. At each iteration, before computing
M, the coefficients of reflectance are adjusted, by comparing
the image luminosity between the example and the synthetic
image. The luminosity of the darkest pixels is used to ad-
just Ka, those of the brightest pixels to adjust Ks and the
global mean luminosity for adjusting Kd. The shininess co-
efficient is adjusted by counting and comparing the amount
of “bright” pixels.

We note that in spite of the use of these heuristics, the
amount of pictures that must be computed for exploring the
parameter space remains high during the initial step. For-
tunately, the hardware based rendering technique allows us
to compute from 5 to 50 fps, depending on the deformation
technique used and the size of the matching area. This allows
us to compute hundreds of images each minute. Yet, the en-
tire procedure generally requires several hours (depending
on the desired precision) for matching parameters. We also
note that obtained parameters are not guaranteed to repre-
sent the best match because of possible local minima (this is
a classical problem of iterative gradient descent techniques).

8. Results

All results in this section have been obtained with a PC with
Intel Core 2 Quad Q9300 CPU (4Gb RAM), and a NVidia
GeForce GTX 280 with 1Gb RAM. We conducted several
tests with various input images, ranging from full 3D effects,
to simpler displacement mapping.

Figure 6 shows five different “full 3D” examples :(from
top to down) grass, exotic bark, a cloud, dry ground and
sand waves. The left-side images show the example photo-
graph, with the used virtual object on the upper right corner.
The right shows a synthesis result rendered on an object with
“real” 3D effects. Less than a minute was sufficient to place
the virtual object and the light direction. The objects with
3D details are rendered using direct volume rendering at re-
spectively 27, 9, 4, 13 and 32 fps, depending on the sampling
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Figure 6: Five examples of “full 3D” effects obtained
with our approach. Left: the example and the virtual object
placed by the user. Right: a rendering of obtained 3D details
on arbitrary objects with arbitrary lighting.

step of the volume rendering and the amount of noises (semi-
transparent objects are rendered at lower framerates because
no early ray termination can be applied). All of these tex-
tures are fully procedural and use formula 3. We have also
tested our approach on simpler displacement map textures,
illustrated in Figure 7. In this case, user work was reduced to
indicating an estimated light source direction. No virtual ob-
ject was required. These examples represent different types
of roughcast and plaster. The texture parameters computa-
tion required 126, 73 and 168 minutes. We have compared
our result to a classical texture synthesis technique (in this
case the graphcut [KSE∗03] and then mapped the result in
both cases onto a plane (middle column) and a torus (right

Figure 7: Three examples of roughcast. Left column: the
example. Middle column: texture mapping on a plane (Top:
result obtained with graphcut [KSE∗03] and classical tex-
ture mapping. Bottom: our approach including displacement
mapping). Last column: applying the textures to a torus,
(left) classical texture mapping, (right) our procedural dis-
placement map.

Figure 8: Evaluating the quality of rendering. Left: two
photographs of roughcast for two different views. Middle:
classical texture synthesis and texture mapping. Right: our
procedural texture including relief. Only the top left image
was used as example.

column). The difference between both approaches is obvi-
ous. A classical texture synthesis technique does not provide
convincing results, since underlying texture relief is ignored.
We note however that our approach is unable to recover local
high frequency color variations. In our case, color is added
empirically by correlating it to the height (user work) or by
using the color texture synthesis technique of [GDS10] if
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the latter can be decorrelated from relief. In spite of an ap-
proximate processing of color, our approach provides more
realistic rendering results in the end, especially when tex-
tures are applied to non-planar object surfaces, such as the
torus. In addition, our textures are procedurally defined in a
continuous space.

In order to evaluate more objectively our approach, we
have compared our results with a photograph showing a sin-
gle roughcast texture for two different viewing directions.
This is shown by figure 8. The left shows two photographs of
the same wall, one at orthogonal view (top), the other at graz-
ing angle (bottom). The second column shows the result ob-
tained with graphcut and classical texture mapping using ap-
proximately the same viewing conditions. Only the top left
photograph was used as an example. At grazing angle clas-
sical texture mapping fails to capture the change of appear-
ance due to the relief and parallax. The last column shows
our result. Again, only the top right example was used. In
our case, at grazing view angle, the parallax effect is well
recovered, thus globally providing a result that comes closer
to the reference (the photograph on the left bottom). For this
procedural texture only three noise harmonics were used.

Figure 9: Comparison between our method (bottom right)
and explicit geometry reconstruction with texture mapping
(bottom left) using a structured light 3D scanner (top right).

Figure 9 illustrates limitations and shows a comparison
between our method and explicit geometry reconstruction.
The first row shows the photograph of the object used as in-
put for our method (left). An explicit acquisition of geometry
is used with a structured light 3D scanner (right). While the
result using geometry acquisition with texture mapping (last
row, left) shows an accurate visualization of the object, our
method (right) fails to capture the inherent structure of the
texture. The underlying geometry is in this case too struc-
tured and hence not well represented by noise.

9. Conclusions

In this paper we have presented a new approach for procedu-
ral texture synthesis based on photographs. Unlike classical
texture synthesis based on examples, our approach produces
procedural descriptions of the textures including relief in-
formation. This allows us to improve rendering quality, by
increasing realism. It also improves suitability for computer
graphics applications by providing extremely compact tex-
ture definitions. We have based our approach on a generic
multiscale random function. Its parameters are computed by
error minimization using a metric based on local filter banks.

One current major limitation is that we can only process
noisy details. Although these are frequent in nature, it
would be valuable to propose solutions that would be able
to reproduce also more structured details, like minerals for
instance. We also would like to adapt our approach to some
specific structured details such as fur. Fur is more complex
to be obtained by photographs, because of additional
parameters that need to be taken into account like curliness
and surface vector fields.
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