Traitement du Signal

Durée: 3 heures

Responsable: Prof. Christian RONSE Tous documents et calculettes autorisés Ordinateurs et téléphones portables interdits

Justifiez soigneusement vos réponses!

(1) Filtre numérique (5 points)

On considère des signaux échantillonnés de la forme x(t) pour t entier relatif. On a un filtre numérique transformant un signal d'entrée x(t) ($t \in \mathbb{Z}$) en un signal de sortie y(t) donné par

$$y(t) = x(t) - \frac{1}{2}x(t-2) + \frac{1}{4}x(t-3) - \frac{1}{8}x(t-4) + \dots + \left(\frac{-1}{2}\right)^n x(t-1-n) + \dots$$
$$= x(t) + \sum_{n=1}^{\infty} \left(\frac{-1}{2}\right)^n x(t-1-n) .$$

- (i) Ce filtre est-il à réponse impulsionnelle finie ou infinie? Est-il causal?
- (ii) Donner une équation récursive (avec un nombre fini de termes) liant x(t) et y(t).
- (iii) Dessiner le diagrame d'un circuit réalisant ce filtre avec des additionneurs et multiplicateurs de signaux, et des délais d'une unité de temps.

(2) Échantillonnage audio (4 points)

L'oreille humaine entend les fréquences jusqu'à 20k Hz. On a un signal sonore contenant des fréquences (positives) jusqu'à 40k Hz, qu'on souhaite échantillonner à la fréquence de 50k Hz. Avant l'échantillonnage on appliquera un filtre passe-bas au signal.

Quelles sont les fréquences de coupure possibles pour le filtre passe-bas, telles qu'on puisse reconstruire la partie audible du signal d'origine à partir du signal filtré puis échantillonné?

(3) Série de Fourier (3 points)

On considère la fonction f donnée par

$$f(t) = \sin(t/2) + \cos(t) - \sin(5t/2)$$
.

- (i) Déterminer sa période.
- (ii) Donner sa décomposition en série de Fourier en exponentielles imaginaires, de la forme:

$$f(t) = \sum_{z=-\infty}^{+\infty} c_z e^{2\pi i zt/T} .$$

(4) Intégrale de Fourier (6 points)

Donner la transformée de Fourier de la fonction non périodique f à variable réelle définie par

$$f(x) = \begin{cases} 1 - |x| & \text{pour } |x| < 1; \\ 0 & \text{pour } |x| \ge 1. \end{cases}$$

(5) Cryptage (5 points)

Soit f_M une fréquence positive. On a un signal $r\acute{e}el\ S$ dont les fréquences positives vont de f_0 à f_1 , où $0 < f_0 < f_1 < f_M$. (Donc le spectre de fréquences de S est inclus dans l'intervalle $[-f_M, f_M]$.) On applique à S les deux transformations suivantes:

- (a) D'abord: modulation en amplitude de fréquence f_M avec double amplitude, c.à.d. on multiplie S(t) par 2 $\cos[2\pi f_M t]$.
- (b) Ensuite: filtre passe-bas idéal à fréquence de coupure f_M .
- Le signal résultant aura encore son spectre inclus dans l'intervalle $[-f_M, f_M]$.
 - (i) Dessiner un spectre possible pour S, et représenter graphiquement l'effet sur ce spectre des deux transformations (a) puis (b).
 - (ii) Que se passe-t-il si on applique une deuxième fois les deux transformations (a) puis (b)?