Traitement du Signal

Contrôle continu

Durée: 2 heures Tous documents et calculettes autorisés Téléphones portables interdits

Justifiez soigneusement vos réponses!

(1) Série de Fourier

Donner la série de Fourier (en cosinus et sinus) de l'onde rectangulaire R_{α} de largeur α et de période 1, donnée par la formule:

$$R_{\alpha}(x) = \begin{cases} 1 & \text{pour } 0 \le x < \alpha, \\ 0 & \text{pour } \alpha \le x \le 1, \end{cases}$$

où $0 < \alpha < 1$.

(2) Échantillonnage audio

L'oreille humaine entend les fréquences jusqu'à 20k Hz. On a un signal sonore contenant des fréquences (positives) jusqu'à 40k Hz, qu'on souhaite échantillonner à la fréquence de 50k Hz. Avant l'échantillonnage on appliquera un filtre passe-bas au signal.

Quelles sont les fréquences de coupure possibles pour le filtre passe-bas, telles qu'on puisse reconstruire la partie audible du signal d'origine à partir du signal filtré puis échantillonné?

(3) Déphasage

Soit S_1 et S_2 deux signaux unidimensionnels à valeurs rélles ayant la même amplitude de Fourier $(\mathcal{A}(S_1)(u) = \mathcal{A}(S_2)(u)$ pour toute fréquence u), et tels que S_2 soit déphasé de $-\pi/2$ par rapport à S_1 pour les fréquences strictement positives $(\Phi(S_2)(u) = \Phi(S_1)(u) - \pi/2$ pour une fréquence u > 0). On suppose que $\mathcal{A}(S_1)(0) = 0$.

- (i) Que peut-on dire de $\Phi(S_2)(u)$ par rapport à $\Phi(S_1)(u)$ pour une fréquence strictement négative u < 0?
- (ii) Donner une formule liant $\mathcal{F}(S_2)(u)$ à $\mathcal{F}(S_1)(u)$ pour toute fréquence u (positive, nulle, ou négative).
- (iii) Soit φ un angle entre 0 et $\pi/2$. Expliquer comment obtenir à partir de S_1 et S_2 un signal S de même amplitude de Fourier que S_1 ($\mathcal{A}(S)(u) = \mathcal{A}(S_1)(u)$ pour toute fréquence u), et déphasé de $-\varphi$ par rapport à S_1 pour les fréquences strictement positives ($\Phi(S)(u) = \Phi(S_1)(u) \varphi$ pour une fréquence u > 0). Que peut-on dire de $\Phi(S)(u)$ pour les fréquences strictement négative u < 0?

(4) Modulation et transmission

On a trois signaux temporels analogiques S_1 , S_2 et S_3 dont les fréquences positives s'échelonnent respectivement: de 0 à 40k Hz pour S_1 , de 10k à 60k Hz pour S_2 , et de 5k à 70k Hz pour S_3 . On dispose de trois modulateurs d'amplitude cosinusoidaux qui permettent de multiplier chacun des trois signaux $S_j(t)$ par une cosinusoide $\cos[2\pi f_j t]$, dont la fréquence f_j est réglable par l'utilisateur (j=1,2,3). Expliquer comment utiliser ces trois modulateurs (et avec quelles valeurs en Hz des fréquences de modulation f_j) pour transmettre simultanément et sans pertes d'information les trois signaux S_1 , S_2 et S_3 à travers un cable qui laisse passer sans pertes ni distorsions toutes les fréquences s'échelonnant (en valeur absolue) de 80k Hz à 500k Hz. Illustrer graphiquement votre solution sur le spectre de fréquences des signaux avant et après modulation.