Traitement du Signal

Durée: 3 heures

Responsable: Prof. Christian RONSE Tous documents et calculettes autorisés

Justifiez soigneusement vos réponses!

(1) Fréquences positives et négatives

Soit S un signal réel unidimensionnel (c.à.d. S est une fonction d'une variable, à valeurs réelles).

- (i) De façon générale, donner la relation entre $\mathcal{F}(S)(\nu)$ et $\mathcal{F}(S)(-\nu)$ pour une fréquence $\nu > 0$.
- (ii) Pourquoi dans un problème concret concernant des signaux physiques et des dispositifs matériels de transmission, donne-t-on leurs propriétés en termes de fréquences positives, sans parler des fréquences négatives?
- (iii) On suppose S non-échantillonné et périodique de période T, et on a sa décomposition en série de Fourier

$$S(x) = \sum_{n=-\infty}^{+\infty} c_n e^{2\pi i nx/T}.$$

Soit φ_n l'angle de c_n , c.à.d. $c_n = |c_n|e^{i\varphi_n}$. Montrer qu'on a

$$S(x) = c_0 + 2\sum_{n=1}^{\infty} |c_n| \cos\left(2\pi \frac{nx}{T} + \varphi_n\right).$$

(2) Modulation

On a un canal de transmission dont la bande de fréquences utilisables est de 1 kHz à 3 kHz (en dehors de cette bande, le signal subit des pertes et distorsions). On souhaite transmettre à travers ce canal un signal S à basses fréquences; les fréquences du spectre de S sont toutes bornées par une fréquence de coupure f_b . On envisage lors de l'émission d'adapter la bande de fréquences de ce signal par modulation, avec une fréquence de modulation f_m , et on hésite entre deux approches:

(a) Modulation sinusoidale: On transmet le signal M donné par

$$M(t) = S(t) \cdot \cos[2\pi f_m t].$$

(b) Modulation à bande latérale unique (BLU): On transmet le signal M donné par

$$M(t) = S(t) \cdot \cos[2\pi f_m t] - S^*(t) \cdot \sin[2\pi f_m t],$$

où S^* est le signal déphasé de $-\pi/2$ pour les fréquences positives, c.à.d.

$$\mathcal{F}(S^*)(\nu) = \begin{cases} -i \, \mathcal{F}(S)(\nu) & \text{pour } \nu > 0, \\ 0 & \text{pour } \nu = 0, \\ +i \, \mathcal{F}(S)(\nu) & \text{pour } \nu < 0. \end{cases}$$

Pour ce canal donné, et pour chacune des deux méthodes de modulation :

- (i) Représenter graphiquement le spectre de Fourier de S et celui de M en fonction de f_m .
- (ii) Déterminer la valeur à choisir pour la fréquence de modulation f_m .
- (iii) Donner la plus grande valeur possible de la fréquence maximale f_b du signal S, pour laquelle la transmission peut se faire sans pertes ni distorsions par modulation à travers ce canal.
- (iv) Donner une méthode pour démoduler le signal à la réception, c.à.d. retrouver le signal originel S à partir du signal modulé M.

(3) Information

Un certain volume de données informatiques est transmis de façon optimale en 3 minutes à travers un cable dont la bande de fréquences utiles est de 2k Hz à 6k Hz. On remplace ce cable par un autre dont la bande de fréquences utiles est de 5k Hz à 17k Hz. Combien de temps devrait théoriquement requérir la transmission de façon optimale du même volume de données?

(4) Filtres numériques

On considère des signaux échantillonnés de la forme x(t) pour t entier relatif.

- (i) Expliquer pourquoi la réalisation concrète d'un filtre numérique à réponse impulsionnelle infinie requiert une mise en oeuvre récursive?
- (ii) On a un filtre numérique transformant un signal d'entrée x(t) $(t \in \mathbb{Z})$ en un signal de sortie y(t) donné par

$$y(t) = x(t) + \frac{1}{3}x(t-2) + \frac{1}{9}x(t-4) + \frac{1}{27}x(t-6) + \dots = \sum_{k=0}^{\infty} \frac{1}{3^k}x(t-2k).$$

- (a) Donner une équation récursive (avec un nombre fini de termes) liant x(t) et y(t).
- (b) Dessiner le diagrame d'un circuit réalisant ce filtre avec des additionneurs et multiplicateurs de signaux, et des délais d'une unité de temps.

(5) Calculer ou ne pas calculer...

Soient $f_1, f_2 \in \mathbb{R}$, avec $f_1 > f_2 > 0$. On définit les fonctions S_1 et S_2 par

$$S_1(x) = \frac{\sin[2\pi f_1 x]}{\pi x}$$
 et $S_2(x) = \frac{\sin[2\pi f_2 x]}{\pi x}$.

- (i) Donner la convolution de S_1 par S_2 .
- (ii) Donner la transformée de Fourier de $S_1(x)^2$.

(6) Analyse de Fourier

Donner la transformée de Fourier de la fonction $F: \mathbb{R} \to \mathbb{R}$ définie par

$$F(x) = \begin{cases} 1 + \cos x & \text{pour } -\pi < x < +\pi; \\ 0 & \text{pour } |x| \ge \pi. \end{cases}$$

(7) Échantillonnage audio

L'oreille n'entend pas les fréquences supérieures à 20k Hz. Un signal sonore contenant des fréquences jusqu'à 30k Hz est échantillonné, avec une fréquence d'échantillonnage de 50k Hz. Quel problème y aura-t-il théoriquement et concrètement?