OUVERTURES ALGÉBRIQUES: ANNULAIRE, PARAMÉTRIQUE

Christian RONSE, LSIIT UMR 7005 CNRS-ULP, Département d'Informatique de l'ULP

Une ouverture algébrique est un opérateur croissant, anti-extensif, et idempotent. Le Théorème de Serra-Matheron dit que toute ouverture algébrique invariante par translations se décompose en une union d'ouvertures par des éléments structurants (dans le cas d'images à niveaux de gris: une enveloppe supérieure de telles ouvertures). Nous donnons ici deux exemples d'ouvertures algébriques pour les ensembles; elles s'étendent naturellement en ouvertures plates pour les images à niveaux de gris.

OUVERTURE ANNULAIRE

Soit \sim une relation symetrique sur E ($x \sim y \Leftrightarrow y \sim x$) que nous appellerons adjacence. On définit le voisinage V(x) de $x \in E$ comme l'ensemble des points de E adjacents à x:

$$\forall x \in E, \quad V(x) = \{y \in E \mid y \sim x\}.$$

Soit $X \in \mathcal{P}(E)$; un point isolé de X est un point $x \in X$ tel que $V(x) \cap X = \emptyset$. L'opérateur ψ qui enlève de X ses points isolés est une ouverture algébrique; alors $\psi(X)$ est la réunion des paires $\{x,y\}$, où $x,y \in X$ avec $x \sim y$ (on peut éventuellement avoir x=y).

Supposons que \sim soit invariante par translations: $x \sim y \implies x+p \sim y+p$. Posons B=V(o), où o est l'origine; alors la symétrie de \sim inplique que B est symétrique: $B=\check{B}$. L'invariance par translations donne $V(p)=B_p$ pour tout $p\in E$. Un point $x\in X$ est non-isolé ss'il existe $y\in X$ avec $y\in V(x)$, c.à.d. $x\in V(y)=B_y$. Donc les points non-isolés de X sont les $x\in X$ vérifiant $x\in\bigcup_{y\in X}B_y=X\oplus B$. Par conséquent, l'opérateur ψ enlevant les points isolés d'une figure donne $\psi(X)=X\cap (X\oplus B)$. C'est une ouverture algébrique invariante par translations, et la décomposition du Théorème de Serra-Matheron donne:

$$X \cap (X \oplus B) = \bigcup_{b \in B} (X \circ \{o, b\}).$$

Notons que si $o \in B$, alors tout point vérifie $x \in V(x)$, c.à.d. aucun point n'est isolé, et effectivement on a $X \cap (X \oplus B) = X$. On suppose donc généralement que $o \notin B$.

Par exemple si \sim est la 4- ou la 8-adjacence, B sera le 4- ou le 8-voisinage de l'origine, origine exclue. Un exemple classique de Serra donne \sim définie par $x\sim y$ ssi la distance entre x et y est comprise entre r et R (0 < r < R); alors B est un anneau de rayon intérieur r et rayon extérieur R. Cet exemple est à l'origine de l'expression "ouverture annulaire par B" pour désigner l'opérateur $X\mapsto X\cap (X\oplus B)$ (par opposition à l'ouverture "morphologique" $X\mapsto X\circ B$).

Le dual de l'ouverture annulaire par B est la fermeture annulaire par $B, X \mapsto X \cup (X \ominus B)$, qui enlève les points isolés du fond et les rajoute à la figure.

OUVERTURE PARAMÉTRIQUE ("RANG-MAX")

Soient $X, B \in \mathcal{P}(E)$; on suppose que B est fini. L'ouverture $X \circ B$ est la réunion de tous les translatés de B inclus dans X. On peut vouloir relâcher cette condition et prendre en compte les translatés B_p "presque entièrement inclus" dans X; afin de conserver la propriété d'anti-extensivité de l'ouverture, dans ce cas on ne garde dans la figure résultante que $B_p \cap X$ pour un tel translaté. On peut exprimer cette condition (que B_p est "presque entièrement inclus" dans X) d'une autre façon, à savoir que

 $B_p \cap X$ contient "presque tout" B_p , et nous écrivons cette condition: $B_p \cap X$ p.t. B_p . Donc nous construisons à partir de X l'ensemble

$$\bigcup \{B_p \cap X \mid p \in E, \ B_p \cap X \ p.t. \ B_p\}. \tag{1}$$

Afin de pouvoir donner une formule précise pour ce résultat, il faut préciser ce que peut signifier "presque tout". On peut dire:

- (i) Le "presque tout" ne concerne que les parties d'un ensemble: On peut avoir A p.t. B uniquement pour $A \subseteq B$.
- (ii) Le "tout" contient "presque tout": B p.t. B.
- (iii) Quelque chose plus grand qu'une autre contenant "presque tout" contient "presque tout": Si $A \subseteq A' \subseteq B$ et A p.t. B, alors A' p.t. B.
- (iv) la notion de "presque tout" est invariante par translations: Pour $A \subseteq B$ et $p \in E$, on a A p.t. $B \iff A_p$ p.t. B_p .

Soit \mathcal{B} la famille des A tels que A p.t. B. Grâce à (i,ii), \mathcal{B} est une famille non-vide de parties de B. Soient A^1, \ldots, A^m les éléments de \mathcal{B} minimaux pour l'inclusion. Pour $A \subseteq B$, comme B est fini, (iii) donne que $A \in \mathcal{B}$ ss'il existe un $j \in \{1, \ldots, m\}$ tel que $A^j \subseteq A$. Par (iv), $B_p \cap X$ p.t. B_p ssi $B_p \cap X = A_p$ pour un $A \in \mathcal{B}$, c.à.d. ssi $(A^j)_p \subseteq B_p \cap X$ pour un $j \in \{1, \ldots, m\}$; mais comme $A^j \subseteq B$, on a de toute façon $(A^j)_p \subseteq B_p$. Par conséquent

$$B_p \cap X$$
 p.t. $B_p \iff \exists j \in \{1, \dots, m\}, (A^j)_p \subseteq X.$

Mais $(A^j)_p \subseteq X$ signifie que $p \in X \ominus A^j$, et on obtient ainsi

$$\{p \in E \mid B_p \cap X \ p.t. \ B_p\} = \bigcup_{j=1}^m (X \ominus A^j).$$
 (2)

Donc (1) donne

$$\bigcup \Big\{ B_p \cap X \mid p \in \bigcup_{j=1}^m (X \ominus A^j) \Big\} = X \cap \bigcup \Big\{ B_p \mid p \in \bigcup_{j=1}^m (X \ominus A^j) \Big\} = X \cap \Big(\Big[\bigcup_{j=1}^m (X \ominus A^j)\Big] \oplus B \Big).$$

Donc la généralisation de l'ouverture par B est l'opérateur $\gamma_B^{A^1,\dots,A^m}$ défini par

$$\gamma_B^{A^1,\dots,A^m}(X) = X \cap \left(\left[\bigcup_{j=1}^m (X \ominus A^j) \right] \oplus B \right) = X \cap \left[\bigcup_{j=1}^m (X \ominus A^j) \oplus B \right]. \tag{3}$$

En d'autres termes, on fait la réunion des érodés de la figure par chacun des A^{j} , puis on fait une dilatation par B, et enfin on intersecte le résultat avec la figure originale.

L'opérateur $\gamma_B^{A^1,...,A^m}$ est une ouverture algébrique invariante par translations, et la décomposition du Théorème de Serra-Matheron donne:

$$\gamma_B^{A^1,\dots,A^m}(X) = \bigcup_{A \in \mathcal{B}} X \circ A.$$

On a toujours $X \circ B \subseteq \gamma_B^{A^1, \dots, A^m}(X)$. Un cas extrême est quand "presque tout" signifie "tout"; ici $\mathcal{B} = \{B\}, m = 1, A^1 = B$, et on a $\gamma_B^{A^1, \dots, A^m}(X) = X \circ B$. Le cas extrême opposé est quand "presque

tout" signifie "une partie non-vide"; ici $\mathcal{B} = \mathcal{P}(B)$, m = |B|, les A^j sont tous les singletons inclus dans B, et on a $\gamma_B^{A^1,\dots,A^m}(X) = X$.

Soit n=|B|. Une interprétation naturelle de "presque tout" est "au moins n' points", où $1 \le n' \le n$. Donc $\mathcal B$ contient tous les $A \subseteq B$ tels que $|A| \ge n'$, et A^1, \ldots, A^m sont toutes les parties de taille n' de B. On a alors

$$\bigcup_{j=1}^{m} (X \ominus A^{j}) = \{ p \in E \mid |B_{p} \cap X| \ge n' \}.$$

Ici la décomposition du Théorème de Serra-Matheron donne

$$\gamma_B^{A^1,\dots,A^m}(X) = \bigcup_{j=1}^m X \circ A^j.$$

Soit k = n + 1 - n'. Le filtre de rang k d'élément structurant B est l'opérateur plat ρ_B^k sur les images à niveaux de gris défini comme suit pour une image F et un point p:

$$\rho_B^k(F)(p) = k$$
-ième plus petite valeur parmi les $F(q), q \in B_p$.

Par exemple:

- pour k = 1, ρ_B^k est l'érosion par B;
- pour k = n, ρ_B^k est la dilatation par \check{B} ;
- pour n impair et k=(n+1)/2, ρ_B^k est le filtre médian de fenêtre B_p au point p.

Il est facile de voir (en l'appliquant à une image binaire) que ρ_B^k est l'opérateur plat correspondant à l'union des érosions par les A^j : $\rho_B^k(F) = \bigvee_{j=1}^m (F \ominus A^j)$. Ecrivons γ_B^k pour l'ouverture $\gamma_B^{A^1,\dots,A^m}$ dans cette situation; elle prend la forme suivante:

$$\gamma_B^k(F) = F \wedge \left(\rho_B^k(F) \oplus B \right).$$

On appelle γ_B^k l'ouverture paramétrique de rang k par B. Quand k croît de 1 à n, cette ouverture croît de l'ouverture morphologique par B à l'identité:

$$F \circ B = \gamma_R^1(F) < \ldots < \gamma_R^n(F) = F.$$