UFR de Mathématique et Informatique L3 Informatique

Probabilités, Statistiques et Combinatoire — 2008-2009

Contrôle Terminal, partie "Combinatoire" — 2ème session de juin 2009

Durée conseillée : 1 heure

Documents autorisés: uniquement les 9 polycopiés de combinatoire Téléphones, calculettes et ordinateurs interdits

Justifier soigneusement les réponses

- (1) Soit E un ensemble fini de cardinal n. Calculer:
 - (i) Le nombre de couples (ordonnés) (A_1, A_2) , où A_1 et A_2 sont des parties disjointes de E $(A_1, A_2 \in \mathcal{P}(E), A_1 \cap A_2 = \emptyset)$.
 - (ii) Le nombre de triples (ordonnés) (A_1, A_2, A_3) , où A_1 , A_2 et A_3 sont des parties mutuellement disjointes de E $(A_1, A_2, A_3 \in \mathcal{P}(E), A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \emptyset)$.
- (iii) **Bonus**: Quel est nombre de quadruples (A_1, A_2, A_3, A_4) , de quintuples $(A_1, A_2, A_3, A_4, A_5)$, etc., de parties mutuellement disjointes de E?

Indication: binôme de Newton.

- (2) Soit E un ensemble fini de cardinal $n \geq 2$. Une partition binaire de E est une paire (non ordonnée) $\{A, B\}$, où $A, B \in \mathcal{P}(E)$, $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$ et $A \cup B = E$. Calculer le nombre de partitions binaires.
- (3) Soit \mathbb{R}^2 le plan euclidien ; l'ensemble $\mathcal{P}(\mathbb{R}^2)$ comprend toutes les parties de \mathbb{R}^2 , c.-à-d. toutes les figures dans le plan. On définit la relation $\sim \sup \mathcal{P}(\mathbb{R}^2)$ par $A \sim B$ si B est obtenu en appliquant à A une rotation autour de l'origine d'un quart de tour dans le sens des aiguilles d'une montre.

Décrire la relation d'équivalence engendrée par \sim . Dessiner la classe d'équivalence d'une figure en forme de R placée à droite de l'origine.