Toward the use of a proof assistant to teach mathematics.

Julien Narboux
under the supervision of
Hugo Herbelin

LIX, École Polytechnique

ICTMT7, 26 July 2005, Bristol, UK
Outline

1. What is a proof assistant?
2. Introduction to the Coq proof assistant
3. Some examples
4. Motivation for its use in the classroom
The impact of the use of software on the proving activity is a well addressed issue in the literature.

CAS, DGS,

There are software whose sole purpose is to produce proofs: the proof assistants.
The impact of the use of software on the proving activity is a well addressed issue in the literature.

CAS, DGS,

There are software whose sole purpose is to produce proofs: the proof assistants.
The impact of the use of software on the proving activity is a well addressed issue in the litterature.

CAS, DGS, PA.

There are software whose sole purpose is to produce proofs: the proof assistants.
Introduction

What is a proof assistant?

Introduction to the Coq proof assistant

Some examples

Motivation for its use in the classroom

Conclusion

What?

Why?

CAS
(Maple, MuPAD, Mathematica . . .)
Definitions, Questions → Results
Computation

Theorem Prover
(Otter, Vampire . . .)
Definitions, Axioms, Statement → True, False, I don’t know, Nothing.
Automatic proof

Proof assistant
(Coq (84), Isabelle, HOL, PVS (90’s) . . .)
Axioms, Statement, Interactive Proof → Correct or not
Interactive proof
Proof oriented software

- For example:
 - logic oriented (Hyperproof ...)
 - geometry oriented (Geometrix, Baghera ...)
 - algebra oriented (MathXpert ...)

- They are:
 - User friendly
 - Give hints to the student

Proof assistants

- Not specialized
- A very large span of applications
- A very high level of confidence
- Real mathematics
What can we prove?

- Programs (Line 14 of Paris’ subway . . .)
- Mathematical statements (The fundamental theorem of algebra (Henk Barendregt’s group), The four colours theorem (Gonthier, Werner). . .)
What can we prove?

- Programs (Line 14 of Paris’ subway . . .)
- Mathematical statements (The fundamental theorem of algebra (Henk Barendregt’s group), The four colours theorem (Gonthier, Werner). . .)
Why ?

- To understand what a proof is.
- To ensure correctness of the proof (The four colours theorem again).
- To generate proofs that could not be done by hand, either
 Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
- For teaching.
To understand what a proof is.

To ensure correctness of the proof (The four colours theorem again).

To generate proofs that could not be done by hand, either

- Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
- Proof of mathematical statements (The four colours theorem).

For teaching.
To understand what a proof is.
To ensure correctness of the proof (The four colours theorem again).
To generate proofs that could not be done by hand, either
 - Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
 - Proof of mathematical statements (The four colours theorem).
For teaching.
Why?

- To understand what a proof is.
- To ensure correctness of the proof (The four colours theorem again).
- To generate proofs that could not be done by hand, either
 - Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
 - Proof of mathematical statements (The four colours theorem).
- For teaching.
Why?

- To understand what a proof is.
- To ensure correctness of the proof (The four colours theorem again).
- To generate proofs that could not be done by hand, either
 - Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
 - Proof of mathematical statements (The four colours theorem).
- For teaching.
Why?

- To understand what a proof is.
- To ensure correctness of the proof (The four colours theorem again).
- To generate proofs that could not be done by hand, either
 - Proof of programs (often long but straightforward proofs with too many cases for an exhaustive search).
 - Proof of mathematical statements (The four colours theorem).
- For teaching.
Coq (http://coq.inria.fr/)

- a free software (GPL2),
- based on the Calculus of Inductive Constructions,
- developed at INRIA in the LogiCal team,
- since 1984.
Coq (http://coq.inria.fr/)

- a free software (GPL2),
- based on the Calculus of Inductive Constructions,
- developed at INRIA in the LogiCal team,
- since 1984.
Coq (http://coq.inria.fr/)

- a free software (GPL2),
- based on the Calculus of Inductive Constructions,
- developed at INRIA in the LogiCal team,
- since 1984.
Coq (http://coq.inria.fr/)

- a free software (GPL2),
- based on the Calculus of Inductive Constructions,
- developed at INRIA in the LogiCal team,
- since 1984.
What you need to trust:

- The theory behind Coq.
- The Coq kernel implementation match the theory.
 Coq: > 130000 lines of code
 The kernel: < 11000 lines of code
- Your hardware, operating system and Ocaml compiler.
- Yours axioms.
What you need to trust:

- The theory behind Coq.
- The Coq kernel implementation match the theory.
 Coq: > 130000 lines of code
 The kernel: < 11000 lines of code
- Your hardware, operating system and Ocaml compiler.
- Yours axioms.
What you need to trust:

- The theory behind Coq.
- The Coq kernel implementation match the theory.
 Coq: > 130000 lines of code
 The kernel: < 11000 lines of code
- Your hardware, operating system and Ocaml compiler.
- Yours axioms.
What you need to trust:

- The theory behind Coq.
- The Coq kernel implementation match the theory.
 \[\text{Coq} : > 130000 \text{ lines of code} \]
 \[\text{The kernel} : < 11000 \text{ lines of code} \]
- Your hardware, operating system and Ocaml compiler.
- Yours axioms.
Introduction

What is a proof assistant?

Introduction to the Coq proof assistant

Some examples

Motivation for its use in the classroom

Conclusion

1

\[\forall xyz, x = y \land y = z \rightarrow x = z \]

2

\[\sum_{k=0}^{k=n} 2k + 1 = (n + 1)^2 \]

A few difficulties:

- \(f(x, y) \) is noted \((f x y)\).
- \(A \rightarrow B \rightarrow C \) is used to express \(A \land B \rightarrow C \).
- \(\neg A \) is defined by \(A \rightarrow False \).
Let's start:

1 subgoal
x : nat
y : nat
z : nat
H : x = y /\ y = z
__________________(1/1)
\(x = z \)

Examples:

We know that:

- \(x, y \) and \(z \) are natural numbers and
- \(x = y \land y = z \).

We need to show that:

- \(x = z \).
How can I prove something?

The proof can be described step-by-step using:

- case distinction
- absurd
- induction
- application of a theorem
- computation
- rewriting
- and sometimes automation
- ...
Some examples now.
It clarifies what we know, what we want to prove, what are the theorems, lemmas, axioms, definitions...

- It is rigorous.
- It helps to understand the logic.
- It clarifies what the logical rules are.
- It is fair: the proof is correct iff it is accepted by the system.
It clarifies what we know, what we want to prove, what are the theorems, lemmas, axioms, definitions...

- It is rigorous.
- It helps to understand the logic.
- It clarifies what the logical rules are.
- It is fair: the proof is correct iff it is accepted by the system.
It clarifies what we know, what we want to prove, what are the theorems, lemmas, axioms, definitions... It is rigorous. It helps to understand the logic. It clarifies what the logical rules are. It is fair: the proof is correct iff it is accepted by the system.
Introduction
What is a proof assistant?
Introduction to the Coq proof assistant
Some examples
Motivation for its use in the classroom
Conclusion

Julien Narboux

- It clarifies what we know, what we want to prove, what are the theorems, lemmas, axioms, definitions...
- It is rigorous.
- It helps to understand the logic.
- It clarifies what the logical rules are.
- It is fair: the proof is correct iff it is accepted by the system.
It clarifies what we know, what we want to prove, what are the theorems, lemmas, axioms, definitions... It is rigourous. It helps to understand the logic. It clarifies what the logical rules are. It is fair: the proof is correct iff it is accepted by the system.
Limitations

- **Notations**
- Error messages
- Interface
- Associativity-Commutativity
- Not enough automation
- Too much automation
Limitations

- Notations
- Error messages
- Interface
- Associativity-Commutativity
- Not enough automation
- Too much automation
Limitations

- Notations
- Error messages
- **Interface**
 - Associativity-Commutativity
 - Not enough automation
 - Too much automation
Limitations

- Notations
- Error messages
- Interface
 - **Associativity-Commutativity**
 - Not enough automation
 - Too much automation
Limitations

- Notations
- Error messages
- Interface
- Associativity-Commutativity
- **Not enough automation**
- Too much automation
Limitations

- Notations
- Error messages
- Interface
- Associativity-Commutativity
- Not enough automation
- **Too much automation**
Work done or in progress

PCoq A gui to ease the usage of Coq.

F. Guilhot’s work A formalization of high school geometry in Coq.

CoqWeb An interface for solving exercises online using Coq (Work in progress).

DrGeoCaml A gui for interactive proof in geometry using Coq (Work in progress).
• DGS to *conjecture*
• CAS to *compute*
• PA to *prove*

Thank you!
DGS to *conjecture*
CAS to *compute*
PA to *prove*

Thank you!