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Abstract. In a theorem prover like Coq, mathematical concepts can
be implemented in several ways. Their different representations can be
either efficient for computing or well-suited to carry out proofs easily.
In this paper, we present improved techniques to deal with changes of
data representation within Coq. We propose a smart handling of case
analysis and definitions together with some general methods to transfer
recursion operators and their reduction rules from one setting to another.
Once we have built a formal correspondence between two settings, we can
translate automatically properties obtained in the initial setting into new
properties in the target setting. We successfully experiment with chang-
ing Peano’s numbers into binary numbers for the whole Arith library of
Coq as well as with changing polymorphic lists into reversed (snoc) lists.

1 Introduction

In this paper, we present a general method to change the way we look at a data
type in a proof system such as Coq [5], and to enhance proof reuse when shifting
from a data type representation to another [17].

For instance, one may want to switch from Peano’s encoding of natural num-
bers to a binary representation. This change may be motivated by efficiency
reasons, computations are much faster with binary integers than with unary in-
tegers. We provide a smart mechanism to avoid proving again in the final setting
properties already established in the initial setting.

Previously in [12], we presented a first experiment about changes of data
type representation in type theory. This work was limited to equational rea-
soning. We did not propose any general way to handle structural case analysis
and therefore inversion techniques [6] properly. In addition, we did not consider
inductive predicates and definition unfolding for logical properties. The present
work aims at removing these weaknesses. We choose to develop a practical tool
usable in the Coq system. As a consequence, our experiments were restricted to
the Calculus of Inductive Constructions [15] and its implementation in the Coq
system. Therefore we cannot easily use techniques such as induction-recursion
[9] or those proposed in [13] for instance.

Throughout this paper, we will use the example of natural numbers and
consider their unary and binary representations. However, we would like to em-
phasize that we also experimented with changing the data representation for
polymorphic lists.
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1.1 Related Work

Translating proofs from one setting to another require abstracting away most of
the implementation of a mathematical concept. Viewing concrete datatypes in
a more abstract way can be achieved in many different ways.

– The Coq system provides some tools to deal with proofs in some algebraic
settings, for instance ring [5, Chap. 19] and field [7] structures.

– Modules and functors [4], as those introduced in the latest version of Coq
make it possible to have a high-level view of mathematical concepts we ma-
nipulate. It allows the user to hide the actual implementation of a data type.
Signatures (module types) can be easily instantiated with various concrete
representations.

– G. Barthe and O. Pons [2] suggest to use type isomorphisms to enhance proof
reuse in dependent type theory. They give a computational interpretation of
some type isomorphisms using coercions. Their work allows the user to view
mathematical objects from various points of view.

1.2 An Example

We consider the statement ∀n : nat. n ≤ O → n = O as an example. It is
interesting because it was not processed properly by the method proposed in
[12]. It can be proved in Coq by running the following script:

Lemma example : (n:nat)(le n O)->n=O.
Intros n H ; Inversion H ; Auto.
Qed.

The proof term generated from this script is shown in figure 1. The tactic Inver-
sion H builds a term which features case analysis on an instance of an inductive
data type H : (le n O). In addition, it contains structural case analysis on nat,
intended to discriminate the assumption H1 : ((S m) = O). We propose new
methods and tools to transfer this proof from the unary setting into the binary
one. We mainly focus on handling structural case analysis in a smart manner.

1.3 Outline

In section 2, we present definitions of inductive datatypes and their associated
recursion operators within Coq. In section 3, we introduce the language we con-
sider for proof terms. In section 4, we show how to remove case constructs for
proof terms. In section 5, we study the issue of definition unfolding, especially for
types containing logical information. In section 6, we present the implementation
of our tool and two case studies. Finally, in section 7, we give some perspectives
about related and future work.
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λn : nat.λH : (le n O).
let H0 = 〈λp : nat.p = O → n = O〉

Cases H of
le n ⇒ λH0 : n = O.

(eq ind nat O λn : nat.n = O (refl equal nat O)
n (sym eq nat n O H0))

| (le S m H0) ⇒ λH1 : (S m) = O.
(let H2 = (eq ind nat (S m)

λe : nat.〈Prop〉Cases e of
O ⇒ False

| (S ) ⇒ True
end I O H1)

in (False ind (le n m) → n = O H2) H0)
end

in (H0 (refl equal nat O)).

Fig. 1. A term proving the lemma example

2 Context of This Work

In this section, we first present the way recursion operators are defined in the
Coq system. Then we recall how we proceed to make conversions explicit in a
proof term [12].

2.1 Recursion Operators in the Calculus of Constructions

From an inductive definition, e.g.

Inductive nat : Set := O : nat | S : nat->nat

the Coq system automatically generates structural recursion operators (one for
each sort Set, Type, Prop). For instance nat rec has the following statement:

nat rec : ∀P : nat → Set. (P O) → (∀n : nat. (P n) → (P (S n))) → ∀n : nat. (P n)

On the other hand, the definition of an inductive predicate such as le only
triggers the construction of a single recursion operator le ind.

Inductive le [n : nat] : nat->Prop :=
le_n : (le n n) | le_S : (m:nat)(le n m)->(le n (S m))

le ind : ∀n : nat. ∀P : nat → Prop.
(P n) → (∀m : nat. (le n m) → (P m) → (P (S m))) →
∀n0 : nat. (le n n0) → (P n0)

Indeed, elimination rules do not allow building elements of sorts Type or Set by
case analysis on an element of sort Prop.
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Dependent vs. Non-dependent Recursion Operators. The Coq system
allows the definition of two kinds of induction principles: dependent (also called
maximal) and non-dependent (minimal) ones [3].

As an example, in addition to the dependent recursion operator for nat, we
give the non-dependent one. It corresponds to the recursion operator of Gödel’s
system T. nat min rec states that:

∀P : Set. P → (nat → P → P ) → nat → P (1)

Such a recursor can be used to define basic operations such as plus easily:

plus’ = λn : nat.(nat min rec nat → nat
λm : nat.m
λ : nat.λvr : nat → nat.λm : nat.(S (vr m))
n)

In figure 2, we give the characteristics of the recursion operators automati-
cally inferred after the definition of an inductive type T . The Coq proof assistant
defines different recursion operators to build objects of sorts Set, Type, Prop.
Columns of this array represent the sort of the element which is applied to the
recursion operator and rows the sort of the element it builds.

T : Set or T : Type T : Prop
P : T → Set or P : T → Type dependent not allowed

P : T → Prop dependent non dependent

Fig. 2. Allowed eliminations

To sum up, the definition of nat whose sort is Set triggers the automatic defi-
nition of three dependent elimination principles nat rec, nat ind and nat rect. On
the other hand, the definition of le triggers the definition of a single elimination
principle le ind which is a non dependent one.
Anyway, in both cases, non-dependent (resp. dependent) principles can also be
defined in addition to their dependent (resp. non-dependent) counterparts using
the Scheme command:

Scheme T(ind|rec|rect):= (Induction | Minimality) for T Sort (Prop | Set | Type).

For instance, the non-dependent induction principle (1) for nat can be generated
by the command: Scheme nat min rec := Minimality for nat Sort Set.

Recursion Operators and Their Reduction Rules. All these recursion
operators are defined using fix-point and case analysis constructs. Dependent and
non-dependent operators are defined in the same manner. For instance nat rec
is defined as follows:
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nat_rec = [P:(nat->Set); f:(P (0)); f0:((n:nat)(P n)->(P (S n)))]
Fix F {F [n:nat] : (P n) :=

<P>Cases n of (0) => f
| (S n0) => (f0 n0 (F n0))

end}

As a consequence of their definitions, recursion operators have a computational
behavior. For nat rec, it can be expressed by these two reduction rules:

nat rec P v0 vr O
ι−→ v0

nat rec P v0 vr (S n) ι−→ vr n (nat rec P v0 vr n)

2.2 Convertibility Issues

In this section, we sum up the main results of the work presented in [12]. The
aim of this work was to exhibit implicit proof steps inside proof terms. The
algorithm we proposed at the time did not provide any support for handling
structural case analysis.

Making Conversions Explicit. We consider the theorem plus n O and show
how it is processed by the algorithm (see [12] for details). This theorem states
that:

∀n ∈ nat. n = (plus n O) (2)

A proof (as a λ-term) of this property is :

λn : nat.(nat ind (λn0 : nat.n0 = (plus n0 O))
(refl equal nat O)
λn0 : nat; H : (n0 = (plus n0 O)).

(f equal nat nat S n0 (plus n0 O) H) n)

It proceeds by induction on n, using the principle nat ind. The base case requires
proving that O = (plus O O). The step case requires proving that

∀n0 : nat n0 = (plus n0 O) ⇒ (S n0) = (plus (S n0) O).

The term (refl equal nat O) is a proof of the base case. However, the inferred
(or proposed) type for this term is O = O, whereas its expected type is O =
(plus O O). These two types are convertible thanks to the computational rules
derived from the definition of plus, but they are not syntactically equal.

In our example, steps which are made explicit by the algorithm are formalized
by the conjectures Ha and Hb whose statements are:

Ha : O = O ⇒ O = (plus O O)
Hb : ∀n : nat. (S n) = (S (plus n O)) ⇒ (S n) = (plus (S n) O)
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These conjectures aim at connecting expected and proposed types in the
branches of the induction principle. We see they can be proven easily, by first
introducing the premises and then using the reflexivity of Leibniz’s equality. This
works because the terms on both sides of the equality are convertible modulo
βδι-reduction. Eventually, the algorithm returns the following proof term:

λn : nat.(nat ind
(λn0 : nat.n0 = (plus n0 O))
(Ha (refl equal nat O))
λn0 : nat; H : (n0 = (plus n0 O)).

(Hb n0 (f equal nat nat S n0 (plus n0 O) H)) n)

Representing Functions. In the target setting of our proof transformation
process, addition may have different reduction rules compared to the ones it has
in the Peano’s setting. As a consequence, we have to make these computations
explicit. We express them as equations. Let us consider the example of plus.

Fixpoint plus[n:nat] : nat -> nat :=
Cases n of O => [m:nat] m | (S p) => [m:nat](S (plus p m)) end.

plus has the following reduction rules:

plus O m
ι−→ m plus (S p) m

ι−→ S (plus p m)

They are formalized as equations that would be translated and proved in the
new setting:

∀m : nat. (plus O m) = m

∀p, m : nat. (plus (S p) m) = (S (plus p m))

Conjectures Ha and Hb can be proved by rewriting using these two equations.
We postpone the actual translation of a proof term into the binary setting until
section 4.4. In this section, we have shown how to proceed when terms do not
contain case analysis constructs. In the forthcoming sections, we study how to
transform a term with case constructs into a term without any. After defining
formally the terms we consider, we will show how to proceed in section 4.

3 Terms

As usual in type theory, we consider a set of sorts S which contains Prop, Set
and Type. A term is an element of the language T defined as follows:

T ::= λx : T .T | (T T ) | ∀x : T . T | S | x | C | I | CI
| let x = T : T in T
| 〈T 〉case T of {T }
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C denotes the set of constants, I the set of inductive datatypes and CI the set
of constructors for these inductive datatypes. This corresponds to the usual set
of terms that occur in proof terms. We treat recursion as it usually appears in
proof terms, i.e. hidden in a constant definition such as nat ind. Therefore we
assume that fix-point constructs do not occur explicitly in proof terms.

The process to transform a proof term is divided into two steps. We first
remove all occurrences of case (see section 4); we then extract the conversion
steps from the generated proof term by using the approach presented in section
2.2.

4 Removing Structural Case Analysis from Proof Terms

Case expressions can occur in proof terms because the proof script explicitly
contains an occurrence of the Case tactic or because an inversion was performed.
Inversion gives rise to case analysis whose result type has sort Set or Type. In
this setting, reduction rules are necessary, thus it is relevant to translate them.

Structural case analysis is replaced by using a defined case analysis operator
and its associated reduction rules (if needed). As stated previously for recursion
operators, we emphasize that case analysis from Prop to Set or Type is not
allowed. The only exception is inductive datatypes with a single constructor e.g.
Leibnitz’s equality eq.

We assume we have the following inductive definition:

Inductive T : S := | c1 : ∀t1,1 : T1,1 . . . ∀t1,i1 : T1,i1 . T
| . . .
| ck : ∀tk,1 : Tk,1 . . . ∀tk,ik

: Tk,ik
. T

| . . .
| cn : ∀tn,1 : Tn,1 . . . ∀tn,in

: Tn,in
. T.

4.1 Algorithm

We consider a proof p of an arbitrary property on the elements of T . The al-
gorithm performs a recursive structural analysis of the term p. For most of the
terms, it merely calls itself recursively on their sub-terms if they have any; other-
wise it simply returns the term. The only interesting part is how case analysis is
handled. In figure 3, we give an example of a case expression on t of type T . The
left-hand side corresponds to the actual notation for case analysis whereas the
right-hand side notation is closer to the actual implementation of case analysis
in Coq. In presence of a case expression, the algorithm acts as follows:

1. It computes the type of t. Let us assume t : T . As seen in section 2.1, we
have at most six recursion operators available for T : three dependent ones,
namely T rec, T ind and T rect and three non-dependent ones T min rec,
T min ind and T min rect.
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〈P 〉 Cases t of
| (c1 t1,1 . . . t1,i1) ⇒ r1

| . . .
| (ck tk,1 . . . tk,ik ) ⇒ rk

| . . .
| (cn tn,1 . . . tn,in) ⇒ rn

end

≡

〈P 〉 Case t of
λt1,1 : T1,1 . . . λt1,i1 : T1,i1 .r1

. . .
λtk,1 : Tk,1 . . . λtk,ik : Tk,ik .rk

. . .
λtn,1 : Tn,1 . . . λtn,in : Tn,in .rn

end

Fig. 3. A case expression to be processed by our algorithm

2. As shown in figure 3, P is the elimination predicate associated to a case
construct [5, Chap. 14]. Types of the branches of the case construct are
instances of this elimination predicate. The shape of P allows us to determine
whether we face dependent case analysis or not. If P is a λ-abstraction, we
face a dependent case. If not, we face a non-dependent case. It remains to
determine the sort of the objects we build. To do so, we compute the type
of the value returned by P . For instance, if P ≡ λn : nat.(le O n) → n = O
then the type of the returned value is Prop.

3. Once we have the shape and the name of the right recursion operator, (let
us call it induction for T), we build an instance of the corresponding case
analysis operator, say case for T. For example, nat rec is transformed into a
(non-recursive) case analysis operator nat case rec whose type is:

∀P : nat → Set. (P O) → (∀n : nat. (P (S n))) → ∀n : nat. (P n).

4. The algorithm recursively computes new terms r′
1, . . . , r

′
n (with no more

structural case expressions) for all sub-terms r1, . . . , rn of the case expression.
5. It remains to build an application whose head is case for T and that mimics

structural case analysis via application of the defined case analysis operator.
Eventually, the algorithm returns the following term instead of the case
expression.

(case for T P λt1,1 : T1,1 . . . λt1,i1 : T1,i1 .r
′
1

. . .
λtn,1 : Tn,1 . . . λtn,in

: Tn,in
.r′

n

t)

This transformation removes explicit structural case analysis and hides it in
the application of a defined case analysis operator. It provides us with a way
to reason by case analysis without knowing anything about the actual inductive
representation of the data type.

4.2 What Happens to Our Example ?

If we consider the example shown in figure 1, Cases H of . . . has been re-
placed by the application of the case analysis principle le case ind. In addition,
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Cases e of . . . has been replaced by the application of the non-dependent oper-
ator nat case rect min whose type is ∀P : Type. P → (nat → P ) → nat → P.
λn : nat.λH : (le n O).

let H0 = (le case ind n λp : nat.p = O → n = O
λH0 : n = O.

(eq ind nat O λn : nat.n = O (refl equal nat O)
n (sym eq nat n O H0))

λm : nat.λH0 : (le n m).λH1 : (S m) = O.
(let H2 = (eq ind nat (S m)

λe : nat.
(nat case rect min Prop False λ : nat.True e)
I O H1)

in (False ind (le n m) → n = O H2) H0)
O H)

in (H0 (refl equal nat O)).

4.3 Actual Translation into a New Representation

Once we have replaced a case expression by the application of a function, we
need to translate this function into the target setting. In this section, we present
a binary representation of natural numbers and show how to transfer recursion
operators from the Peano setting into the binary one.

Binary Representation of Natural Numbers

Inductive pos : Set := one: pos (* 1 *)
| pI :pos -> pos (* 2x+1, x>0 *)
| pO: pos -> pos. (* 2x, x>0 *)

Inductive bin : Set := b0: bin | bp: pos -> bin.

From these inductive types, we define counterparts of O and S, namely b0 and
bS, as well as translation functions from nat to bin (n2b) and vice-versa (b2n).
These definitions are taken from [12, pp. 189-190].

Recursion Operators in the New Setting. We can prove non-
dependent recursion operators and their associated reduction rules as
equations via the isomorphism connecting nat and bin. We use the
equation ∀n : bin. (n2b (b2n n)) = n and the recursion principle for nat
nat rec min to define the recursion operator new bin rec min : ∀P :
Set. P → (bin → P → P ) → bin → P and prove its properties:

(new bin rec min T v0 vr b0) = v0
∀p : bin. (new bin rec min T v0 vr (bS p)) = (vr p (new bin rec min T v0 vr p))
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However, as far as dependent recursion principles are concerned, rewriting gets
stuck when trying to prove the reduction rules as equations. Therefore we
choose to define the dependent recursion operators by well founded induction
over binary integers. We establish their reduction rules as a fix-point equation
following the technique proposed by A. Balaa and Y. Bertot in [1].

Building the Dependent Recursion Operator

1. First of all, we derive the order on binary integers from the one on Peano’s
numbers: (Lt x y) ≡ (lt (b2n x) (b2n y)). We show using the standard library
of Coq that Lt is well-founded. From now on, this theorem will be named
wf Lt.

2. We then show that a binary integer p is either b0 or (bS q) for some q. This
property can be stated with the following dependent inductive definition:

Inductive Pred_spec: bin ->Set :=
is_zero: (Pred_spec b0)

| is_S: (y:bin)(Pred_spec (bS y)).

3. The next step consists in defining a function Pred. Given a binary integer n,
it computes an element of type (Pred spec n) which contains the predecessor
of n, when n is not equal to b0. Pred is defined using a proof mode style. It
makes it easier to treat dependent case analysis.

Definition Pred: (x:bin)(Pred_spec x).

4. Once the Pred function is defined, we build a higher-order function F. It takes
as input a binary integer n and a function f : ∀m ∈ bin. m < n → (P m)
and computes an element of type (P n). This function performs struc-
tural case analysis on (Pred n) and uses the hypotheses h0 : (P b0) and
hr : ∀n ∈ bin. (P n) → (P (bS n)) which correspond to the premises of the
recursion operator for Peano’s numbers.

Definition F: (n:bin) ((m:bin)(Lt m n)->(P m)) ->(P n) :=
[n:bin]
<[n:bin] [p:(Pred_spec n)] ((m:bin)(Lt m n)->(P m)) ->(P n)>
Cases (Pred n) of
is_zero => [f:(m:bin)(Lt m b0)->(P m)]h0

| (is_S p) =>
[f:(m:bin)(Lt m (bS p))->(P m)](hr p (f p (S_and_Lt p)))

end.

S and Lt is a proof that ∀p : bin. (Lt p (bS p)).
5. Finally, we get our expected recursion operator by the following definition:

Definition new_bin_rec :=
(well_founded_induction bin Lt wf_Lt P F).
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unary setting binary setting unary setting binary setting
nat bin O b0
plus bplus S bS

nat ind new bin ind nat case ind new bin case ind
nat rect min new bin rect min nat case rect min new bin case rect min

le ble lt blt
le ind ble ind le case ind ble case ind

Fig. 4. Bookkeeping

Reduction Rules for the Dependent Recursion Operator. Recursion
operators should be considered as common functions. As for plus in section 2.2,
we have to state and prove their reduction rules as equations. To do so, we build
an instance of the so-called step hypothesis of the transfer theorem as presented
in [1, page 5].

∀x : bin.
∀f ′ : ∀y : bin. (P y).
∀g : ∀y : bin. (Lt y x) → (P y).
(∀y : bin. ∀h : (Lt y x). (g y h) =(P y) (f ′ y)) →
(F x λy : bin.λh : (Lt y x).(g y h)) =(P x) (F x λy : bin.λ : (Lt y x).(f ′ y)).

The proof is carried out by case analysis on (Pred x). The application of the
transfer theorem leads to the general fix-point equation step rec:

∀n : bin .(new bin rec n) = (F n λm : bin.λh : (Lt m n).(new bin rec m))

To get the simplified form of the fix-point equation, we need to prove the
following lemmas:

∀v : (Pred spec b0). v = is zero
∀n : bin. ∀v : (Pred spec (bS n)). v = (is S n)

The first one is trivial whereas the second one requires the use of a dependent
equality and dependent inversion techniques. Once P , h0 and hr have been
discharged, the resulting equations are:

(new bin rec P h0 hr b0) = h0
∀n : bin. (new bin rec P h0 hr (bS n)) = (hr n (new bin rec P h0 hr n))

4.4 Back to Our Example

After extracting conversion steps (see section 2.2), and syntactically replacing
all objects in the unary setting by their counterparts in the binary one (see
figure 4), we get the following proof term:
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λn : bin.λH : (ble n b0).
let H0 = (ble case ind n λp : bin.p = b0 → n = b0

λH0 : n = b0.
(eq ind bin b0 λn : bin.n = b0 (refl equal bin b0)

n (sym eq bin n b0 H0))
λm : bin.λH0 : (ble n m).λH1 : (S m) = b0.

(let H2 = (example rr2 (eq ind bin (bS m)
λe : bin.
(new bin case rect min Prop False λ : bin.True e)
(example rr1 m I) b0 H1))

in (False ind (ble n m) → n = b0 H2) H0)
b0 H)

in (H0 (refl equal bin b0)).

Its type is ∀n : bin. (ble n b0) → n = b0. The conjectures example rr1 and
example rr2 are generated automatically to connect expected and proposed terms
for sub-expressions of this proof term. The term example rr1 is a proof of

∀m : bin. True → (new bin case rect min Prop False λ : bin.True (bS m)) (3)

and example rr2 a proof of

(new bin case rect min Prop False λ : bin.True b0) → False (4)

The statements (3) and (4) are proven by rewriting with the fix-point equations
for new bin case rect min corresponding to reduction rules for nat case rect min
in the binary setting.

5 Constants Unfolding and Changes of Representations

5.1 A Basic Example

Operations in the binary setting are designed to be as efficient as possible. There-
fore definitions of operations on binary integers are not straightforward transla-
tions of the ones in Peano’s arithmetics.

In order to be able to reuse the proofs, we need to connect the new definition
to the previous one. As an example, we consider the function which computes
the double of a number.

double = λn : nat.(plus n n)

Let us suppose we already proved and want to translate the following theorem:

∀n, m : nat. (double (plus n m)) = (plus (double n) (double m)) (5)

In the binary setting bdouble is defined as follows:

bdouble = λn : bin.Cases n of b0 ⇒ b0 | (bp p) ⇒ (bp (pO p)) end



Changing Data Representation within the Coq System 99

A proof of (5) may rely on the property that (double n) and (plus n n) are
δ-convertible. This convertibility rule can be mimicked by the following equation:

∀n : bin. (bdouble n) = (bplus n n)

Such an equation will be useful to prove by rewriting the conjectures generated
when making conversions explicit (see section 2.2).

5.2 A More Tedious Example

We now consider the definition of the relation lt:

lt = λn, m : nat.(le (S n) m)

As a consequence of the definitions of le and lt, (le (S n) m) and (lt n m) are
convertible whereas there is no reason for lt to be defined in terms of le. This
becomes an issue because blt will not necessarily be defined in terms of ble in the
binary setting, therefore this implicit equality will be lost. Our first idea was to
proceed in the same way as above. But a problem arises. In the binary setting,
we can not prove

∀n, m : bin. (ble (bS n) m) == (blt n m) (6)

where == denotes Leibnitz’s equality in Type 1. Trying to prove this statement,
we got into a red herring. Because the definitions of blt and ble use Leibnitz’s
equality, we have to prove something like (true=true)==(¬false=true). This hap-
pens to be unprovable in the Coq system.
However we can easily establish the equivalence property:

∀n, m : bin. (ble (bS n) m) ↔ (blt n m) (7)

where ↔ is defined as A ↔ B ≡ (A → B)∧(B → A). Unfortunately, one can not
use this property easily. Indeed, we want to be able to substitute (ble (bS n) m)
and (blt n m) and one can not directly rewrite using the equivalence relation.
In the rest of this section, we consider two options to handle this question.
First, we assume the axiom ∀P, Q : Prop. (P ↔ Q) → P == Q is valid in
the calculus of constructions. Therefore the first equation (6) holds and we can
perform rewriting easily. The second option is to consider the Setoid (Prop,↔)
and perform setoid-rewriting.

5.3 Handling Propositional Equivalence as Leibnitz’s Equality

It is safe [14] to add the following axiom in the Coq system.

Axiom iff implies equiv : ∀P, Q : Prop. (P ↔ Q) → P == Q

However, in this work, we always use a definitional approach without any
parameter or axiom. In addition, all translated proofs are checked by the Coq
kernel before being accepted. Therefore we preferred not to use an axiom and
we used Setoid rewriting with (Prop,↔), thus keeping a definitional approach.
1 Inductive eqT [A : Type; x : A] : A->Prop := refl eqT : x==x.
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5.4 Rewriting with Setoids

Coq provides a tactic Setoid rewrite [5, Chap. 20] which is intended to per-
form rewriting with an equivalence relation. We consider the setoid (Prop,↔)
and experiment how to use it to substitute (blt n m) with (ble (bS n) m).
Setoid-rewriting is not immediate. For instance rewriting (blt n m) ∧ A into
(ble (bS n) m) ∧ A for some A requires to have proved that

∀A, B, C, D : Prop. (A ↔ C) → (B ↔ D) → A ∧ B → C ∧ D.

Such properties can be easily established as far as logical connectives are con-
cerned. We need to be a bit smarter if we consider inductive data type such as
sumbool2. We state a new theorem

∀A, B, C, D : Prop. (A ↔ C) → (B ↔ D) → {A} + {B} → {C} + {D}.

and use it to prove the conjectures produced by the algorithm presented in
section 2.2. It leads to slightly more complicated proofs but enables us to avoid
using an axiom in our proof development.

6 Implementation

6.1 Our Tool

We developed a prototype tool. It consists in a ML module which can be plugged
into the Coq proof assistant. With this tool, one can build a formal correspon-
dence between two theories. Once data structures and functions in the two set-
tings are defined and once the correspondence between them is formally estab-
lished, one can automatically translate statements and proof terms to the new
representation. The tool, as well as the whole development we carried out, are
available online: http://www-sop.inria.fr/lemme/Nicolas.Magaud/Changes/.

6.2 Case Studies

We present the main results of two case studies we carried out. In addition to
changing representation for natural numbers, we also experiment with changing
representation for polymorphic lists.

Peano’s Numbers into Binary Numbers. Natural numbers are our basic
example for changes of data structures. The tool we develop allows us to translate
the whole library Arith of the standard Coq distribution. We first define coun-
terparts of all basic operations (plus, minus, mult. . . ) and relations (le, lt. . . ) on
the binary representation of natural numbers by hand. In particular, we prove
the dependent recursion operators for nat and their reduction rules as equations.
2 Inductive sumbool [A : Prop; B : Prop] : Set :=
left : A->A+B | right : B->A+B.
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In addition, we transfer the induction principle for le into the binary setting.
Once this part is achieved by the user (i.e reduction rules (ι or δ-reduction)
for the newly defined operations are proven as equations), it is straightforward
to translate automatically all statements and their proof terms from the unary
representation to the binary representation of integers.

It makes it possible to prove all properties required to show the data type
bin has the properties of a semi-ring. Therefore we can extend the Ring tactic
to prove equations in the binary setting directly.

Lists into Reversed Lists. We also study the library PolyList of Coq. We
transform polymorphic lists into polymorphic reverse lists, defined as an induc-
tive data type rlist. We define counterparts of the functions append, head, tail,
and length on reverse lists and proved their properties. In addition, we translated
the inductive principle list ind into an equivalent principle for the reverse lists;
we also proved the translated counterparts of the minimal recursion operators
for lists as well as their associated reduction rules as equations.

7 Discussion

In this paper, we presented some new techniques to enhance proof reuse when
changing data representation in the Coq proof assistant. We improve the ap-
proach presented in [12]. It leads to a new tool that appears to be efficient and
generic. Indeed, it was usable to translate the whole Arith library of Coq. In
addition, we manage to reuse it successfully for translating polymorphic lists
into reverse polymorphic lists.

Among future research directions, we can quote changing the representation
of the index type of an inductive family [8]. For instance, one can imagine to
translate dependent lists indexed by nat into dependent lists indexed by bin.

Inductive vect [A : Set] : nat->Set :=
vnil : (vect A (0))

| vcons : (n:nat)A->(vect A n)->(vect A (S n))

As (pred (S n)) and n are convertible in nat, this statement is well-formed:

∀v : (vect A n). ∀v′ : (vect A (pred (S n))). v =(vect A n) v′

However in the binary setting, (pred (S n)) and n will not necessarily be con-
vertible. Consequently, two terms that were propositionally equal in the initial
setting do not even live in the same type after the transformation.
A solution (out of scope within the Coq system) would be to identify judge-
mental (conversion) and propositional equalities, as described in [10]. Another
approach may consist in connecting together the two instances of the dependent
family via some coercions [16]. Z. Luo and S. Soloviev proposed in [11] some
mechanisms to add coercions between a type (e.g. lists) and a family of types
(e.g. vectors of length n).
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Another direction is to study changes of data type where input and output
types are not isomorphic. For instance, one may want to translate lists into
trees. Trees would be a more efficient data structure for computing, but different
trees can have the same representation as lists. Therefore connecting these two
representations may not be so obvious.
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