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Abstract. This work presents a formalization of the discrete model of
the continuum introduced by Harthong and Reeb [10], the Harthong-
Reeb line. This model was at the origin of important developments in
the Discrete Geometry field [21]. The formalization is based on the work
presented in [4] where it was shown that the Harthong-Reeb line satisfies
the axioms for constructive real numbers introduced by Bridges [3]. A
formalization of a first attempt for a model of the Hartong-Reeb line
based on the work of Laugwitz and Schmieden [12] is also presented and
analyzed. We hope that this work could help reasoning and implemen-
tation of numeric computations in geometric systems.

1 Introduction

Dealing with geometric problems (geometric constraints solving, geometric mod-
eling) people are, finally, faced to computations that involve computer represen-
tation of real numbers. Due to their important impact, the studies about real
numbers in computer science are numerous and our purpose is not to surpass
them but to reactivate an efficient point of view that has been forgot for a
while [21].

This point of view was built in the eighties by J. Harthong and G. Reeb [10]
and consists in a model of the continuum based over the integers that is the
Harthong-Reeb line. This model was at the origin of important developments in
the Discrete Geometry field [21]. And, at that time, the constructive content of
this model was neglected even if it was explicitly noted in Diener and Reeb’s
book [7].

In previous works [4] it was shown that the Harthong-Reeb line satisfies
the axioms for constructive real numbers introduced by Bridges [3]. However,
the Harthong-Reeb line construction is based on a nonstandard arithmetic of



the integers that was not explicitly built. To be short, starting with the naive
integer sequence (the one that you can enumerate: 1, 2, . . .), G. Reeb argues
that it must exists an integer ω that is greater than all naive integers. Using the
compacity theorem4 from model theory [11], the existence of this nonstandard
integer ω is sufficient to deduce that it exists a nonstandard model of the integer
arithmetic with such nonstandard integer ω and then this model can be used to
build the Harthong-Reeb line.

Nevertheless, this nonstandard model of integer arithmetic is not built and,
in order to be put on computers, the Harthong-Reeb line needs a constructive
nonstandard model of integer arithmetic. A first attempt of such construction,
based on the Ω-numbers of Laugwitz and Schmieden [13], was made by some of
the authors with others in [5].

This work presents a first formalization of the Harthong-Reeb line using the
Coq proof assistant. It can be seen as a light counterpart of the seminal works
about the formalization of exact arithmetic [20, 9]. Our motivations to do this
work reside into the difficulties that we faced when showing that the Harthong-
Reeb line satisfies the axioms proposed by Bridges [3]. Unless proofs have been
read carefully we have no way to be sure that they were entirely correct. This
confidence problem of proofs is mainly due to the unusual mathematics that we
deal with. The handled arithmetic is in a nonstandard framework and the axioms
are in a constructive framework. So, it was not clear that handwritten proofs
did not contain subtle mistakes or imprecisions. Moreover, the formalization has
entailed a better understanding of how concepts and proofs are related to one
another.

From a more practical point of view, the Harthong-Reeb line provides a rich
theoretical framework that allows to analyze a wide range of geometrical objects.
So, our formalization can also be thought as a model for geometric computations.
One main advantage of such model is that computation algorithms and reasoning
about these algorithms (e.g. to prove that they are correct) can be done in the
same framework. And we hope that this will help developing geometric systems
where computations are made using the Harthong-Reeb line. This goal can be
reasonably reached because the Coq proof assistant [6, 1] implements a higher
constructive logic and is also a programming language equipped with inductive
definitions and recursive functions. Therefore, it is the perfect tool to carry out
a constructive formalization.

This paper is organized as follows. In section 2, we formally describe in Coq
what a nonstandard model of arithmetic is and build the Harthong-Reeb line
HRω on top of it. In Section 3, we prove that HRω verifies Bridges’ Axioms
which capture what a constructive real line is. In Section 4, we study how to
formalize and prove correct the least upper bound property. In Section 5, we
investigate the limitations of the Ω-numbers of Laugwitz and Schmieden when
it comes to being an adequate model of the nonstandard arithmetic we consider.

4 Roughly speaking it says that if for a theory with infinitely many axioms, each finite
subset of axioms has a model then the theory has a model.



Finally, in Section 6, we discuss our results as well as alternative approaches to
our formalization.

2 A Parametric module to describe the Harthong-Reeb
line

In this section the parametric module that formalizes the Harthong-Reeb line
is described. The ground idea of the Harthong-Reeb line is to introduce a non
trivial rescaling on the set of integers in order to get a discrete form of the
continuum. To do so a nonstandard arithmetic is used. This is described in the
next subsection.

2.1 Nonstandard Model of Arithmetic

Axiomatizing Numbers We first have to specify the axiomatic numbers we shall
use in this work as well as their functions and their properties. We do that using
a module type in Coq. This can be viewed as an interface which, on the one
hand, is the first step in our construction of the Harthong-Reeb line and on the
other hand, can be implemented by a concrete datatype, operations and proofs
of the axioms (as we do in section 5). This module type contains the declaration
of the basic objects of the theory:

Parameter A:Type.

Parameter a0 a1 : A.
Parameter plusA multA divA modA : A -> A -> A.
Parameter oppA absA : A -> A.

Parameter leA ltA : A -> A -> Prop.

Parameter w:A.
Parameter lim:A->Prop.

Notations can be introduced to ease reading and writing of specifications.
This also allows to stay close to the way mathematicians would write.

Notation "x + y " := (plusA x y).
Notation "x * y " := (multA x y).
Notation "x / y " := (divA x y).

Notation "0" := (a0).
Notation "1" := (a1).
Notation "- x" := (oppA x).
Notation "| x |" := (absA x) (at level 60).
Notation "x <= y" := (leA x y) (at level 50).
Notation "x < y" := (ltA x y) (at level 50).



Then all the basic properties of A are expressed as axioms.

Parameter plus_neutral : forall x,0 + x = x.
Parameter plus_comm : forall x y, x + y = y + x.
Parameter plus_assoc : forall x y z, x + (y + z) = (x + y) + z.
Parameter plus_opp : forall x, x + (- x) = 0.

Parameter abs_pos : forall x, 0 <=|x|.
Parameter abs_pos_val : forall x, 0 <=x -> |x|=x.
Parameter abs_neg_val : forall x, x <=0 -> |x|=-x.
[...]

Overall, we assume that A with the operations +,×,. . . is equipped with a
ring structure. This will allow to prove basic algebraic equations automatically
and also to perform some otherwise tedious simplications of expressions.

In addition, we assume that the order relations ≤ and < enjoy their usual
properties such as transitivity, regularity w.r.t operations such as addition, etc.
We also assume these relations are decidable by adding the following axiom
which states that forall x : A, either x < 0 or x = 0 or 0 < x.

Axiom A0_dec : forall x, {x < 0}+{x = 0}+{0 < x}.

Nonstandard aspects Even if axiomatic theories of nonstandard analysis, such
as IST [18], are available, we present here, in the spirit of some works of Nelson
or Lutz [19, 15], a weaker axiomatic which is well suited for our purpose.

First we introduce a new predicate lim over integer numbers: lim(x) ”means”
that the integer x is limited. We also introduce the number ω denoted by w.

Parameter lim : A -> Prop.
Parameter w : A.

This predicate is external to the classical integer theory and its meaning directly
derives from the following axioms ANS1, ANS2, ANS3, ANS4 (and ANS5 which
will be introduced later):

ANS1. The number 1 is limited.

Parameter ANS1 : lim 1.

ANS2. The sum and the product of two limited numbers are limited.

Parameter ANS2a : forall x y, lim x -> lim y -> lim (x + y).
Parameter ANS2b : forall x y, lim x -> lim y -> lim (x * y).

ANS3. Non-limited integer numbers exist.

Parameter ANS3 : ~ lim w.

We simply assert that w is not limited (in Coq, ~ stands for logic negation).



ANS4. For all (x, y) ∈ A2 such that x is limited and |y| ≤ |x|, the number y
is limited.

Parameter ANS4 :
forall x, (exists y, lim y /\ | x | <= | y |)-> lim x.

For reading conveniences, we introduce the following notations [4]:

– ∀limx F (x) is an abbreviation for ∀x (lim(x) ⇒ F (x)) and can be read as
”for all limited x, F (x) stands”.

– ∃limx F (x) is an abbreviation for ∃x (lim(x) ∧ F (x)) and can be read as
”exists a limited x such that F (x)”.

We say that a formula or a proposition P is external when the predicate lim
occurs in P and internal otherwise. This distinction is necessary to determine
when properties known for standard properties can be extended to the nonstan-
dard ones. In fact, when a property P is internal, i.e. when it does not use the
predicate lim, the extension of P to infinitely large numbers is immediate. This
is given by the following Overspill principle. But for external properties, we can-
not proceed in the same way. We need to introduce a new extension principle
as an axiom (called ANS5 in this paper). This principle states that the formula
which contains external properties can be extended to infinitely large numbers,
but that we do not know whether these infinitely large numbers verify these
properties.

Proposition 1. (Overspill principle) Let P(x) be an internal formula such
that P(n) is true for all n ∈ Alim, n ≥ 0. Then, there exists an infinitely large
ν ∈ A, ν ≥ 0 such that P(m) is true for all integers m such that 0 ≤ m ≤ ν.

Parameter overspill_principle : forall P:A -> Prop,
(forall n:A, lim n /\ 0<=n -> P n) ->
(exists v:A, ~lim v /\ 0<=v /\ (forall m:A, 0<=m /\ m <=v -> P m)).

The following principle, which is our last axiom, can deal with both an internal
and an external formula P .

ANS5. (External inductive defining principle): We suppose that

1. there is x0 ∈ Ap such that P((x0));
2. for all n ∈ Alim = {x ∈ A, x ≥ 0, lim(x)} and all sequence (xk)0≤k≤n in Zp

such that P((xk)0≤k≤n) there is xn+1 ∈ Ap such that P((xk)0≤k≤n+1).

Therefore, there exists an internal sequence (xk)k∈A,k≥0 in Zp such that, for all
n ∈ Alim, we have P((xk)0≤k≤n).

This principle means that the sequence of values xk for k limited can be
prolonged in an infinite sequence (xk)k∈A,k≥0 defined for all integers. Saying
that this sequence is internal means that it has all the properties of the classical



sequences in usual number theory. Particularly, if Q(x) is an internal formula,
then the class {k ∈ A, k ≥ 0 ; Q(xk)} is an internal part of {k ∈ A, k ≥ 0}.

In Coq, we choose a slighly different and more convenient definition of ANS5.
First we only consider the case p = 1. In addition, we choose to have a predicate
P whose arity is fixed. In the definition of ANS5 in Coq, the predicate P only
applies to a single element of the sequence rather than to the whole sequence. In
some sense, it can be viewed as a projection on the original P on the kth element
of the sequence. This means a statement such as P((xk)0≤k≤n) is translated into
∀k, 0 ≤ k ≤ n → P (xk). Finally, we have to make explicit that the sequence
whose existence is shown coincides with the initial one for all k such that 0 ≤
k ≤ n. Overall, this leads to a weaker principle which, at the same time, is
sufficient for our purposes and more convenient to use in Coq.

Parameter ANS5 :
forall P :A -> Prop,
(forall u : forall n:A, lim n /\ 0 <= n -> A,
P (u 0 H0) ->
(forall n:A, forall Hn : lim n /\ 0 <= n,

(forall k:A, forall Hk:0 <= k /\ k <= n,
forall Hn1 : lim (n+1)/\0 <=(n+1),
P (u k (ANS4_special n k Hn Hk)) -> P(u (plusA n 1) Hn1))) ->
{v:A->A | forall n:A, forall Hn:lim n /\ 0 <= n,

forall k:A, forall Hk:0 <= k /\ k <= n,
P (v k) /\ v k = u k (ANS4_special n k Hn Hk)}).

Note that {x:A|P x}, which is a convenient notation for (sig P), allows
to describe sets comprenhensively. Here it corresponds to the set of elements of
A which verify P . This corresponds to an inductive definition in Coq. It comes
together with two projections: proj1 sig, which returns a and proj2 sig which
returns a proof H of P a. In addition, ASN4 special is a theorem with is derived
from ANS4 and states the following property:

Lemma ANS4_special :
forall n k:A, (lim n /\ 0<=n) -> (0<=k /\ k<=n) -> lim k /\ 0<=k.

2.2 The system HRω.

Let us now give the definition of the system HRω. Introduced by M. Diener [8],
this system is the formal version of the so-called Harthong-Reeb line. In the next
section we prove that this system can be viewed as a model of the real line which
is partly constructive. In some sense, HRω is equivalent to R (see [4] for details).

Accordingly to axiom ANS3, the construction starts by considering an in-
finitely large (non-limited) positive integer ω ∈ A. Our purpose is to define a
new numerical system such that all the elements are integers and, in which ω is
the new unit. Let us introduce the underlying set of this system.

Definition 1. The set HRω of the admissible integers considering the scale ω
is defined by: HRω = {x ∈ A ; ∃limn ∈ A,n ≥ 0s.t. |x| < nω}.
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Fig. 1. An intuitive representation of HRω.

This definition can be easily translated in Coq:

Definition P :=
fun (x:A)=> exists n:A, (lim n /\ 0 < n /\ (|x| <= n*w)).

Definition HRw := {x:A | P x}.

The set HRω is an external set. Moreover, it is an additive sub-group of
A. We provide HRω with the operations +ω and ∗ω, the ω-scale equality, the
ω-scale inequality relations (noted =ω and 6=ω) and the order relation >ω:

Definition 2. Let X and Y be any elements of HRω.

– X and Y are equal at the scale ω and we write X =ω Y when
∀limn ∈ A n > 0→ n|X − Y | ≤ ω.

– Y is strictly greater than X at the scale ω and we write Y >ω X when
∃limn ∈ A n > 0 ∧ n (Y −X) ≥ ω.

– X is different from Y at the scale ω and we write X 6=ω Y when
(X >ω Y or Y >ω X)

– The sum of X and Y at the scale ω is X +ω Y := X + Y (like the usual
sum). For this operation, the neutral element is 0ω = 0 and the opposite of
each element Z ∈ HRω is −ωZ := −Z.

– The product of X and Y at the scale ω is X ×ω Y := bX.Yω c (different from
the usual one). The neutral element is 1ω := ω, and the inverse of each
element Z ∈ HRω such that Z 6=ω 0ω is Z(−1)ω :=

⌊
ω2

Z

⌋
.

Algebraic operations are defined on the integers of the set A onto with HRω
is built. Therefore we must ensure the result still belongs to HRω. For the sum,
it consists in proving the following lemma:

Lemma Pplus: forall x y:A, P x -> P y -> P ( x + y).

Then, the addition in HRω can be defined as follows:



Lemma Pplus : forall x y, P x -> P y -> P (x + y).

Definition HRwplus (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P (xx + yy) (Pplus xx yy Hxx Hyy)

end end.

Lemma Popp : forall x, P x -> P (- x).

Definition HRwopp (x: HRw) : HRw :=

match x with exist xx Hxx => exist P (- xx) (Popp xx Hxx) end.

Definition HRwminus (x y : HRw) : HRw := HRwplus x (HRwopp y).

Lemma Pmult : forall x y, P x -> P y -> P (( x * y) / w).

Definition HRwmult (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P ((xx * yy) / w) (Pmult xx yy Hxx Hyy)

end end.

Definition HRwequal (x y : HRw) : Prop :=

match x with exist xx Hxx => match y with exist yy Hyy =>

(forall n, lim n ->0 < n -> ( (n*|xx + (- yy)|) <= w))

end end.

Definition HRwgt (y x : HRw) : Prop :=

match y with exist yy Hyy => match x with exist xx Hxx =>

(exists n, lim n /\ 0 < n /\ (w <= (n*(yy+ (-xx)))))

end end.

Definition HRwge (a b : HRw) : Prop :=

(proj1_sig b) <= (proj1_sig a) \/ HRwequal a b.

Definition HRwdiff (x y : HRw) : Prop := HRwgt x y \/ HRwgt y x.

Lemma Pdiv : forall x , HRwdiff x HRw0 -> P ((w * w ) /(proj1_sig x)).

Definition HRwinv (x : HRw) (H: HRwdiff x HRw0) : HRw :=

exist P ((w * w ) / (proj1_sig x)) (Pdiv x H).

Fig. 2. Definitions of HRω operations in Coq

Definition HRwplus (x y: HRw) : HRw :=
match x with exist xx Hxx =>
match y with exist yy Hyy =>
exist P (xx + yy) (Pplus xx yy Hxx Hyy)
end end.



All lemmas and formal definitions of the objects of Definition 2 are summa-
rized in Fig. 2.

3 Bridges’ Axioms

In the 90’ Brigdes proposed in [3] an axiomatic definition of what is a con-
structive real line. It is derived in three groups about algebraic structure (R1),
ordered set (R2) and the last group (R3) deals with special properties (see the
details below). A field which satisfies these axioms is called an Bridges-Heyting
ordered field. In [4], the proof of that the Harthong-Reeb line with associated
operations and relations is a Bridges-Heyting ordered field is given and it only
uses intuitionnistic logic.

3.1 R1. Algebraic structure

∀x, y, z ∈ HRω,

1. x+ω y =ω y +ω x
2. (x+ω y) +ω z =ω x+ω (y +ω z)
3. 0ω +ω x =ω x
4. x+ω (−ωx) =ω 0ω
5. x×ω y =ω y ×ω x
6. (x×ω y)×ω z =ω x×ω (y ×ω z)
7. 1ω ×ω x =ω x
8. x×ω x(−1)ω =ω 1ω if x 6=ω 0ω
9. x×ω (y +ω z) =ω x×ω y +ω x×ω z

This first group presents the attended properties about the two operations
+ω and ×ω. There is not any major difficulties to prove that HRω verifies these
axioms.

All the axioms of this group can be formally proved using the definitions of
the operations involved. These properties are expressed using Leibnitz equality
of Coq. They proceed by case analysis on the elements of HRω, destructuring
them into an element x of A and a proof H that P (x) holds. We present the proof
of the first one (commutativity of addition). Proving the terms HRwplus x y and
HRwplus y x are equal in HRω consists in not only proving the witnesses (in A)
are equal but also proving the proofs of the properties P (x+y) and P (y+x) are
equal. As what matters is only that P holds for the considered element, we use
the principle of proof irrelevance to show all proofs of the same property (e.g.
P (x)) are equal. This principle is expressed with the following axiom in Coq:

Axiom proof_irr :forall A:Prop, forall p p’:A, p=p’.

This well-known principle is consistent with Coq’s logic and therefore we can
safely add it to our formal description.

Once all the properties of the first group have been proved in Coq, we can
declare HRω equipped with its operations as a ring structure. It works in the
same way we did it for A and also allows to carry out simplifications of algebraic
expressions of type HRω.



3.2 R2. Basic properties of >ω

∀x, y, z ∈ HRω,

1. ¬ (x >ω y ∧ y >ω x)
2. (x >ω y)⇒ ∀z (x >ω z or z >ω y)
3. ¬(x 6=ω y)⇒ x =ω y
4. (x >ω y)⇒ ∀z (x+ω z >ω y +ω z)
5. (x >ω 0ω ∧ y >ω 0ω)⇒ x×ω y >ω 0ω

All these properties can be proved in a very straightforward manner in Coq,
following the informal proofs of [4]. Note that this definition of inequality is quite
more complex than the usual one. This comes from the fact that the decidability
of >ω is not necessarily required. Thanks to this definition of inequality on the
Harthong-Reeb line, these above-mentionned axioms are easily provable. We just
need to assume that the basic inequality on A is decidable. This hypothesis is not
a problem for an axiomatic definition of nonstandard arithmetic but, in practice
there are some problems, for example in the Laugwitz-Schmieden model where
the inequality is not decidable (see section 5). But, we try to obtain this property
using another model derived from the Type Theory of Martin-Lof [16, 17].

Links between orders in HRω and orders in A . We recall that, in HRω, the
strictly greater relation and the greater or equal relation are defined from the
less or equal relation on A (y >ω x ≡ ∃limn ∈ A n (y − x) ≥ ω and y >ω x ≡
∀limn ∈ A n (y − x) 6 ω). We have the two following correspondences for all
a, b ∈ HRω :

a > b implies a >ω b and a >ω b implies a > b

They are key properties of our development and were easily proved in Coq.

3.3 R3: Special Properties of >ω

The two last properties to prove to fulfil the requirements of Bridges’ axiom
system are the following ones:

1. Axiom of Archimedes: For each X ∈ HRω there exists a constructive
n ∈ A such that X < n.

2. The constructive least-upper-bound principle (see next section)

Archimedes property can be easily formalized in Coq:

Lemma Archimedes : forall X:HRw, exists n:HRw, n >=w X.

Proof. Its proof is immediate because the elements x of HRω are such that there
exists a limited k ∈ N, |x| < kω. So the property can be proved using the integer
kω as a witness for n.

On the contrary, the proof of the least-upper bound principle is fairly tech-
nical and intricate. Therefore it deserves a whole section by itself.



4 Least upper bound

To begin, let us remind some definitions. A subset S of HRω is the collection
of elements of HRω which satisfies a given property defined in the system. This
property may be internal or external. Such a subset S is bounded above relative
to the relation ≥ω if there is b ∈ HRω such that b ≥ω s for all s ∈ S; the element
b is called an upper bound of S. A least upper bound for S is an element b ∈ HRω
such that

– ∀s ∈ S b ≥ω s (b is an upper bound of S);
– ∀b′ (b >ω b′)⇒ (∃s ∈ S s >ω b

′).

A least upper bound is unique: if b and c are two least upper bounds of S, then
we have ¬(b >ω c) and ¬(c >ω b); thus, according to the properties5 of the
relations >ω, ≥ω and = ω, we get c ≥ω b and b ≥ω c and then b =ω c.

The constructive least-upper-bound principle: Let S be a nonempty
subset of HRω that is bounded above relative to the relation ≥ω, such that for
all α, β ∈ HRω with β >ω α, either β is an upper bound of S or else there exists
s ∈ S with s >ω α; then S has a least upper bound.

Proof. To formalize and prove this property correct in Coq we follow the proof
proposed in [4], which itself uses the heuristic motivation given by Bridges in
[2]. It consists of two parts: we first construct a candidate b for the least upper
bound and we then check that b is actually the least upper bound.

Definitions in Coq The subset property is defined as a property, i.e. S x means x
belongs to the set S. then the notions of least upper bound and of upper bound
are defined.

Definition subset := HRw->Prop.

Definition least_upper_bound (S:subset) (b:HRw) : Prop :=
(forall s:HRw, (S s -> b >=w s)) /\
(forall b’:HRw, (b >w b’) -> exists o:HRw, S o/\ o >w b’).

Definition upper_bound (X:subset) (m:HRw) : Prop :=
forall x:HRw, X x -> m >w x.

4 sequences (sn, bn, αn, βn) We define four sequences which are mutually recur-
sive and that will be useful to define a candidate b for the least upper bound:

Definition def_s_b_alpha_beta :
forall n:A, forall Hn:(lim n /\ 0 <= n),

{sn:HRw & {bn:HRw & {alphan:HRw &{betan : HRw &
S sn /\

5 These properties are not completely trivial in intuitionistic logic.



upper_bound S bn /\
bn +w (-w sn) =w ((power two_third n Hn)*w (b0 +w (-w s0))) /\
HRwgt betan alphan /\
alphan=w(two_third *w sn) +w (one_third *w bn) /\
betan=w(one_third *w sn) +w (two_third *w bn)}}}}.

Computing the next terms sn and bn of the sequences depends on the four
preceding terms (sn−1, bn−1, αn−1, βn−1) and also requires a proof of the prop-
erty βn−1 >ω αn−1. Thus we must keep track of this property in Coq during
the computations of (sn, bn, αn, βn). So we have to carry around a proof of this
property throughout the computation. Therefore, we choose to specify the func-
tion as precisely as possible when defining it, hence the numerous postconditions
characterizing the output (sn, bn, αn, βn) of the function.

Initially, we have (s0, b0, α0, β0) with an arbitrary element s0 of S, b0 an
upper bound of S, α0 = 2

3s0 + 1
3b0 and β0 = 1

3s0 + 2
3b0.

This requires to assume in Coq that we can always choose an arbitrary el-
ement s of S. This corresponds to a form of choice which can be expressed as
follows:

Axiom choice : forall X:subset, (non_empty X) -> {x:HRw|X x}.

Given a non-empty subset X of elements of HRω, there exists an element x of
HRω for which P (x) holds.

Suppose for a given n, we have (sn, bn, αn, βn) with αn <ω βn. By hypothesis,
two different cases can happen:

– First case βn is an upper bound of S. Then we choose sn+1 and bn+1 such
that sn+1 = sn and bn+1 = βn.

– Second case there exists s such that (S s) and that αn <ω s. Then we
choose sn+1 and bn+1 such that sn+1 = s and bn+1 = bn + s− αn.

In both cases, αn+1 =ω
2
3sn+1 + 1

3bn+1 and βn+1 =ω
1
3sn+1 + 2

3bn+1. These
two equations can be easily proved by a simple computation.

Key properties Several key properties of the elements of the sequences are al-
ready expressed in the type of def b alpha beta. They hold by construction
(i.e. they are established using induction at the same time the actual sequences
are computed). Among them, we know that, for each n, which is limited and
positive, the property S(sn) ∧ upper bound S bn holds. Thus, we can deduce
that for any k and n, we have bk >ω sn. We also have the property that bn and
sn are connected by the relation

bn −ω sn =ω (2/3)n × (b0 −ω s0).

In addition to all the properties specified in the type of def b alpha beta,
we also need to establish that the sequence (sn) is increasing. Although this is
immediate from its mathematical definition, it still has to be formalized in Coq.



At the time of writing the paper, this is still a work in progress and we are fairly
confident the formal proof will be completed soon.

Thanks to axiom ANS5, the sequences (sn) and (bn) can be extended to all
integers, including non-limited ones. In addition, the overspill principle allows
to show the existence of an infinitely large number ν such that the following
property holds:

min
0≤k≤ν

bk ≥ sν ≥ . . . ≥ s1 ≥ s0.

Details are available in the proof scripts (see http://galapagos.gforge.inria.fr/developments.html.

A candidate for the least upper bound of S : b := min
0≤k≤ν

bk

The second step, which consists of checking that b is the least upper bound is
presented in [4] and is summarized here by proving the two following properties:

– on the one hand, that b is an upper bound of S,
– on the other hand, that b is actually a least upper bound, i.e. that for all
b′ <ω b, there exists s ∈ S such that s >ω b′.

5 The Ω-numbers of Laugwitz and Schmieden

In this section, a first attempt to have an instantiation of our abstract integers
A is presented. As we shall see below, this first proposition does not exactly fit
in what is necessary for A.

The Ω-numbers of Laugwitz and Schmieden permit the extension of a clas-
sical numerical system to a nonstandard one. Here we present the extension of
integers. It can be viewed as a model of the axiomatic definition of the nonstan-
dard arithmetic presented in Section 2. In theirs papers [12–14], Laugwitz and
Schmieden extend the rational numbers and show that their system is equiv-
alent to classical real numbers. In this section, we will not describe the whole
theory but only introduce the basic notions that are essential to understand the
Harthong-Reeb line. For more details about our approach please refer to [5].

To extend a theory of integer numbers, Laugwitz and Schmieden introduce
a new symbol Ω to the classical ones (0, 1, 2, 3, . . . ,+, /, . . .). The only property
that Ω verifies is named the Basic Definition (denoted (BD)) :

Definition 3. Let S(n) be a statement in N depending of n ∈ N. If S(n) is true
for almost n ∈ N, then S(Ω) is true.

We consider the expression ”almost n ∈ N” means ”for all n ∈ N from some level
N”, i.e. ”(∃N ∈ N) such that (∀n ∈ N) with n > N”. Since Ω can be substituted
to any natural number, it denotes an Ω-number which is the first example of
Ω-integer. Hence, each element a of this theory will be declined as a sequence
(an)n∈N. Immediately, we can verify that Ω is infinitely large, i.e. greater than
every element of N. Indeed, for p ∈ N, we apply (BD) to the statement p < n
which is true for almost n ∈ N; thus p < Ω for each p ∈ N. And Ω is the sequence
(n)n∈N.



Technically speaking, Ω-numbers are defined in Coq as sequences indexed
by natural numbers (nat), whose values are relative integers (Z). The function
Z of nat simply injects natural numbers into Z.

Definition A := nat->Z.

Definition a0 : A := fun (n:nat) => 0%Z.
Definition a1: A := fun (n:nat) => 1%Z.

Definition w :A := fun (n:nat) => (Z_of_nat n).

To compare such Ω-numbers, we put the following equivalence relation:

Definition 4. Let a = (an)n∈N and b = (bn)n∈N be two Ω-numbers, a and b are
equal if it exists N ∈ N such that for all n > N , an = bn.

This is captured by the definition ext almost everywhere. The axiom ext which
expresses the extentionality principle for functions is used to directly prove that
two Ω-numbers are equal.

Definition ext_almost_everywhere (u v:A) :=
exists N:nat, forall n:nat, n>N -> u n=v n.

Axiom ext : forall u v:A, (forall n:nat, (u n)=(v n)) -> u = v.

We can distinguish two classes of elements in this nonstandard theory:

- the class of limited elements: they are the elements α = (αn)n∈N which verify
∃p ∈ Z such that ∃N ∈ N, ∀n > N,αn < p (example: (2)n∈N ).

- the class of elements: infinitely large numbers, which are the sequences α =
(αn)n∈N such that limn→+∞αn = +∞

The definition of the operations and relations between ZΩ , the set of Ω-
numbers are the following ones. It is straightforward to formalize them in Coq.

Definition 5. Let a = (an)n∈N and b = (bn)n∈N two Ω-numbers,

– a+ b =def (an + bn)n∈N and −a =def (−an) and a× b =def (an × bn)n∈N;

Definition plusA (u v:A) := fun (n:nat) => Zplus (u n) (v n).
Definition multA (u v:A) := fun (n:nat) => Zmult (u n) (v n).
Definition oppA (u:A) := fun (n:nat) => Zopp (u n).

– a > b =def [(∃N∀n > N) an > bn] and a > b =def [(∃N∀n > N) an > bn];

Definition leA (u v:A) :=
exists N:nat, forall n:nat, n>N -> Zle (u n) (v n).

Definition ltA (u v:A) :=
exists N:nat, forall n:nat, n>N -> Zlt (u n) (v n).

– |a| =def (|an|).
Definition absA (u:A) := fun (n:nat) => Zabs (u n).



Specificity of the theory Regarding the order relation, the usual properties true
on Z are not always verified on ZΩ . For instance

(∀a, b ∈ ZΩ) (a > b) ∨ (b > a) (1)

is not valid as we can see for the particular Ω-integers a = ((−1)n)n∈N and
b = ((−1)n+1)n∈N. Nevertheless, given two arbitrary Ω-integers a = (an) and
b = (bn), we can prove

(∀n ∈ N) (an > bn) ∨ (bn > an) (2)

because we have a decidability property for Z. Using the basic definition (BD),
we obtain (aΩ > bΩ)∨ (bΩ > aΩ) and thus (1) since aΩ = a and bΩ = b. Hence,
there is a contradiction. To avoid it, we might admit that the application of
(BD) leads to a notion of truth weaker than the usual notion.

Overall, this shows that the Ω-numbers can not be a model of the theory
presented in Section 2. The main issue is the decidability property A0 dec of the
order relation which is obviously not provable in this setting.

Nonstandard axioms We define two predicates std and lim: (std n) states that
an Ω-number n is standard and (lim n) that n is limited.

Definition std (u:A) :=
exists N:nat, forall n m, n>N -> m>N -> (u n)=(u m).

Definition lim (a:A) :=
exists p, std p /\ leA a0 p /\ ltA (absA a) p.

From these definitions, we can derive proofs of the axioms ANS1 to ANS4
presented in Section 2. It remains an open question to know whether ANS5
could be proved formally in Coq for Ω-numbers.

6 Discussion

In this paper, we have presented a work in progress which consists in formalizing
mathematical results obtained in the field of discrete geometry. We focused on
the paper of Chollet et al. [4] in which it has been proved that the Harthong-Reeb
line satisfies the Bridges’ axioms of constructive reals [3].

The results obtained so far show that it is tractable to transform the math-
ematical handwritten proof of [4] into a formal one in Coq. It was useful in the
sense that it makes the proof more precise and also ensures that there were no
hidden mistakes. So, this dramatically increases the confidence into the proofs,
in particular for the Least Upper Bound axiom where subtle notions are used.
Another obtained byproduct is that properties needed to complete the proofs
are well identified and, hence, we also know the one that are useless.

The formalization of an actual model of the abstract integers presented in
section 2 has also been investigated. The Ω-numbers model developed in [5]



based on the work of Laugwitz and Schmieden [12] was a good candidate but
they could not be an actual model of the mandatory theory of nonstandard
arithmetic. And, the reasons of this defect are clearly identified (see section 5),
the property A0 dec could not be proved and we don’t know if the external
inductive defining principle ANS5 holds. However, this does not say the Ω-
numbers could not be used at all but, when using these numbers, the properties
that could not be obtained are clearly identified. In that sense this helps the
development of algorithms that use these numbers.

Figure 3 provides an insight of the size of the development. All proofs are
available online6 and shall be updated when new results are established.

specifications proofs

Nonstandard arithmetic 135 60

HRω and Bridges’ axioms 330 1500

(including the least upper bound) 230 500

Laugwitz-Schmieden 90 275

Fig. 3. Key figures of our formal development in Coq

Next steps to progress into this work are to complete the proof of the Least
Upper Bound axiom, to formalize an actual constructive model of our abstract
integers and to develop formal proofs of properties of algorithms, such as the
connectivity property of the algorithm developed in [5]. For the moment the proof
of the Least Upper Bound axiom is almost completed and what remains to do is
reasonably reachable. The formalization of an actual constructive model of our
abstract integers is currently faced to the problem to obtain a candidate model of
such integers. Using the theory developed in [17] enthusiastic preliminary results
had already been obtained by the authors of [4].
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