
Sec: Untrusted Code, Security and Proofs

On-going Work in the PLS Group

Nicolas Magaud

School of Computer Science and Engineering

The University of New South Wales

March 30th, 2004

ERTOS seminar



Security and Untrusted Code

• Unknown Programs are not Safe to Run !

• They can be either malicious or just buggy.

• How to Trust a Program ?

• Solutions

• Certificate-Bearing Code (a.k.a. Proof-Carring Code)

• Execution Monitors (and OS-related techniques)

2



Proof-Carrying Code

• Infrastructure

Untrusted

Trusted

Source
Compiler

+

Certificate Gen.
Binary Certificate

Safety
Policy

Certificate
Checking

Run

• Certificates (and Proofs) about what the program does not do. . .

• Type Safety, Memory Safety, etc.

3



The Sec Approach

• A Multi-language Secure Framework

• A (Functional) Intermediate Language with Dependent Types

• Architecture Neutral, Low Level, Certified Code

• based on the ANF intermediate language

• and the logic of LF (with dependent types to encode proofs)

• How to ensure Reliability ?

• The smaller the TCB, the safer the system.

• Certifying Compilers:

Compiling High-level Languages and the attached Proofs

• OS Protection Mechanisms: Enforcing time and space bounds

4



On-going Research (I)

• Description of the syntax, semantics and type system for Seccode

• On-paper Description

• Implementing Examples

• A tool to transform Seccode proof annotations into LF (secpf )

• Formal Description in LF:

• types and terms

• small-step semantics (transition relation)

• type system

• properties: preservation and progress

• How about our LF-like Framework for Proofs ? Is it Sound ?

5



On-going Research (II)

• Seccode to Real-World Intel (i386) Machine Code

• Part of the TCB

• Code generation (Register Allocation, Optimizations)

• Pushing optimisations back into Seccode

• Removing it from the TCB

• A Formal Machine Model with Multiple Regions

• Protection Domains and Shared Regions

• Machine Model with Access Rights in Twelf

• Formalizing Operations Systems Related Features

6



Plan for the Future

• Implementing a Real-World Practicable Framework

• Investigating Further Language-Based Techniques

• Reconciling OS and Language Based Techniques

• Making Concrete Experiments to Assess the Framework

• Any Other Suggestions ?

7


