Overview of the Coq Proof Assistant

Nicolas Magaud
School of Computer Science and Engineering
The University of New South Wales

Guest lecture
Theorem Proving

Outline

Some Theoretical Background
Constructive Logic

Curry-Howard Isomorphism

The Coq Proof Assistant
Specification Language: Inductive Definitions
Proof Development

Practical Use and Demos

Constructive Logic

Also known as Intuitionistic Logic.
Does not take the excluded middle rule A\ —A into account !
Pierce law: (P = Q)= P)= P

A proof (of existence) of {f | P(f)} actually provides an
executable function f.

Application: extraction of programs from proofs
Va :nat,Vb:nat,3g:nat,r:nat | a=qxb+rA0<r<b

From this proof, we can compute ¢ and r from a and b.

Natural Deduction 4

Propositional Logic (implication fragment)

I'AF B I'rA=B T'FHA
=T —E
I'-rA= B I'B

Rules for the other Connectives

'-rA T'HB 'FAAB I'HAAB
A1 AE1 NE2
I'FAAB ' A I'B
'FA I'HB I'-AvB T''A+-C T,BrHC
Vi1 Vo VE
I'-AV B I'FAV B I'-C
I', A+ False 'FA T'F—-A I' - False
7 —F FaIseE

I'--A I' - False I'HA

Semantics - Interpretation of a Logic (1)

Tarski semantics

Boolean interpretation of the logic

A B
0 0
0 1
1 0
I 1

ANB AvVvB A=1B

0

0
0
1

0

1
1
1

1

1
0
1

-A=A= False

1
1
0
0

Semantics - Interpretation of a Logic (Il)

Heyting-Kolmogorov semantics

A proof of A = B is a function
which for any proof of A yields a proof of B.

A proof of A A B is a pair
featuring a proof of A and a proof of B.

A proof of AV B is a pair (i, p)
with (¢ = 0 and p a proof of A) or (¢ =1 and a proof of B).

A proof of Vx.A is a function
which for any object ¢ builds a proof of A[t/z].

It looks like computing and A-calculus, doesn't it ?

Curry-Howard Isomorphism

A formula (statement) in the logic is represented
as a type in the A-calculus.

A proof of a formula A is a term of type A.

logic A-calculus
I''AF B I'z:A+t: B
I'-A=B I'-Xx:At:A— B
I'rA=B T'FA|T'Ft:A— B T'ka:A
I'-B I'+(ta):B
I'-A I'B I'Fa:A T'Hb: B
I'-ANANB I'-a,b: Ax B
I'-AANB I'-t: Ax B
I'-A ['-fstt: A

Curry-Howard (1) 8

Dependent types : from A — B to Vz : A.(B x)
More Curry-Howard:

'-A 4T e:AFM:B T'F({lx: AB):s
x
I' -Vz.A I'FAXx: AM:1lz: AB
[I'=Vz.B I'-M:Ilz:AB T'TFN:A
'+ B[t/z] ' (M N): B[N/x]

M-cube: classification of \-calculi

Calculus of Constructions (CC): the most expressive calculus in
the A-cube (polymorphism, dependent types and higher-order)

Calculus of Inductive Constructions: CC plus Inductive Definitions
and Recursion Operators (fixpoint and pattern matching)

Outline

e Some Theoretical Background
e Constructive Logic

e Curry-Howard Isomorphism

The Coq Proof Assistant
Specification Language: Inductive Definitions
Proof Development

Practical Use and Demos

The Coq Proof Assistant

Main Features
Interactive Theorem Proving

Powerful Specification Language
(includes dependent types and inductive definitions)

Tactic Language to Build Proofs
Type-checking Algorithm to Check Proofs

More concrete stuff
3 sorts to classify types: Prop,Set, Type
Inductive definitions are primitive

Elimination mechanisms on such definitions

10

Examples of Applications of Dependent Types

Lists and Vectors

11

append : Vn : nat.(list n) — Vm : nat.(list m) — (list n + m)

Integer Square Root

Vn:int. 0 <n —

ds,7:int. 0<s AN O<r A n=s>+r A s2§n<(s+1)2

printf (single expression)

printf : Vt : type. t — unit

An Inductive Definition 12

Inductive nat : Set := 0 : nat | S : nat -> nat.

A mean to Reason about it

VP :nat — Prop,P0 — (Vn:nat,Pn — P (Sn)) — Vn:nat,Pn

What about Computing 7
We need something like Godel recursion operator in System T:

R, :a — (nat — a — a) — nat — a
equipped with the following rules:

R, vOvr 0 — v0
Ry vOvr (S p) — vr p (R, v0 vr p)

This is achieved using Pattern Matching and Structural Recursion.

Logic Connectives as Inductive Definitions (1) |13

Inductive True: Prop := I: True.

Inductive False: Prop :=.
False_ind : forall P:Prop, False -> P

Inductive and (A : Prop) (B : Prop) : Prop :=
conj : A->B ->A/\B

and_ind : forall ABP : Prop, (A->B ->P) ->A /\B ->P

Inductive or (A : Prop) (B : Prop) : Prop :=
or_introl : A -> A \/ B | or_intror : B -> A \/ B

or_ind : forall ABP : Prop, (A ->P) -> (B->P) ->A\/B->P

Logic Connectives as Inductive Definitions (1)

Inductive Constructors = Introduction Rules
Induction principles (_ind) = Elimination Rules

Example: how to prove VA, B : Prop, A VB — BV A?

coming soon. ..

14

Proof Development

Backward Reasoning

Tactic Based Theorem Proving

Each tactic application refines the proof term.
Alternatively one can give a proof term directly.

Sometimes proofs can be performed automatically.

Eventually a proof term is produced and type-checked.

Demo (or_commute.v)

VA,B : Prop, AVB — BVA

15

Equality as an Inductive Type 16

No equality as a primitive notion in Coq
Propositional Equality: Leibnitz' equality

Inductive eq (A : Type) (x : A) : A -> Prop :=

refl_equal : x = x
eqind: VA : Type,x : A,P: A— Prop,Px —Vy: A,z =y — Py
Terms can also be definitionaly equal (8d¢-convertible)
No Extensionality Property (related to extraction matters)

Vfi,g:A—=BVx: A fx=gx— f=g

Rewriting relies on the substitution principle eq_ind.

Functions Definitions 17

Defining (Structural Recursive) Functions
Functions have to be total.
Definition by Pattern Matching and Guarded Fixpoint
Allows to define all primitive recursive functions
(and more ...e.g. Ackermann)
Example

Fixpoint plus (n m:nat) struct n : nat :=
match n with | 0 => m
| S p=>38 (plus p m)
end.

Computational Behaviour (¢-reduction)

plus O m — m plus (S p) m —— (S (plus p m))

Inductive definitions and Induction

Inductive datatypes e.g. trees (see demo later)

Inductive predicates

Inductive le (n : nat) : nat -> Prop :=
| le.n : n <= n

| 1le_.S : forall m : nat, n <=m -> n <= S m

le is a parametric inductive type representing a relation.

As an inductive type, it also comes with a induction principle:

Vn : nat, P : nat — Prop,
Pn— (Vm:nattn <m—Pm— P (Sm)) —

vYn0 : nat,n < nl0 — P n0

Dependent Types

13

Proofs: some examples

Inductive Reasoning of bacic types and on a relation (tree.v)
Induction, Inversion Principles and Case Analysis (coins.v)

Sometimes induction is not enough: Functional Induction
(mod2.v)

A taste of Dependent Types (dep.v)

19

Related Tools and Challenges

20

Coq has a large standard library including Integers, Reals, Sets.

Extraction
Fully certified programs can be extracted from proofs.
from CCind to Fw
Actually from Coq to ML or Haskell
Hoare logic and correctness proofs of imperative programs
(see http://why.Iri.fr)

Challenges:
More Automation (try and formalize the sum example)

Friendlier Handling of Dependent Types and
Dependently-typed Functions

Further Reading and Exercices

21

Interactive Theorem Proving and Program Development:
Coq'Art: The Calculus of Inductive Constructions
by Yves Bertot and Pierre Castran

http://pauillac.inria.fr/coq (Coq Manual, Standard Library)

Exercices
http: //www.labri.fr/Perso/™ casteran/CoqArt/
ftp://ftp-sop.inria.fr/lemme/Laurent. Thery/CoqExamples/

