
Certi�ation of Sorting Algorithmsin the Coq SystemJean-Christophe Filliâtre1 and Niolas Magaud21 LRI, Universit�e Paris Sud, bât. 490,91405 Orsay Cedex, Frane,filliatr�lri.fr,web page: www.lri.fr/~filliatr2 �Eole Normale Sup�erieure de Lyon,69364 Lyon Cedex 07, Franenmagaud�ens-lyon.fr,web page: www.ens-lyon.fr/~nmagaudAbstrat. We present the formal proofs of total orretness of threesorting algorithms in the Coq proof assistant, namely insertion sort,quiksort and heapsort. The implementations are imperative programsworking in-plae on a given array. Those developments demonstrate theusefulness of indutive types and higher-order logi in the proess ofsoftware erti�ation. They also show that the proof of rather omplexalgorithms may be done in a small amount of time | only a few daysfor eah development | and without great diÆulty.1 IntrodutionOne a formal spei�ation is given, we an write a program that meets thespei�ation with mathematial rigor, eah step being fully justi�ed, leadingto a orret implementation. However, the large number of ases and the te-dious tehnial proofs | as for instane arithmetial properties | disouragethe programmer most of the time. Moreover, he or she may misinterpret somesemantially subtle point, as for instane the lazy evaluation of some logialonnetive. For those reasons, the help of a formal method to produe the proofobligations and of a proof assistant to establish them is quikly unavoidable.We present here the proofs of orretness and termination of three sortingalgorithms in the Coq system, namely insertion sort, quiksort and heapsort.Why sorting algorithms ? Mainly beause they are short but omplex programs,whih over a huge panel of program onstrutions | loops, reursive funtions,loal variables, funtion alls, et. As notied by R. Sedgewik in his book Algo-rithms [6℄, it is not so easy to write a orret implementation of quiksort, evenwithout any optimization, and a small mistake in suh a omplex algorithm hasimmediately some atastrophi onsequenes.Those ase studies have demonstrated the relevane of the use of the Coqsystem in the proof of imperative programs orretness. In partiular, we used



indutively de�ned prediates several times in the developments. We also usedhigher-order to de�ne new indution priniples, or to prove the well-foundednessof some relation to establish the termination of a loop. The formal develop-ments desribed in this artile are freely available on the web page of Coq users'ontributions (oq.inria.fr/ontribs). The Coq system and the tati usedto prove the orretness of imperative programs are also freely available (atoq.inria.fr).This artile is organized as follows. The next setion introdues the proof ofprograms in the Coq system, giving the syntax of programs and annotations,and desribing the useful datatypes. Setion 3 de�nes the libraries used in thespei�ation of sorting algorithms, whih are ommon to the three developments.Then Setion 4 desribes the three ase studies in details. We onlude with adisussion about the diÆulties enountered during the proess of speifying andproving.2 Certifying programs with the Coq systemThe Coq system [1℄ is a proof assistant for the Calulus of Indutive Constru-tions, a logial framework extending the system F with higher-order, dependenttypes and a primitive notion of indutive types. One an introdue new de�ni-tions and prove fats, using an interative prover in a natural dedution way. Asa typed �-alulus, the logi of the Coq system is naturally well-suited to provepurely funtional programs. It is now also possible to establish the orretnessand termination of imperative programs [2℄.Programs are given in a syntax mixing funtional and imperative features,lose to the syntax of the Caml programming language:e ::=  j x j fun (x : �)! e j (e e) j re f : � = ej !x j x := e j t[e℄ j t[e℄ := e j e ; e j while e do e donej if e then e else e j let x = e in e j let x = ref e in eThe base objets are the onstants of the logi, written . It means that theprograms an manipulate any datatype de�ned within the proof assistant, andthere are no partiular base types | but, of ourse, one an use the alreadyprede�ned types of the Coq system, like the type nat of natural number or thetype Z of integers. The mutable variables and the arrays must ontain only purelyfuntional values. Therefore, the type system of the programming language isthe following: � ::= T j T ref j T array j � ! �where T stands for any type de�ned in the Calulus of Indutive Construtions.Programs are spei�ed using pre- and post-onditions, with the lassial nota-tion of Floyd-Hoare logi fPg e fQg, whih an be applied to any sub-expressionof the program. Those annotations may refer to the values of program variables.If x is suh a variable, then x in P and Q stands for the urrent value of x. Inthe post-ondition Q, x� stands for the value of x before the evaluation of e. It



is also possible to refer to the value of x at a given program point L with thenotation x�L. Program points are introdued with the keyword label, in a waysimilar to the goto labels. A partiular label 0 is automatially introdued at thebeginning of the program, so that x�0 refers to the initial value of x | within afuntion, that initial value stands for the value at the beginning of the funtionbody i.e. right after the funtion all. In the post-ondition, the keyword resultstands for the value returned by the omputation.Invariants may be inserted in loops for onveniene. Termination of loopsand reursive funtions is justi�ed by a variant, whih is the pair of an arbitraryexpression � and a relation R over the type of that expression. The relation�x; y:0 � x < y is the default relation for variants of type Z. Consequently, the�nal syntax of loops is the following:while e do f [invariant I ℄ variant � [for R℄ g e doneThe tati to establish the orretness and termination of programs, alledCorretness, takes an annotated program, with possible inner annotations, andprodues a set of proof obligations, whih are standard goals in the Coq system.We will not enter the theoretial details of that tati, whih are desribed in [2℄and also in the Coq Referene Manual [1℄. The only thing to say is that proof obli-gations are purely logial propositions, applied to logial variables representingthe various values of the mutable variables of the program.Arrays are indexed over type Z, starting from 0. They are represented in thelogial world by an abstrat dependent type (array N T ), where N is the sizeof the array and T the type of its elements. This abstrat type is manipulatedthrough the following two funtions:aess : 8N: 8T: (array N T )! Z ! Tstore : 8N: 8T: (array N T )! Z ! T ! (array N T )For onveniene, we still write t[i℄ for (aess t i) in spei�ations. The abovetwo funtions are axiomatized as follows:store def 1 : 8N: 8T: 8t : (array N T ): 8v : T: 8i : Z:0 � i < N ) (aess (store t i v) i) = vstore def 2 : 8N: 8T: 8t : (array N T ): 8v : T: 8i; j : Z:0 � i < N ^ 0 � j < N ^ i 6= j )(aess (store t i v) j) = (aess t j)The tati for proving orretness and termination of imperative programs isfully desribed in the Coq Referene Manual [1℄, hapter 18. The syntax and theset of available libraries are desribed, and a bunh of examples demonstratesthe use of the tati.3 Speifying sorting algorithmsWe will only onsider here sorting algorithms applying to arrays and workingin-plae i.e. by moving elements in a single array given as argument. In the fol-lowing, N will always denote the size of that array. To simplify the presentation,



we limit our ase studies to arrays of integers but, of ourse, all the following stillholds for any type with a deidable order relation. When speifying a sortingprogram, one has to express two fats:1. �rst, obviously, that the array is sorted after the evaluation of the program;2. but also that the values ontained in the initial array are preserved by thealgorithm, whih possibly permutes them but does not modify any of them.Indeed, if we forget the seond ondition, the following program obviously leadsto a sorted array: for i = 0 to N � 1 do t[i℄ := 0 donebut it is surely not what we all a sorting algorithm! In the next two setions, weintrodue the spei�ation material orresponding to the above two properties.3.1 The property of being sortedWe �rst de�ne a prediate (sorted t i j) whih expresses that an array t is sortedin inreasing order between the bounds i and j. It is formally de�ned as follows:(sorted t i j) def= i � j ^ 8x: i � x < j ) t[x℄ � t[x+ 1℄Returning to that de�nition eah time you want to establish that a sub-partof an array is sorted is somewhat tedious, and that is why the prediate sortedomes with a set of useful lemmas about sorted arrays.Some of them state rather trivial properties, suh as \a sub-part of a sortedpart is also sorted" or \any modi�ation of an array outside a sorted part leavesthat part sorted", et. But the most useful lemmas are the ones allowing toinrease the sorted part, either on the left side or on the right side of the segment.They an be expressed by the following rules:(sorted t i j) j < N � 1 t[j℄ � t[j + 1℄(sorted t i (j + 1))and 0 < i t[i� 1℄ � t[i℄ (sorted t i j)(sorted t (i� 1) j)3.2 PermutationTo express that an array is preserved by a program, we introdue a prediate(permut t t0) whose meaning is that t and t0 are permutations of eah other. Thereare many ways to de�ne suh a prediate. One possibility would be to state theexistene of a one-to-one mapping between the elements of t and the ones of t0.But it would neessitate to exhibit suh a mapping eah time we want to establish(permut t t0). A better solution is to express that the set of permutations is thesmallest equivalene relation ontaining the transpositions i.e. the exhanges of



two elements. So we �rst de�ne the prediate (exhange t t0 i j), for two arrayst and t0 of type (array N Z) and two indexes i and j, as follows:(exhange t t0 i j) def= 0 � i < N ^ 0 � j < N ^ t[i℄ = t0[j℄ ^ t[j℄ = t0[i℄^ 8k: 0 � k < N ^ k 6= i ^ k 6= j ) t[k℄ = t0[k℄Then we de�ne the prediate (permut t t0) indutively as follows:(exhange t t0 i j)(permut t t0) (permut t t)(permut t0 t)(permut t t0) (permut t t0) (permut t0 t00)(permut t t00)Suh a solution is very useful in pratie, sine we will often use the reexivity| when we do not modify the array | and the transitivity | when we sequeneoperations that establish permutations. Moreover, two of our three ase studiesproeed by exhanging elements, namely quiksort and heapsort, and the proofobligations onerning the permutations are therefore always immediate.In pratie, we also need a prediate to express that a subpart [l::r℄ of twoarrays has been permutated, the other elements being untouhed. (It is used inquiksort, when we apply reursively to subparts of the array.) The orrespondingprediate (sub permut t t0 l r) is de�ned in a way similar to permut .4 Three ase studiesHere we ome to the three ase studies themselves, namely insertion sort, quik-sort and heapsort. There are many artiles and monographs about sorting al-gorithms. We mainly refer to two of them. The �rst one is the exellent bookof R. Sedgewik Algorithms [6℄ | a very good introdution to algorithmi andin partiular to sorting algorithms | from whih we borrowed some piees ofode. The other one is the third volume of D. E. Knuth's Art of Computer Pro-gramming [4℄ dediated to searhing and sorting algorithms, whih ontains avery detailed study of many sorting algorithms, inluding the three ones we areonsidering here.4.1 Insertion sortThe �rst ase study we present is the insertion sort. This is one of the basi sort-ing algorithm taught to omputer siene students and surely the most naturalone. Insertion sort is fully desribed in R. Sedgewik's book [6℄, pages 98{103,and in D. E. Knuth's one [4℄, pages 80{102.The version of insertion sort we implement is the simplest one, that tra-verses the array from left to one, building a sorted array on the left side, andinserts suessively the next element in that sorted segment. Thus it is made oftwo parts, a proedure insertion whih does the insertion and a main programinsertion sort that inserts all the elements one by one.



The proedure insertion. That proedure is intended to insert the n-thelement of an array t in the already sorted sub-array t[0::n� 1℄. It means that,given the pre-ondition(sorted t 0 (n� 1)) ^ 1 � n < Nthe exeution of the proedure will establish the following post-ondition(sorted t 0 n) ^ (permut t t�)We are now going to hek how it works in details. The �rst program one has inmind looks like let v = t[n℄ inlet j = ref n inwhile !j > 0 and t[!j � 1℄ > v dot[!j℄ := t[!j � 1℄; j :=!j � 1done;t[!j℄ := vBut suh a test in the loop requires a lazy evaluation of the boolean onnetiveand whih returns false as soon as its �rst argument is evaluated to false, withoutevaluating its seond argument. Otherwise, the array may be aessed outside ofits bounds, at index �1. The onnetives of the programs onsidered in the Coqsystem are strit and if we try to establish the orretness of the above program,we get a proof obligation 0 � j� 1 < N expressing that t[!j� 1℄ is a legal aessinside t, whih we are not able to establish. Therefore, we rewrite the test usinga onditional, in the following way:while (if not (!j > 0) then false else t[!j � 1℄ > v) do : : :From a semanti point of view, the reader may notie that it is exatly a lazyonnetive. The �nal ode of the proedure insertion is given in Figure 1.The next problem is to �nd the right invariant for the loop. It should expressthat the element to insert moves through the array until it reahes its right plae.It requires to know, if the urrent position is j, what are the values at indexesj � 1 and j + 1. Sine those indexes may be outside the array, we annot de�nea unique general invariant. Therefore, we introdue a ase-based invariant, bydistinguishing the three ases j = 0, 0 < j < n and j = n.The general ase 0 < j < n states that the property of being sorted holdsin the two sub-arrays loated on eah side of the urrent index j as illustratedbelow, with the two additional properties t[j � 1℄ � t[j + 1℄ and v � t[j℄.0 j n+ 1 N � 1sorted sortedThe other two ases, when j = 0 and when j = n, and degenerated forms of thatinvariant. Hene our invariant will ontain the onjuntion of three prediates,



fun (N : Z)(t : array N of Z )(n : Z) !f (sorted array t 0 (n � 1)) ^ 1 � n < N g(let v = t [n℄ inlet j = ref n inbeginwhile(if not ( !j > 0) then false else t [!j � 1℄ > v)f if result then j > 0 ^ (aess t (j � 1)) > velse j = 0 _ (j > 0 ^ (aess t (j � 1)) � v) gdof invariant ( (global inv N t j n v)^ (inv 0 N t j n v)^ (inv n N t j n v) )^ (permut (store t j v) t�0)^ 0 � j � nvariant j gt [!j ℄ := t [!j � 1℄;j := !j � 1done;t [!j ℄ := vend)f (sorted array t 0 n) ^ (permut t t�) gFig. 1. The proedure insertionwhih are the following:(inv n t j n v) def= j = n) (sorted t 0 (j � 1)) ^ v � t[j℄(inv 0 t j n v) def= j = 0) (sorted t j n) ^ v � t[j℄(global inv t j n v) def= 0 < j < n )(sorted t 0 (j � 1)) ^ (sorted t j n)^ t[j � 1℄ � t[j + 1℄ ^ v � t[j℄The last property to establish is the preservation of the elements of the array.There is a slight diÆulty here, sine during the loop iterations the array t is nomore a permutation of the initial array. Indeed, an element is dupliated in t[j℄and t[j�1℄, while the element to insert is kept in the variable v. Therefore, we donot express that t is a permutation of the initial array t�0 but that (store t j v)is a permutation of t�0.The sorting program itself. One the proof of the proedure insertion isompleted, it is quite easy to ertify the main program insertion sort. It is simply



a loop whih alls the proedure insertion for eah position from 1 to the rightbound of the array. The invariant is simply:(sorted t 0 (i� 1)) ^ (permut t t�0) ^ 1 � iwhih is easily established by the post-ondition of insertion. The annotatedode of insertion sort is given in Figure 2.fun (N : Z)(t : array N of Z ) !f N > 0 glet i = ref 1 inbeginwhile !i < N dof invariant (sorted array t 0 (i � 1)) ^ (permut t t�0) ^ (1 � i)variant N � i g(insertion N t !i);i := !i + 1doneendf (sorted array t 0 (N � 1)) ^ (permut t t�0) gFig. 2. The program insertion sort
4.2 QuiksortIt is not neessary to introdue the quiksort algorithm, sine it is the mostwidely taught algorithm, as the paradigm of the divide-and-onquer methodol-ogy, and also the most studied one, as one of the most eÆient sorting algorithm.Quiksort is due to C. A. R. Hoare [3℄ and has been improved and studied byR. Sedgewik in his Ph.D.'s thesis [5℄; the pages 115{131 of his book [6℄ aredevoted to it. A detailed study is available in D. E. Knuth's book [4℄, pages114{123.We are going to write quiksort in the usual way, with two distint parts:�rst a partitioning funtion, whih takes a sub-part of the array as argument, re-arranges elements in that segment to obtain a left part with values less or equalthan those of the right part, and returns the position of the partitioning element;seondly, a reursive divide-and-onquer proedure whih all the partitioningfuntion and then alls itself reursively on both left and right sides of thepartitioning element.



Partitioning. Quiksort belongs to the family of sorting algorithms whih pro-eed by exhanging elements of the array. Thus it is a good idea, for the larityof the ode, to introdue a proedure swap whih exhanges in the array t thetwo elements at positions i and j. The post-ondition of that proedure will besimply (exhange t t� i j) (1)where the prediate exhange has been introdued in Setion 3. The ode ofswap is given in Figure 3, and its proof of orretness is immediate. Notie thatit is not neessary to express that t is preserved by the proedure swap sine itis a onsequene of (1) by de�nition of the prediate permut .fun (N : Z)(t : array N of Z )(i ; j : Z ) !f 0 � i < N ^ 0 � j < N glet v = t [i ℄ in begin t [i ℄ := t [j ℄; t [j ℄ := v endf (exhange t t� i j ) gFig. 3. The proedure swapPartitioning the segment [l::r℄ of the array t onsists in seleting a value vin t[l::r℄ and re-arranging the elements of that segment to obtain the followingsituation: 0 l p r N � 1t � v v � vWe are going to write a partitioning funtion partition whih establishes theabove situation and returns the index p, alled the partitioning element. Tospeify that funtion, we de�ne a prediate (partition p t l r p) whih expressesthe above property. It is the onjuntion of three properties, the �rst one ex-pressing that p belongs to the interval [l::r℄, and the other two ones expressingthat the values of the left and right sides of p are respetively less or equal andgreater or equal to v = t[p℄. The de�nitions are the following:(array le t l r v) def= 8i: l � i � r ) t[i℄ � v(array ge t l r v) def= 8i: l � i � r ) v � t[i℄(partition p t l r p) def= l � p � r ^ (array le t l (p� 1) t[p℄)^ (array ge t (p+ 1) r t[p℄)Then, the spei�ation of the funtion partition is quite simple: its pre-onditionexpresses that the bounds l and r are suh that 0 � l < r < N holds, and itspost-ondition expresses that the sub-part t[l::r℄ has been re-arranged in suh a



way that the returned value | whih is denoted by result | is a partitioningelement for the segment [l::r℄ i.e.(partition p t l r result) ^ (sub permut l r t t�)Atually, it is a good idea to add expliitly the property l � result � r in thepost-ondition, even if it is already inluded in the de�nition of partition p.Regarding the ode, we didn't make a omplex hoie of the partitioningelement, as it is often the ase in eÆient implementations of quiksort. Wesimply hose the �rst element t[l℄, as in aademi presentations. However, amore omplex hoie wouldn't hange the spei�ation, and would only makesome proof obligations a bit more ompliated | and more numerous sine theode would also be bigger. The ode of the partitioning funtion partition is givenin Figure 4. It is written in a standard way, with two indexes i and j sanningthe segment [l::r℄ respetively from left to right and right to left, exhanging thevalues t[i℄ and t[j℄ when they are on the wrong side of the partitioning value,until they ross eah other, whih gives the �nal position of the partitioningelement | one has to take are at that point, sine the partitioning positionmay be i or i � 1. The invariants of the three loops are self-explanatory. Thelabel L is used to express that the indexes i and j keep respetively inreasingand dereasing, whih is neessary to establish to termination of the outer loop.Divide-and-onquer. The seond part of the quiksort algorithm applies thefamous tehnique known as divide-and-onquer : to sort the segment [l::r℄ ofthe array t, we all the funtion partition, whih establishes the partition andreturns the position p of the partitioning element, and we all reursively thesame program on both segments [l; p � 1℄ and [p + 1; r℄, until the segmentsontain at most one element. Therefore, the reursive funtion quik re whihimplements this algorithm has the pre-ondition 0 � l^r < N and the followingpost-ondition: (sorted array t l r) ^ (sub permut l r t t�)whih expresses that the segment t[l::r℄ has been sorted and that we only pro-eeded by a permutation of the elements of that part of t. The ode for thatfuntion is very simple to write, and is given in Figure 5. Its termination is easyto prove, using the width of the segment [l::r℄ as variant, that is r � l, sine itlearly dereases in eah reursive all. That ode leads to a few number of proofobligations, among whih one is non trivial. It orresponds to the establishmentof the post-ondition after the three funtion alls and an be illustrated by thefollowing situation:



fun (N : Z)(t : array N of Z )(l ; r : Z ) !f 0 � l < r ^ r < N g(let pv = t [l ℄ inlet i = ref (l + 1) inlet j = ref r inbeginwhile !i < !j dof invariant l + 1 � i � r ^ j � r^ (array le t (l + 1) (i � 1) pv) ^ (array ge t (j + 1) r pv )^ (sub permut l r t t�0) ^ t [l ℄ = t�0[l ℄variant j � i for (Zwf (�N � 2)) glabel L;while t [!i ℄ � pv and !i < !j dof invariant i�L � i � r ^ (array le t (l + 1) (i � 1) pv )variant r � i gi := !i + 1done;while t [!j ℄ � pv and !i < !j dof invariant l � j � j�L ^ (array ge t (j + 1) r pv)variant j gj := !j � 1done;if !i < !j then begin(swap N t !i !j );i := !i + 1;j := !j � 1enddone;if t [!i ℄ < pv then begin(swap N t l !i);!iend else begin(swap N t l ( !i � 1));!i � 1endend)f l � result � r ^ (partition p t l r result) ^ (sub permut l r t t�) gFig. 4. The funtion partition



let re quik re (N : Z)(t : array N of Z )(l ; r : Z ) : unitf variant r � l for (Zwf (�1)) g =f 0 � l ^ r < N g(if l < r thenlet p = (partition N t l r) inbegin(quik re N t l (p � 1));(quik re N t (p + 1) r)end)f (sorted array t l r) ^ (sub permut l r t t�0) g:Fig. 5. The reursive funtion quik re0 l p r N � 1t0t1 = t0 � v v � v = t0t2 = t1 sorted v = t1 = t1t3 = t2 = t2 v sorted = t2where t0 is the initial value of t, t1 its value after the all to the partitioning fun-tion, and t2 and t3 its values after the two reursive alls. This proof obligationsis established as a lemma, whose formal statement is the following:8t0; t1; t2; t3: 8l; r; p:0 � l < r < N(partition p t1 l r p) ^ (sub permut l r t1 t0)(sorted array t2 l (p� 1)) ^ (sub permut l (p� 1) t2 t1)(sorted array t3 (p+ 1) r) ^ (sub permut (p+ 1) r t3 t2)(sorted array t3 l r) ^ (sub permut l r t3 t0)At last, the sorting program itself is just a all to quik re on the wholearray i.e. with the bounds 0 and N � 1. The ode is given in Figure 6 and itsproof of orretness is immediate.4.3 HeapsortWe kept the best last. Indeed, even if quiksort is preferred to heapsort in pra-tie, the latter has the best omplexity in worst ase, namely O(n logn), whihis the optimal omplexity for a sorting algorithm. Moreover, heapsort is a verybeautiful algorithm, based on a shrewd data struture, and whih an be imple-mented in-plae with only a few lines of ode. As for the two other sorting algo-rithms, the reader an �nd a desription of heapsort in R. Sedgewik's book [6℄,



fun (N : Z)(t : array N of Z ) !(quik re N t 0 (N � 1))f (sorted array t 0 (N � 1)) ^ (permut t t�) gFig. 6. The program quiksortpages 153{158, and a detailed study in The Art of Computer Programming [4℄,pages 149{153.The heapsort algorithm uses the struture of heap. Heaps, whih are some-times alled tournament trees, are omplete binary trees where eah node has avalue greater or equal to those of its two sons | or that of its unique son. Heapsare mainly used to implement priority queues. Indeed, in suh a struture, get-ting the greatest value is immediate | it is the root of the tree | and addingor removing an element an be done in logarithmi time with respet to thenumber of elements. The heapsort implementation uses the fat that a binarytree an be represented inside an array where only the values of the nodes arestored, and where the two sons of a node stored an index i are stored at indexes2i+1 and 2i+2. Assuming that we know how to manipulate the heap with suha representation, the sorting algorithm proeeds as follows:1. �rst, it builds a heap with all the elements of the array, in the array itself;2. seondly, it sorts the array progressively by keeping a heap on the left partof the array and a set of already sorted elements on the right part, whihan be illustrated like this:0 k + 1 N � 1t heap with elements � t[k + 1℄ part already sortedWe used here the ode of R. Sedgewik ([6℄ page 155), whih is inredibly shortand lever. To speify that program, we have to give a formal de�nition to theheap struture.De�nition of the heap struture. We de�ne a prediate (heap t n k) whosemeaning is the following: \In the array t, the tree of root k made of elementsat indexes less or equal than n is a heap." That prediate heap is indutivelyde�ned as follows:2k + 1 � n) (t[k℄ � t[2k + 1℄ ^ (heap t n (2k + 1)))2k + 2 � n) (t[k℄ � t[2k + 2℄ ^ (heap t n (2k + 2)))(heap t n k)Even if most lemmas about heaps will be proved using the indution prinipleassoiated to the above de�nition, a few lemmas will neessitate another indu-tion priniple, on natural numbers, whih follows the enoding of heaps. That



priniple is the following:8P : Z ! Prop:(P 0))(8x : Z: 0 � x) (P x)) (P (2x+ 1)) ^ (P (2x+ 2))))8x : Z: 0 � x) (P x)Another prediate will be useful to speify the ode of heapsort. It expressesthat all the elements of a tree | still represented as above but whih is notneessarily a heap | are smaller or equal than a given value v. That prediate,written (inftree t n v k), is also indutively de�ned, as follows:t[k℄ � v2k + 1 � n) (inftree t n v (2k + 1))2k + 2 � n) (inftree t n v (2k + 2))(inftree t n v k)Building and destruturing the heap. The ode of heapsort is usually madeof two parts, one to build the heap with the use of a funtion upheap, and one tosort the elements, removing them from the heap with the use of a funtion down-heap. R. Sedgewik shows in [6℄ that both parts may be written using only theproedure downheap, whih leads to a very onise and elegant implementation.The proedure downheap takes as argument an array t, an index k represent-ing the root of a tree, and a maximal index n, with the pre-ondition that allthe elements of the tree rooted at k, of indexes less or equal than n, form a heapexept may be the root k itself. Then it moves the value in t[k℄ down in the tree,by exhanging it with the greatest of its two sons, until the property of heapholds for the whole tree rooted at k. In our ase, we an lower the generality ofthis funtion and give it the following spei�ation:f 8i : Z: k + 1 � i � n) (heap t n i) g(downheap t k n)f (permut t t�) ^ 8i : Z: k � i � n) (heap t n i) g (2)whih expresses that, if we have heaps at every position between k+1 and n then,after the all of (downheap t k n), we will have heaps at every position betweenk and n. (We also express the preservation of the array, whih will be neededto establish its preservation by the main program.) Assuming that downheap isavailable, heapsort is really easy to write. To build the heap, the trik onsistsin using a bottom-up approah, whih an be done in only one line of ode:for k = (N � 2)=2 downto 0 do (downheap t k (N � 1)) doneThen, sorting the array an be done with another line of ode, by suessivelyexhanging the greatest element of the heap | whih is at position 0 | withthe last element of the heap:for k = N � 1 downto 1 do (swap t 0 k); (downheap t 0 (k � 1)) done



This leads to the ode given in Figure 7, where the invariants were easy to �nd.(The proedure swap has already been introdued in setion 4.2.)fun (N : Z)(t : array N of Z ) !f 1 � N gbeginfor k = (N � 2)=2 downto 0 dof invariant � 1 � k � N � 1^ (8i : Z: k + 1 � i � N � 1 ) (heap t (N � 1) i))^ (permut t t�0)variant k + 1 g(downheap N t k (N � 1))done;assert f (heap t (N � 1) 0) ^ (permut t t�0) g;for k = N � 1 downto 1 dof invariant 0 � k � N � 1^ (8i : Z: 0 � i � k ) (heap t k i))^ (k + 1 � N � 1 ) t [0℄ � t [k + 1℄)^ (k + 1 � N � 1 ) (sorted array t (k + 1) (N � 1)))^ (permut t t�0)variant k g(swap N t 0 k);(downheap N t 0 (k � 1))doneendf (sorted array t 0 (N � 1)) ^ (permut t t�) gFig. 7. The program heapsort
The proedure downheap. We still have to implement the downheap funtion.It is usually written in an imperative style, with some ode looking like1:downheap t k0 n def=let k = ref k0 inwhile 2�!k + 1 � n dolet j = [ selet the greatest son of k ℄ inif t[j℄ � t[!k℄ then break;(swap t !k j);k := jdone1 The ode of R. Sedgewik does not use a break but a goto, but with the same purpose.



Sine we do not have a break onstrution in our language, we have to write itdi�erently, keeping the same idea of stopping the proess as soon as the node kis greater or equal to its son(s). A good idea is to write it as a reursive funtion,in the following way:downheap t k n def=if 2� k + 1 � n thenlet j = [ selet the greatest son of k ℄ inif t[k℄ < t[j℄ then begin(swap t k j);(downheap t j n)endThe ode to selet the greatest son of k, namely j, takes are of the ase whenk has only one son. That piee of ode is \abstrated" by being given the post-ondition (selet son t k n j) whih is de�ned as:(selet son t k n j) def= (j = 2k + 1 ^ (2k + 2 � n) t[j℄ � t[2k + 2℄))_ (j = 2k + 2 ^ j � n ^ t[j℄ � t[2k + 1℄)When we ome to the proof of orretness of the proedure downheap, withthe spei�ation (2), we disover that we are not able to establish all the proofobligations. The reason is that our spei�ation of downheap is not strongenough; in partiular, we didn't state what our funtion does not do. Indeed,after the reursive all (downheap t j n) we get an array with the heap propertyat root j, but we do not know if some elements outside that tree have been mod-i�ed, and we are not able to establish the heap property at root k. Consequently,we have to strengthen the post-ondition. First, we laim that some elementsare not touhed by the proedure, namely those with indexes i suh that i < k,k < i < 2k + 1 or n < i. Seondly, we laim that the maximal value of the treeat root k didn't inrease, whih is expressed by:8v: (inftree t� n v k)) (inftree t n v k)Then, with suh a post-ondition, the proof obligations an be established. The�nal annotated ode of downheap is given in Figure 8.5 DisussionThose three ase studies show that the Coq system an be an e�etive frameworkfor developing proofs of pretty omplex imperative programs. The tati usedleads to very natural proof obligations, whih are very lose to the lemmas onewould require in a hand-made proof using Floyd-Hoare logi.Some signi�ant �gures about the developments we presented are put to-gether in Figure 9. In partiular, they show that the full development of a formal



let re downheap (N : Z)(t : array N of Z )(k ; n : Z ) : unit f variant n � k g =f 0 � k � n ^ n < N^ 8i : Z: k + 1 � i � n ) (heap t n i) g(let j = 2� k + 1 inif j � n thenlet j 0 = (if j + 1 � n then if t [j ℄ < t [j + 1℄ then j + 1 else j else j )f (selet son t k n result) g inif t [k ℄ < t [j 0℄ then begin (swap N t k j 0); (downheap N t j 0 n) end)f (permut t t�)^ (8i : Z: k � i � n ) (heap t n i))^ (8i : Z: (0 � i < k _ k < i < 2� k + 1 _ n < i < N ) ) t [i ℄ = t�[i ℄)^ (8v : Z: (inftree t� n v k) ) (inftree t n v k)) gFig. 8. The reursive proedure downheapproof requires a reasonable amount of time (a few days). The total developmenttime for insertion sort is not given, sine it involved the development of the li-braries and also the debugging of the orretness tool. The annotations and theproof obligations are not so numerous, in the same order of magnitude than thelines of ode. Moreover, the libraries we developed, about sorted arrays and per-mutations, are independent of the programs and an be reused in other proofs,allowing faster and easier developments.Although it sometimes laks more powerful automati tatis, espeially tosolve trivial goals, the Coq system provides some very useful tatis to solve proofobligations without too muh interating with the system. The tati Omega,whih is intended to solve quanti�er-free problems in the Presburger arithmeti,is of great help to the user when he or she tries to solve goals about the dereasingof the variant or the inequalities expressing legal aesses within the bounds ofarrays.But the main advantage of those developments is surely to have demonstratedthe relevane of a powerful logi, namely the Calulus of Indutive Construtions,in the proess of speifying programs and proving their orretness. Indeed, wehave de�ned and used some indutive prediates, as for instane permut andheap, and even used higher order to prove a new indution priniple based onthe oding of heaps.Referenes[1℄ The Coq Proof Assistant. http://oq.inria.fr/.[2℄ J.-C. Filliâtre. Proof of Imperative Programs in Type Theory. In Proeedings ofthe TYPES'98 workshop, 1998. To appear.[3℄ C. A. R. Hoare. Quiksort. Computer Journal, 1(5), 1962.[4℄ D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searhing.Addison-Wesley, 1973.



insertion sort quiksort heapsortlines of spei�ation 15 13 23lines of ode 17 41 (4) 19 (2)number of annotations 7 18 7number of proof obligations 14 26 22lemmas (manually introdued) 8 11 28proof steps 300 468 626total development time | 2 days 3 daysFig. 9. Some signi�ant �gures[5℄ R. Sedgewik. Quiksort. Garland, New York, 1978. Also appeared as the author'sPh.D. dissertation, Stanford University, 1975.[6℄ R. Sedgewik. Algorithms. Addison-Wesley, 1988.


