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t. We present the formal proofs of total 
orre
tness of threesorting algorithms in the Coq proof assistant, namely insertion sort,qui
ksort and heapsort. The implementations are imperative programsworking in-pla
e on a given array. Those developments demonstrate theusefulness of indu
tive types and higher-order logi
 in the pro
ess ofsoftware 
erti�
ation. They also show that the proof of rather 
omplexalgorithms may be done in a small amount of time | only a few daysfor ea
h development | and without great diÆ
ulty.1 Introdu
tionOn
e a formal spe
i�
ation is given, we 
an write a program that meets thespe
i�
ation with mathemati
al rigor, ea
h step being fully justi�ed, leadingto a 
orre
t implementation. However, the large number of 
ases and the te-dious te
hni
al proofs | as for instan
e arithmeti
al properties | dis
ouragethe programmer most of the time. Moreover, he or she may misinterpret somesemanti
ally subtle point, as for instan
e the lazy evaluation of some logi
al
onne
tive. For those reasons, the help of a formal method to produ
e the proofobligations and of a proof assistant to establish them is qui
kly unavoidable.We present here the proofs of 
orre
tness and termination of three sortingalgorithms in the Coq system, namely insertion sort, qui
ksort and heapsort.Why sorting algorithms ? Mainly be
ause they are short but 
omplex programs,whi
h 
over a huge panel of program 
onstru
tions | loops, re
ursive fun
tions,lo
al variables, fun
tion 
alls, et
. As noti
ed by R. Sedgewi
k in his book Algo-rithms [6℄, it is not so easy to write a 
orre
t implementation of qui
ksort, evenwithout any optimization, and a small mistake in su
h a 
omplex algorithm hasimmediately some 
atastrophi
 
onsequen
es.Those 
ase studies have demonstrated the relevan
e of the use of the Coqsystem in the proof of imperative programs 
orre
tness. In parti
ular, we used



indu
tively de�ned predi
ates several times in the developments. We also usedhigher-order to de�ne new indu
tion prin
iples, or to prove the well-foundednessof some relation to establish the termination of a loop. The formal develop-ments des
ribed in this arti
le are freely available on the web page of Coq users'
ontributions (
oq.inria.fr/
ontribs). The Coq system and the ta
ti
 usedto prove the 
orre
tness of imperative programs are also freely available (at
oq.inria.fr).This arti
le is organized as follows. The next se
tion introdu
es the proof ofprograms in the Coq system, giving the syntax of programs and annotations,and des
ribing the useful datatypes. Se
tion 3 de�nes the libraries used in thespe
i�
ation of sorting algorithms, whi
h are 
ommon to the three developments.Then Se
tion 4 des
ribes the three 
ase studies in details. We 
on
lude with adis
ussion about the diÆ
ulties en
ountered during the pro
ess of spe
ifying andproving.2 Certifying programs with the Coq systemThe Coq system [1℄ is a proof assistant for the Cal
ulus of Indu
tive Constru
-tions, a logi
al framework extending the system F with higher-order, dependenttypes and a primitive notion of indu
tive types. One 
an introdu
e new de�ni-tions and prove fa
ts, using an intera
tive prover in a natural dedu
tion way. Asa typed �-
al
ulus, the logi
 of the Coq system is naturally well-suited to provepurely fun
tional programs. It is now also possible to establish the 
orre
tnessand termination of imperative programs [2℄.Programs are given in a syntax mixing fun
tional and imperative features,
lose to the syntax of the Caml programming language:e ::= 
 j x j fun (x : �)! e j (e e) j re
 f : � = ej !x j x := e j t[e℄ j t[e℄ := e j e ; e j while e do e donej if e then e else e j let x = e in e j let x = ref e in eThe base obje
ts are the 
onstants of the logi
, written 
. It means that theprograms 
an manipulate any datatype de�ned within the proof assistant, andthere are no parti
ular base types | but, of 
ourse, one 
an use the alreadyprede�ned types of the Coq system, like the type nat of natural number or thetype Z of integers. The mutable variables and the arrays must 
ontain only purelyfun
tional values. Therefore, the type system of the programming language isthe following: � ::= T j T ref j T array j � ! �where T stands for any type de�ned in the Cal
ulus of Indu
tive Constru
tions.Programs are spe
i�ed using pre- and post-
onditions, with the 
lassi
al nota-tion of Floyd-Hoare logi
 fPg e fQg, whi
h 
an be applied to any sub-expressionof the program. Those annotations may refer to the values of program variables.If x is su
h a variable, then x in P and Q stands for the 
urrent value of x. Inthe post-
ondition Q, x� stands for the value of x before the evaluation of e. It



is also possible to refer to the value of x at a given program point L with thenotation x�L. Program points are introdu
ed with the keyword label, in a waysimilar to the goto labels. A parti
ular label 0 is automati
ally introdu
ed at thebeginning of the program, so that x�0 refers to the initial value of x | within afun
tion, that initial value stands for the value at the beginning of the fun
tionbody i.e. right after the fun
tion 
all. In the post-
ondition, the keyword resultstands for the value returned by the 
omputation.Invariants may be inserted in loops for 
onvenien
e. Termination of loopsand re
ursive fun
tions is justi�ed by a variant, whi
h is the pair of an arbitraryexpression � and a relation R over the type of that expression. The relation�x; y:0 � x < y is the default relation for variants of type Z. Consequently, the�nal syntax of loops is the following:while e do f [invariant I ℄ variant � [for R℄ g e doneThe ta
ti
 to establish the 
orre
tness and termination of programs, 
alledCorre
tness, takes an annotated program, with possible inner annotations, andprodu
es a set of proof obligations, whi
h are standard goals in the Coq system.We will not enter the theoreti
al details of that ta
ti
, whi
h are des
ribed in [2℄and also in the Coq Referen
e Manual [1℄. The only thing to say is that proof obli-gations are purely logi
al propositions, applied to logi
al variables representingthe various values of the mutable variables of the program.Arrays are indexed over type Z, starting from 0. They are represented in thelogi
al world by an abstra
t dependent type (array N T ), where N is the sizeof the array and T the type of its elements. This abstra
t type is manipulatedthrough the following two fun
tions:a

ess : 8N: 8T: (array N T )! Z ! Tstore : 8N: 8T: (array N T )! Z ! T ! (array N T )For 
onvenien
e, we still write t[i℄ for (a

ess t i) in spe
i�
ations. The abovetwo fun
tions are axiomatized as follows:store def 1 : 8N: 8T: 8t : (array N T ): 8v : T: 8i : Z:0 � i < N ) (a

ess (store t i v) i) = vstore def 2 : 8N: 8T: 8t : (array N T ): 8v : T: 8i; j : Z:0 � i < N ^ 0 � j < N ^ i 6= j )(a

ess (store t i v) j) = (a

ess t j)The ta
ti
 for proving 
orre
tness and termination of imperative programs isfully des
ribed in the Coq Referen
e Manual [1℄, 
hapter 18. The syntax and theset of available libraries are des
ribed, and a bun
h of examples demonstratesthe use of the ta
ti
.3 Spe
ifying sorting algorithmsWe will only 
onsider here sorting algorithms applying to arrays and workingin-pla
e i.e. by moving elements in a single array given as argument. In the fol-lowing, N will always denote the size of that array. To simplify the presentation,



we limit our 
ase studies to arrays of integers but, of 
ourse, all the following stillholds for any type with a de
idable order relation. When spe
ifying a sortingprogram, one has to express two fa
ts:1. �rst, obviously, that the array is sorted after the evaluation of the program;2. but also that the values 
ontained in the initial array are preserved by thealgorithm, whi
h possibly permutes them but does not modify any of them.Indeed, if we forget the se
ond 
ondition, the following program obviously leadsto a sorted array: for i = 0 to N � 1 do t[i℄ := 0 donebut it is surely not what we 
all a sorting algorithm! In the next two se
tions, weintrodu
e the spe
i�
ation material 
orresponding to the above two properties.3.1 The property of being sortedWe �rst de�ne a predi
ate (sorted t i j) whi
h expresses that an array t is sortedin in
reasing order between the bounds i and j. It is formally de�ned as follows:(sorted t i j) def= i � j ^ 8x: i � x < j ) t[x℄ � t[x+ 1℄Returning to that de�nition ea
h time you want to establish that a sub-partof an array is sorted is somewhat tedious, and that is why the predi
ate sorted
omes with a set of useful lemmas about sorted arrays.Some of them state rather trivial properties, su
h as \a sub-part of a sortedpart is also sorted" or \any modi�
ation of an array outside a sorted part leavesthat part sorted", et
. But the most useful lemmas are the ones allowing toin
rease the sorted part, either on the left side or on the right side of the segment.They 
an be expressed by the following rules:(sorted t i j) j < N � 1 t[j℄ � t[j + 1℄(sorted t i (j + 1))and 0 < i t[i� 1℄ � t[i℄ (sorted t i j)(sorted t (i� 1) j)3.2 PermutationTo express that an array is preserved by a program, we introdu
e a predi
ate(permut t t0) whose meaning is that t and t0 are permutations of ea
h other. Thereare many ways to de�ne su
h a predi
ate. One possibility would be to state theexisten
e of a one-to-one mapping between the elements of t and the ones of t0.But it would ne
essitate to exhibit su
h a mapping ea
h time we want to establish(permut t t0). A better solution is to express that the set of permutations is thesmallest equivalen
e relation 
ontaining the transpositions i.e. the ex
hanges of



two elements. So we �rst de�ne the predi
ate (ex
hange t t0 i j), for two arrayst and t0 of type (array N Z) and two indexes i and j, as follows:(ex
hange t t0 i j) def= 0 � i < N ^ 0 � j < N ^ t[i℄ = t0[j℄ ^ t[j℄ = t0[i℄^ 8k: 0 � k < N ^ k 6= i ^ k 6= j ) t[k℄ = t0[k℄Then we de�ne the predi
ate (permut t t0) indu
tively as follows:(ex
hange t t0 i j)(permut t t0) (permut t t)(permut t0 t)(permut t t0) (permut t t0) (permut t0 t00)(permut t t00)Su
h a solution is very useful in pra
ti
e, sin
e we will often use the re
exivity| when we do not modify the array | and the transitivity | when we sequen
eoperations that establish permutations. Moreover, two of our three 
ase studiespro
eed by ex
hanging elements, namely qui
ksort and heapsort, and the proofobligations 
on
erning the permutations are therefore always immediate.In pra
ti
e, we also need a predi
ate to express that a subpart [l::r℄ of twoarrays has been permutated, the other elements being untou
hed. (It is used inqui
ksort, when we apply re
ursively to subparts of the array.) The 
orrespondingpredi
ate (sub permut t t0 l r) is de�ned in a way similar to permut .4 Three 
ase studiesHere we 
ome to the three 
ase studies themselves, namely insertion sort, qui
k-sort and heapsort. There are many arti
les and monographs about sorting al-gorithms. We mainly refer to two of them. The �rst one is the ex
ellent bookof R. Sedgewi
k Algorithms [6℄ | a very good introdu
tion to algorithmi
 andin parti
ular to sorting algorithms | from whi
h we borrowed some pie
es of
ode. The other one is the third volume of D. E. Knuth's Art of Computer Pro-gramming [4℄ dedi
ated to sear
hing and sorting algorithms, whi
h 
ontains avery detailed study of many sorting algorithms, in
luding the three ones we are
onsidering here.4.1 Insertion sortThe �rst 
ase study we present is the insertion sort. This is one of the basi
 sort-ing algorithm taught to 
omputer s
ien
e students and surely the most naturalone. Insertion sort is fully des
ribed in R. Sedgewi
k's book [6℄, pages 98{103,and in D. E. Knuth's one [4℄, pages 80{102.The version of insertion sort we implement is the simplest one, that tra-verses the array from left to one, building a sorted array on the left side, andinserts su

essively the next element in that sorted segment. Thus it is made oftwo parts, a pro
edure insertion whi
h does the insertion and a main programinsertion sort that inserts all the elements one by one.



The pro
edure insertion. That pro
edure is intended to insert the n-thelement of an array t in the already sorted sub-array t[0::n� 1℄. It means that,given the pre-
ondition(sorted t 0 (n� 1)) ^ 1 � n < Nthe exe
ution of the pro
edure will establish the following post-
ondition(sorted t 0 n) ^ (permut t t�)We are now going to 
he
k how it works in details. The �rst program one has inmind looks like let v = t[n℄ inlet j = ref n inwhile !j > 0 and t[!j � 1℄ > v dot[!j℄ := t[!j � 1℄; j :=!j � 1done;t[!j℄ := vBut su
h a test in the loop requires a lazy evaluation of the boolean 
onne
tiveand whi
h returns false as soon as its �rst argument is evaluated to false, withoutevaluating its se
ond argument. Otherwise, the array may be a

essed outside ofits bounds, at index �1. The 
onne
tives of the programs 
onsidered in the Coqsystem are stri
t and if we try to establish the 
orre
tness of the above program,we get a proof obligation 0 � j� 1 < N expressing that t[!j� 1℄ is a legal a

essinside t, whi
h we are not able to establish. Therefore, we rewrite the test usinga 
onditional, in the following way:while (if not (!j > 0) then false else t[!j � 1℄ > v) do : : :From a semanti
 point of view, the reader may noti
e that it is exa
tly a lazy
onne
tive. The �nal 
ode of the pro
edure insertion is given in Figure 1.The next problem is to �nd the right invariant for the loop. It should expressthat the element to insert moves through the array until it rea
hes its right pla
e.It requires to know, if the 
urrent position is j, what are the values at indexesj � 1 and j + 1. Sin
e those indexes may be outside the array, we 
annot de�nea unique general invariant. Therefore, we introdu
e a 
ase-based invariant, bydistinguishing the three 
ases j = 0, 0 < j < n and j = n.The general 
ase 0 < j < n states that the property of being sorted holdsin the two sub-arrays lo
ated on ea
h side of the 
urrent index j as illustratedbelow, with the two additional properties t[j � 1℄ � t[j + 1℄ and v � t[j℄.0 j n+ 1 N � 1sorted sortedThe other two 
ases, when j = 0 and when j = n, and degenerated forms of thatinvariant. Hen
e our invariant will 
ontain the 
onjun
tion of three predi
ates,



fun (N : Z)(t : array N of Z )(n : Z) !f (sorted array t 0 (n � 1)) ^ 1 � n < N g(let v = t [n℄ inlet j = ref n inbeginwhile(if not ( !j > 0) then false else t [!j � 1℄ > v)f if result then j > 0 ^ (a

ess t (j � 1)) > velse j = 0 _ (j > 0 ^ (a

ess t (j � 1)) � v) gdof invariant ( (global inv N t j n v)^ (inv 0 N t j n v)^ (inv n N t j n v) )^ (permut (store t j v) t�0)^ 0 � j � nvariant j gt [!j ℄ := t [!j � 1℄;j := !j � 1done;t [!j ℄ := vend)f (sorted array t 0 n) ^ (permut t t�) gFig. 1. The pro
edure insertionwhi
h are the following:(inv n t j n v) def= j = n) (sorted t 0 (j � 1)) ^ v � t[j℄(inv 0 t j n v) def= j = 0) (sorted t j n) ^ v � t[j℄(global inv t j n v) def= 0 < j < n )(sorted t 0 (j � 1)) ^ (sorted t j n)^ t[j � 1℄ � t[j + 1℄ ^ v � t[j℄The last property to establish is the preservation of the elements of the array.There is a slight diÆ
ulty here, sin
e during the loop iterations the array t is nomore a permutation of the initial array. Indeed, an element is dupli
ated in t[j℄and t[j�1℄, while the element to insert is kept in the variable v. Therefore, we donot express that t is a permutation of the initial array t�0 but that (store t j v)is a permutation of t�0.The sorting program itself. On
e the proof of the pro
edure insertion is
ompleted, it is quite easy to 
ertify the main program insertion sort. It is simply



a loop whi
h 
alls the pro
edure insertion for ea
h position from 1 to the rightbound of the array. The invariant is simply:(sorted t 0 (i� 1)) ^ (permut t t�0) ^ 1 � iwhi
h is easily established by the post-
ondition of insertion. The annotated
ode of insertion sort is given in Figure 2.fun (N : Z)(t : array N of Z ) !f N > 0 glet i = ref 1 inbeginwhile !i < N dof invariant (sorted array t 0 (i � 1)) ^ (permut t t�0) ^ (1 � i)variant N � i g(insertion N t !i);i := !i + 1doneendf (sorted array t 0 (N � 1)) ^ (permut t t�0) gFig. 2. The program insertion sort
4.2 Qui
ksortIt is not ne
essary to introdu
e the qui
ksort algorithm, sin
e it is the mostwidely taught algorithm, as the paradigm of the divide-and-
onquer methodol-ogy, and also the most studied one, as one of the most eÆ
ient sorting algorithm.Qui
ksort is due to C. A. R. Hoare [3℄ and has been improved and studied byR. Sedgewi
k in his Ph.D.'s thesis [5℄; the pages 115{131 of his book [6℄ aredevoted to it. A detailed study is available in D. E. Knuth's book [4℄, pages114{123.We are going to write qui
ksort in the usual way, with two distin
t parts:�rst a partitioning fun
tion, whi
h takes a sub-part of the array as argument, re-arranges elements in that segment to obtain a left part with values less or equalthan those of the right part, and returns the position of the partitioning element;se
ondly, a re
ursive divide-and-
onquer pro
edure whi
h 
all the partitioningfun
tion and then 
alls itself re
ursively on both left and right sides of thepartitioning element.



Partitioning. Qui
ksort belongs to the family of sorting algorithms whi
h pro-
eed by ex
hanging elements of the array. Thus it is a good idea, for the 
larityof the 
ode, to introdu
e a pro
edure swap whi
h ex
hanges in the array t thetwo elements at positions i and j. The post-
ondition of that pro
edure will besimply (ex
hange t t� i j) (1)where the predi
ate ex
hange has been introdu
ed in Se
tion 3. The 
ode ofswap is given in Figure 3, and its proof of 
orre
tness is immediate. Noti
e thatit is not ne
essary to express that t is preserved by the pro
edure swap sin
e itis a 
onsequen
e of (1) by de�nition of the predi
ate permut .fun (N : Z)(t : array N of Z )(i ; j : Z ) !f 0 � i < N ^ 0 � j < N glet v = t [i ℄ in begin t [i ℄ := t [j ℄; t [j ℄ := v endf (ex
hange t t� i j ) gFig. 3. The pro
edure swapPartitioning the segment [l::r℄ of the array t 
onsists in sele
ting a value vin t[l::r℄ and re-arranging the elements of that segment to obtain the followingsituation: 0 l p r N � 1t � v v � vWe are going to write a partitioning fun
tion partition whi
h establishes theabove situation and returns the index p, 
alled the partitioning element. Tospe
ify that fun
tion, we de�ne a predi
ate (partition p t l r p) whi
h expressesthe above property. It is the 
onjun
tion of three properties, the �rst one ex-pressing that p belongs to the interval [l::r℄, and the other two ones expressingthat the values of the left and right sides of p are respe
tively less or equal andgreater or equal to v = t[p℄. The de�nitions are the following:(array le t l r v) def= 8i: l � i � r ) t[i℄ � v(array ge t l r v) def= 8i: l � i � r ) v � t[i℄(partition p t l r p) def= l � p � r ^ (array le t l (p� 1) t[p℄)^ (array ge t (p+ 1) r t[p℄)Then, the spe
i�
ation of the fun
tion partition is quite simple: its pre-
onditionexpresses that the bounds l and r are su
h that 0 � l < r < N holds, and itspost-
ondition expresses that the sub-part t[l::r℄ has been re-arranged in su
h a



way that the returned value | whi
h is denoted by result | is a partitioningelement for the segment [l::r℄ i.e.(partition p t l r result) ^ (sub permut l r t t�)A
tually, it is a good idea to add expli
itly the property l � result � r in thepost-
ondition, even if it is already in
luded in the de�nition of partition p.Regarding the 
ode, we didn't make a 
omplex 
hoi
e of the partitioningelement, as it is often the 
ase in eÆ
ient implementations of qui
ksort. Wesimply 
hose the �rst element t[l℄, as in a
ademi
 presentations. However, amore 
omplex 
hoi
e wouldn't 
hange the spe
i�
ation, and would only makesome proof obligations a bit more 
ompli
ated | and more numerous sin
e the
ode would also be bigger. The 
ode of the partitioning fun
tion partition is givenin Figure 4. It is written in a standard way, with two indexes i and j s
anningthe segment [l::r℄ respe
tively from left to right and right to left, ex
hanging thevalues t[i℄ and t[j℄ when they are on the wrong side of the partitioning value,until they 
ross ea
h other, whi
h gives the �nal position of the partitioningelement | one has to take 
are at that point, sin
e the partitioning positionmay be i or i � 1. The invariants of the three loops are self-explanatory. Thelabel L is used to express that the indexes i and j keep respe
tively in
reasingand de
reasing, whi
h is ne
essary to establish to termination of the outer loop.Divide-and-
onquer. The se
ond part of the qui
ksort algorithm applies thefamous te
hnique known as divide-and-
onquer : to sort the segment [l::r℄ ofthe array t, we 
all the fun
tion partition, whi
h establishes the partition andreturns the position p of the partitioning element, and we 
all re
ursively thesame program on both segments [l; p � 1℄ and [p + 1; r℄, until the segments
ontain at most one element. Therefore, the re
ursive fun
tion qui
k re
 whi
himplements this algorithm has the pre-
ondition 0 � l^r < N and the followingpost-
ondition: (sorted array t l r) ^ (sub permut l r t t�)whi
h expresses that the segment t[l::r℄ has been sorted and that we only pro-
eeded by a permutation of the elements of that part of t. The 
ode for thatfun
tion is very simple to write, and is given in Figure 5. Its termination is easyto prove, using the width of the segment [l::r℄ as variant, that is r � l, sin
e it
learly de
reases in ea
h re
ursive 
all. That 
ode leads to a few number of proofobligations, among whi
h one is non trivial. It 
orresponds to the establishmentof the post-
ondition after the three fun
tion 
alls and 
an be illustrated by thefollowing situation:



fun (N : Z)(t : array N of Z )(l ; r : Z ) !f 0 � l < r ^ r < N g(let pv = t [l ℄ inlet i = ref (l + 1) inlet j = ref r inbeginwhile !i < !j dof invariant l + 1 � i � r ^ j � r^ (array le t (l + 1) (i � 1) pv) ^ (array ge t (j + 1) r pv )^ (sub permut l r t t�0) ^ t [l ℄ = t�0[l ℄variant j � i for (Zwf (�N � 2)) glabel L;while t [!i ℄ � pv and !i < !j dof invariant i�L � i � r ^ (array le t (l + 1) (i � 1) pv )variant r � i gi := !i + 1done;while t [!j ℄ � pv and !i < !j dof invariant l � j � j�L ^ (array ge t (j + 1) r pv)variant j gj := !j � 1done;if !i < !j then begin(swap N t !i !j );i := !i + 1;j := !j � 1enddone;if t [!i ℄ < pv then begin(swap N t l !i);!iend else begin(swap N t l ( !i � 1));!i � 1endend)f l � result � r ^ (partition p t l r result) ^ (sub permut l r t t�) gFig. 4. The fun
tion partition



let re
 qui
k re
 (N : Z)(t : array N of Z )(l ; r : Z ) : unitf variant r � l for (Zwf (�1)) g =f 0 � l ^ r < N g(if l < r thenlet p = (partition N t l r) inbegin(qui
k re
 N t l (p � 1));(qui
k re
 N t (p + 1) r)end)f (sorted array t l r) ^ (sub permut l r t t�0) g:Fig. 5. The re
ursive fun
tion qui
k re
0 l p r N � 1t0t1 = t0 � v v � v = t0t2 = t1 sorted v = t1 = t1t3 = t2 = t2 v sorted = t2where t0 is the initial value of t, t1 its value after the 
all to the partitioning fun
-tion, and t2 and t3 its values after the two re
ursive 
alls. This proof obligationsis established as a lemma, whose formal statement is the following:8t0; t1; t2; t3: 8l; r; p:0 � l < r < N(partition p t1 l r p) ^ (sub permut l r t1 t0)(sorted array t2 l (p� 1)) ^ (sub permut l (p� 1) t2 t1)(sorted array t3 (p+ 1) r) ^ (sub permut (p+ 1) r t3 t2)(sorted array t3 l r) ^ (sub permut l r t3 t0)At last, the sorting program itself is just a 
all to qui
k re
 on the wholearray i.e. with the bounds 0 and N � 1. The 
ode is given in Figure 6 and itsproof of 
orre
tness is immediate.4.3 HeapsortWe kept the best last. Indeed, even if qui
ksort is preferred to heapsort in pra
-ti
e, the latter has the best 
omplexity in worst 
ase, namely O(n logn), whi
his the optimal 
omplexity for a sorting algorithm. Moreover, heapsort is a verybeautiful algorithm, based on a shrewd data stru
ture, and whi
h 
an be imple-mented in-pla
e with only a few lines of 
ode. As for the two other sorting algo-rithms, the reader 
an �nd a des
ription of heapsort in R. Sedgewi
k's book [6℄,



fun (N : Z)(t : array N of Z ) !(qui
k re
 N t 0 (N � 1))f (sorted array t 0 (N � 1)) ^ (permut t t�) gFig. 6. The program qui
ksortpages 153{158, and a detailed study in The Art of Computer Programming [4℄,pages 149{153.The heapsort algorithm uses the stru
ture of heap. Heaps, whi
h are some-times 
alled tournament trees, are 
omplete binary trees where ea
h node has avalue greater or equal to those of its two sons | or that of its unique son. Heapsare mainly used to implement priority queues. Indeed, in su
h a stru
ture, get-ting the greatest value is immediate | it is the root of the tree | and addingor removing an element 
an be done in logarithmi
 time with respe
t to thenumber of elements. The heapsort implementation uses the fa
t that a binarytree 
an be represented inside an array where only the values of the nodes arestored, and where the two sons of a node stored an index i are stored at indexes2i+1 and 2i+2. Assuming that we know how to manipulate the heap with su
ha representation, the sorting algorithm pro
eeds as follows:1. �rst, it builds a heap with all the elements of the array, in the array itself;2. se
ondly, it sorts the array progressively by keeping a heap on the left partof the array and a set of already sorted elements on the right part, whi
h
an be illustrated like this:0 k + 1 N � 1t heap with elements � t[k + 1℄ part already sortedWe used here the 
ode of R. Sedgewi
k ([6℄ page 155), whi
h is in
redibly shortand 
lever. To spe
ify that program, we have to give a formal de�nition to theheap stru
ture.De�nition of the heap stru
ture. We de�ne a predi
ate (heap t n k) whosemeaning is the following: \In the array t, the tree of root k made of elementsat indexes less or equal than n is a heap." That predi
ate heap is indu
tivelyde�ned as follows:2k + 1 � n) (t[k℄ � t[2k + 1℄ ^ (heap t n (2k + 1)))2k + 2 � n) (t[k℄ � t[2k + 2℄ ^ (heap t n (2k + 2)))(heap t n k)Even if most lemmas about heaps will be proved using the indu
tion prin
ipleasso
iated to the above de�nition, a few lemmas will ne
essitate another indu
-tion prin
iple, on natural numbers, whi
h follows the en
oding of heaps. That



prin
iple is the following:8P : Z ! Prop:(P 0))(8x : Z: 0 � x) (P x)) (P (2x+ 1)) ^ (P (2x+ 2))))8x : Z: 0 � x) (P x)Another predi
ate will be useful to spe
ify the 
ode of heapsort. It expressesthat all the elements of a tree | still represented as above but whi
h is notne
essarily a heap | are smaller or equal than a given value v. That predi
ate,written (inftree t n v k), is also indu
tively de�ned, as follows:t[k℄ � v2k + 1 � n) (inftree t n v (2k + 1))2k + 2 � n) (inftree t n v (2k + 2))(inftree t n v k)Building and destru
turing the heap. The 
ode of heapsort is usually madeof two parts, one to build the heap with the use of a fun
tion upheap, and one tosort the elements, removing them from the heap with the use of a fun
tion down-heap. R. Sedgewi
k shows in [6℄ that both parts may be written using only thepro
edure downheap, whi
h leads to a very 
on
ise and elegant implementation.The pro
edure downheap takes as argument an array t, an index k represent-ing the root of a tree, and a maximal index n, with the pre-
ondition that allthe elements of the tree rooted at k, of indexes less or equal than n, form a heapex
ept may be the root k itself. Then it moves the value in t[k℄ down in the tree,by ex
hanging it with the greatest of its two sons, until the property of heapholds for the whole tree rooted at k. In our 
ase, we 
an lower the generality ofthis fun
tion and give it the following spe
i�
ation:f 8i : Z: k + 1 � i � n) (heap t n i) g(downheap t k n)f (permut t t�) ^ 8i : Z: k � i � n) (heap t n i) g (2)whi
h expresses that, if we have heaps at every position between k+1 and n then,after the 
all of (downheap t k n), we will have heaps at every position betweenk and n. (We also express the preservation of the array, whi
h will be neededto establish its preservation by the main program.) Assuming that downheap isavailable, heapsort is really easy to write. To build the heap, the tri
k 
onsistsin using a bottom-up approa
h, whi
h 
an be done in only one line of 
ode:for k = (N � 2)=2 downto 0 do (downheap t k (N � 1)) doneThen, sorting the array 
an be done with another line of 
ode, by su

essivelyex
hanging the greatest element of the heap | whi
h is at position 0 | withthe last element of the heap:for k = N � 1 downto 1 do (swap t 0 k); (downheap t 0 (k � 1)) done



This leads to the 
ode given in Figure 7, where the invariants were easy to �nd.(The pro
edure swap has already been introdu
ed in se
tion 4.2.)fun (N : Z)(t : array N of Z ) !f 1 � N gbeginfor k = (N � 2)=2 downto 0 dof invariant � 1 � k � N � 1^ (8i : Z: k + 1 � i � N � 1 ) (heap t (N � 1) i))^ (permut t t�0)variant k + 1 g(downheap N t k (N � 1))done;assert f (heap t (N � 1) 0) ^ (permut t t�0) g;for k = N � 1 downto 1 dof invariant 0 � k � N � 1^ (8i : Z: 0 � i � k ) (heap t k i))^ (k + 1 � N � 1 ) t [0℄ � t [k + 1℄)^ (k + 1 � N � 1 ) (sorted array t (k + 1) (N � 1)))^ (permut t t�0)variant k g(swap N t 0 k);(downheap N t 0 (k � 1))doneendf (sorted array t 0 (N � 1)) ^ (permut t t�) gFig. 7. The program heapsort
The pro
edure downheap. We still have to implement the downheap fun
tion.It is usually written in an imperative style, with some 
ode looking like1:downheap t k0 n def=let k = ref k0 inwhile 2�!k + 1 � n dolet j = [ sele
t the greatest son of k ℄ inif t[j℄ � t[!k℄ then break;(swap t !k j);k := jdone1 The 
ode of R. Sedgewi
k does not use a break but a goto, but with the same purpose.



Sin
e we do not have a break 
onstru
tion in our language, we have to write itdi�erently, keeping the same idea of stopping the pro
ess as soon as the node kis greater or equal to its son(s). A good idea is to write it as a re
ursive fun
tion,in the following way:downheap t k n def=if 2� k + 1 � n thenlet j = [ sele
t the greatest son of k ℄ inif t[k℄ < t[j℄ then begin(swap t k j);(downheap t j n)endThe 
ode to sele
t the greatest son of k, namely j, takes 
are of the 
ase whenk has only one son. That pie
e of 
ode is \abstra
ted" by being given the post-
ondition (sele
t son t k n j) whi
h is de�ned as:(sele
t son t k n j) def= (j = 2k + 1 ^ (2k + 2 � n) t[j℄ � t[2k + 2℄))_ (j = 2k + 2 ^ j � n ^ t[j℄ � t[2k + 1℄)When we 
ome to the proof of 
orre
tness of the pro
edure downheap, withthe spe
i�
ation (2), we dis
over that we are not able to establish all the proofobligations. The reason is that our spe
i�
ation of downheap is not strongenough; in parti
ular, we didn't state what our fun
tion does not do. Indeed,after the re
ursive 
all (downheap t j n) we get an array with the heap propertyat root j, but we do not know if some elements outside that tree have been mod-i�ed, and we are not able to establish the heap property at root k. Consequently,we have to strengthen the post-
ondition. First, we 
laim that some elementsare not tou
hed by the pro
edure, namely those with indexes i su
h that i < k,k < i < 2k + 1 or n < i. Se
ondly, we 
laim that the maximal value of the treeat root k didn't in
rease, whi
h is expressed by:8v: (inftree t� n v k)) (inftree t n v k)Then, with su
h a post-
ondition, the proof obligations 
an be established. The�nal annotated 
ode of downheap is given in Figure 8.5 Dis
ussionThose three 
ase studies show that the Coq system 
an be an e�e
tive frameworkfor developing proofs of pretty 
omplex imperative programs. The ta
ti
 usedleads to very natural proof obligations, whi
h are very 
lose to the lemmas onewould require in a hand-made proof using Floyd-Hoare logi
.Some signi�
ant �gures about the developments we presented are put to-gether in Figure 9. In parti
ular, they show that the full development of a formal



let re
 downheap (N : Z)(t : array N of Z )(k ; n : Z ) : unit f variant n � k g =f 0 � k � n ^ n < N^ 8i : Z: k + 1 � i � n ) (heap t n i) g(let j = 2� k + 1 inif j � n thenlet j 0 = (if j + 1 � n then if t [j ℄ < t [j + 1℄ then j + 1 else j else j )f (sele
t son t k n result) g inif t [k ℄ < t [j 0℄ then begin (swap N t k j 0); (downheap N t j 0 n) end)f (permut t t�)^ (8i : Z: k � i � n ) (heap t n i))^ (8i : Z: (0 � i < k _ k < i < 2� k + 1 _ n < i < N ) ) t [i ℄ = t�[i ℄)^ (8v : Z: (inftree t� n v k) ) (inftree t n v k)) gFig. 8. The re
ursive pro
edure downheapproof requires a reasonable amount of time (a few days). The total developmenttime for insertion sort is not given, sin
e it involved the development of the li-braries and also the debugging of the 
orre
tness tool. The annotations and theproof obligations are not so numerous, in the same order of magnitude than thelines of 
ode. Moreover, the libraries we developed, about sorted arrays and per-mutations, are independent of the programs and 
an be reused in other proofs,allowing faster and easier developments.Although it sometimes la
ks more powerful automati
 ta
ti
s, espe
ially tosolve trivial goals, the Coq system provides some very useful ta
ti
s to solve proofobligations without too mu
h intera
ting with the system. The ta
ti
 Omega,whi
h is intended to solve quanti�er-free problems in the Presburger arithmeti
,is of great help to the user when he or she tries to solve goals about the de
reasingof the variant or the inequalities expressing legal a

esses within the bounds ofarrays.But the main advantage of those developments is surely to have demonstratedthe relevan
e of a powerful logi
, namely the Cal
ulus of Indu
tive Constru
tions,in the pro
ess of spe
ifying programs and proving their 
orre
tness. Indeed, wehave de�ned and used some indu
tive predi
ates, as for instan
e permut andheap, and even used higher order to prove a new indu
tion prin
iple based onthe 
oding of heaps.Referen
es[1℄ The Coq Proof Assistant. http://
oq.inria.fr/.[2℄ J.-C. Filliâtre. Proof of Imperative Programs in Type Theory. In Pro
eedings ofthe TYPES'98 workshop, 1998. To appear.[3℄ C. A. R. Hoare. Qui
ksort. Computer Journal, 1(5), 1962.[4℄ D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Sear
hing.Addison-Wesley, 1973.



insertion sort qui
ksort heapsortlines of spe
i�
ation 15 13 23lines of 
ode 17 41 (4) 19 (2)number of annotations 7 18 7number of proof obligations 14 26 22lemmas (manually introdu
ed) 8 11 28proof steps 300 468 626total development time | 2 days 3 daysFig. 9. Some signi�
ant �gures[5℄ R. Sedgewi
k. Qui
ksort. Garland, New York, 1978. Also appeared as the author'sPh.D. dissertation, Stanford University, 1975.[6℄ R. Sedgewi
k. Algorithms. Addison-Wesley, 1988.


