Certification of Sorting Algorithms
in the Coq System

Jean-Christophe Fillidtre! and Nicolas Magaud?

L LRI, Université Paris Sud, bat. 490,
91405 Orsay Cedex, France,
fillijatr@lri.fr,
web page: www.lri.fr/"filliatr

2 Ecole Normale Supérieure de Lyon,
69364 Lyon Cedex 07, France
nmagaud@ens-lyon.fr,
web page: www.ens-1lyon.fr/"nmagaud

Abstract. We present the formal proofs of total correctness of three
sorting algorithms in the Coq proof assistant, namely insertion sort,
quicksort and heapsort. The implementations are imperative programs
working in-place on a given array. Those developments demonstrate the
usefulness of inductive types and higher-order logic in the process of
software certification. They also show that the proof of rather complex
algorithms may be done in a small amount of time — only a few days
for each development — and without great difficulty.

1 Introduction

Once a formal specification is given, we can write a program that meets the
specification with mathematical rigor, each step being fully justified, leading
to a correct implementation. However, the large number of cases and the te-
dious technical proofs — as for instance arithmetical properties — discourage
the programmer most of the time. Moreover, he or she may misinterpret some
semantically subtle point, as for instance the lazy evaluation of some logical
connective. For those reasons, the help of a formal method to produce the proof
obligations and of a proof assistant to establish them is quickly unavoidable.

We present here the proofs of correctness and termination of three sorting
algorithms in the Coq system, namely insertion sort, quicksort and heapsort.
Why sorting algorithms ? Mainly because they are short but complex programs,
which cover a huge panel of program constructions — loops, recursive functions,
local variables, function calls, etc. As noticed by R. Sedgewick in his book Algo-
rithms [6], it is not so easy to write a correct implementation of quicksort, even
without any optimization, and a small mistake in such a complex algorithm has
immediately some catastrophic consequences.

Those case studies have demonstrated the relevance of the use of the Coq
system in the proof of imperative programs correctness. In particular, we used

inductively defined predicates several times in the developments. We also used
higher-order to define new induction principles, or to prove the well-foundedness
of some relation to establish the termination of a loop. The formal develop-
ments described in this article are freely available on the web page of Coq users’
contributions (coq.inria.fr/contribs). The Coq system and the tactic used
to prove the correctness of imperative programs are also freely available (at
coq.inria.fr).

This article is organized as follows. The next section introduces the proof of
programs in the Coq system, giving the syntax of programs and annotations,
and describing the useful datatypes. Section 3 defines the libraries used in the
specification of sorting algorithms, which are common to the three developments.
Then Section 4 describes the three case studies in details. We conclude with a
discussion about the difficulties encountered during the process of specifying and
proving.

2 Certifying programs with the Coq system

The Coq system [1] is a proof assistant for the Calculus of Inductive Construc-
tions, a logical framework extending the system F with higher-order, dependent
types and a primitive notion of inductive types. One can introduce new defini-
tions and prove facts, using an interactive prover in a natural deduction way. As
a typed A-calculus, the logic of the Coq system is naturally well-suited to prove
purely functional programs. It is now also possible to establish the correctness
and termination of imperative programs [2].

Programs are given in a syntax mixing functional and imperative features,
close to the syntax of the Caml programming language:

= clz|fun(z:7)—>e|(ee)|recf:T=e¢
| lz|z:=e]|tle]]|tle] :=e]|e; e]| whileedoe done
| ifetheneelsee|letz=cine|letz=refeine

e

The base objects are the constants of the logic, written c¢. It means that the
programs can manipulate any datatype defined within the proof assistant, and
there are no particular base types — but, of course, one can use the already
predefined types of the Coq system, like the type nat of natural number or the
type Z of integers. The mutable variables and the arrays must contain only purely
functional values. Therefore, the type system of the programming language is
the following;:
T u= T |Tref|Tarray |7 —7

where T stands for any type defined in the Calculus of Inductive Constructions.

Programs are specified using pre- and post-conditions, with the classical nota-
tion of Floyd-Hoare logic { P} e {@Q}, which can be applied to any sub-expression
of the program. Those annotations may refer to the values of program variables.
If = is such a variable, then x in P and @ stands for the current value of z. In
the post-condition @, za stands for the value of x before the evaluation of e. It

is also possible to refer to the value of x at a given program point L with the
notation zqr. Program points are introduced with the keyword label, in a way
similar to the goto labels. A particular label 0 is automatically introduced at the
beginning of the program, so that zqg refers to the initial value of x — within a
function, that initial value stands for the value at the beginning of the function
body i.e. right after the function call. In the post-condition, the keyword result
stands for the value returned by the computation.

Invariants may be inserted in loops for convenience. Termination of loops
and recursive functions is justified by a variant, which is the pair of an arbitrary
expression ¢ and a relation R over the type of that expression. The relation
Az,y.0 < x < y is the default relation for variants of type Z. Consequently, the
final syntax of loops is the following:

while e do { [invariant I] variant ¢ [for R] } e done

The tactic to establish the correctness and termination of programs, called
Correctness, takes an annotated program, with possible inner annotations, and
produces a set of proof obligations, which are standard goals in the Coq system.
We will not enter the theoretical details of that tactic, which are described in [2]
and also in the Coq Reference Manual [1]. The only thing to say is that proof obli-
gations are purely logical propositions, applied to logical variables representing
the various values of the mutable variables of the program.

Arrays are indexed over type Z, starting from 0. They are represented in the
logical world by an abstract dependent type (array N T'), where N is the size
of the array and T the type of its elements. This abstract type is manipulated
through the following two functions:

access : YN.VT. (array NT) - Z —=T
store : VYN.VT.(array NT)—Z =T — (array N T)

For convenience, we still write ¢[i] for (access t i) in specifications. The above
two functions are axiomatized as follows:

store_def_1 : VN.VT.Vt:(array NT). Yv:T.Vi:Z.
0<i< N = (access (store tiv)i)=wv
store_def_2 . VN.VT.Vt:(array NT). Yv:T.Vi,j: Z.

0<i<NAOLj<NANi#j=>
(access (store t i v) j) = (access t j)

The tactic for proving correctness and termination of imperative programs is
fully described in the Coq Reference Manual [1], chapter 18. The syntax and the
set of available libraries are described, and a bunch of examples demonstrates
the use of the tactic.

3 Specifying sorting algorithms

We will only consider here sorting algorithms applying to arrays and working
in-place i.e. by moving elements in a single array given as argument. In the fol-
lowing, N will always denote the size of that array. To simplify the presentation,

we limit our case studies to arrays of integers but, of course, all the following still
holds for any type with a decidable order relation. When specifying a sorting
program, one has to express two facts:

1. first, obviously, that the array is sorted after the evaluation of the program;

2. but also that the values contained in the initial array are preserved by the
algorithm, which possibly permutes them but does not modify any of them.

Indeed, if we forget the second condition, the following program obviously leads
to a sorted array:
fori =0to N —1 do ¢[i] := 0 done

but it is surely not what we call a sorting algorithm! In the next two sections, we
introduce the specification material corresponding to the above two properties.

3.1 The property of being sorted

We first define a predicate (sorted t i j) which expresses that an array ¢ is sorted
in increasing order between the bounds ¢ and j. It is formally defined as follows:

(sorted t i j) Li<i A Ve.i <z <j=tlz] <tlz+1]

Returning to that definition each time you want to establish that a sub-part
of an array is sorted is somewhat tedious, and that is why the predicate sorted
comes with a set of useful lemmas about sorted arrays.

Some of them state rather trivial properties, such as “a sub-part of a sorted
part is also sorted” or “any modification of an array outside a sorted part leaves
that part sorted”, etc. But the most useful lemmas are the ones allowing to
increase the sorted part, either on the left side or on the right side of the segment.
They can be expressed by the following rules:

(sorted t i j) j<N—-1 t[j]<t[j+1]
(sorted t i (j+ 1))

and
0<i tli—1]<t[i] (sorted tij)

(sorted t (i — 1) j)

3.2 Permutation

To express that an array is preserved by a program, we introduce a predicate
(permut t t') whose meaning is that ¢ and ¢’ are permutations of each other. There
are many ways to define such a predicate. One possibility would be to state the
existence of a one-to-one mapping between the elements of ¢t and the ones of ¢'.
But it would necessitate to exhibit such a mapping each time we want to establish
(permut t t'). A better solution is to express that the set of permutations is the
smallest equivalence relation containing the transpositions i.e. the exchanges of

two elements. So we first define the predicate (exchange t t' i j), for two arrays
t and t' of type (array N Z) and two indexes 7 and j, as follows:

(exchange tt' i j) “ 0<i<NA0<j<NAtl]=¢t[j]At]=t]]

AVE.OSE<NAkE#iNk#j=tlk] =tk
Then we define the predicate (permut t t') inductively as follows:

(exchange t t' i j)

(permut t t') (permut t t)
(permut t' t) (permut t t') (permut t' t")
(permut t t') (permut t t")

Such a solution is very useful in practice, since we will often use the reflexivity
— when we do not modify the array — and the transitivity — when we sequence
operations that establish permutations. Moreover, two of our three case studies
proceed by exchanging elements, namely quicksort and heapsort, and the proof
obligations concerning the permutations are therefore always immediate.

In practice, we also need a predicate to express that a subpart [l..r] of two
arrays has been permutated, the other elements being untouched. (It is used in
quicksort, when we apply recursively to subparts of the array.) The corresponding
predicate (sub_permut t t' I r) is defined in a way similar to permut.

4 Three case studies

Here we come to the three case studies themselves, namely insertion sort, quick-
sort and heapsort. There are many articles and monographs about sorting al-
gorithms. We mainly refer to two of them. The first one is the excellent book
of R. Sedgewick Algorithms [6] — a very good introduction to algorithmic and
in particular to sorting algorithms — from which we borrowed some pieces of
code. The other one is the third volume of D. E. Knuth’s Art of Computer Pro-
gramming [4] dedicated to searching and sorting algorithms, which contains a
very detailed study of many sorting algorithms, including the three ones we are
considering here.

4.1 Insertion sort

The first case study we present is the insertion sort. This is one of the basic sort-
ing algorithm taught to computer science students and surely the most natural
one. Insertion sort is fully described in R. Sedgewick’s book [6], pages 98-103,
and in D. E. Knuth’s one [4], pages 80-102.

The version of insertion sort we implement is the simplest one, that tra-
verses the array from left to one, building a sorted array on the left side, and
inserts successively the next element in that sorted segment. Thus it is made of
two parts, a procedure insertion which does the insertion and a main program
insertion_sort that inserts all the elements one by one.

The procedure insertion. That procedure is intended to insert the n-th
element of an array t in the already sorted sub-array ¢[0..n — 1]. It means that,
given the pre-condition

(sortedt 0 (n—1)) AN 1<n<N
the execution of the procedure will establish the following post-condition
(sorted t 0 n) A (permut t tQ)

We are now going to check how it works in details. The first program one has in
mind looks like

let v =¢[n] in

let 5 = ref nin

while 1j > 0 and ¢[lj — 1] > v do

tly] =t —1]; =l -1
done;
t[lj] :=v

But such a test in the loop requires a lazy evaluation of the boolean connective
and which returns false as soon as its first argument is evaluated to false, without
evaluating its second argument. Otherwise, the array may be accessed outside of
its bounds, at index —1. The connectives of the programs considered in the Coq
system are strict and if we try to establish the correctness of the above program,
we get a proof obligation 0 < j — 1 < N expressing that ¢[!j — 1] is a legal access
inside ¢, which we are not able to establish. Therefore, we rewrite the test using
a conditional, in the following way:

while (if not (!j > 0) then false else t[!j — 1] > v) do ...

From a semantic point of view, the reader may notice that it is exactly a lazy
connective. The final code of the procedure insertion is given in Figure 1.

The next problem is to find the right invariant for the loop. It should express
that the element to insert moves through the array until it reaches its right place.
It requires to know, if the current position is j, what are the values at indexes
j — 1 and j + 1. Since those indexes may be outside the array, we cannot define
a unique general invariant. Therefore, we introduce a case-based invariant, by
distinguishing the three cases j =0,0< j <n and j = n.

The general case 0 < j < n states that the property of being sorted holds
in the two sub-arrays located on each side of the current index j as illustrated
below, with the two additional properties t[j — 1] < t[j + 1] and v < t[j].

0 j n+1 N-1
| sorted | sorted | |

The other two cases, when j = 0 and when j = n, and degenerated forms of that
invariant. Hence our invariant will contain the conjunction of three predicates,

fun (N : Z)(t :array N of Z)(n:2Z) —
{ (sorted_array t 0 (n—1)) A 1<n
(let v = t[n]in
let j = ref nin
begin
while
(if not (! > 0) then false else t[lj — 1] > v)
{ if result then j >0 A (access t (j —1)) > v
else j =0V (>0 A (access t (j —1)) <wv) }

<N}

do
{ invariant ((global_inv N t j n v)
A (inv_0 N tj n v)
A (invon N t j nwv))
A (permut (store t j v) tao)

NO<j<n
variant j }
iyl = - 1
ji=lj—1
done;
tlly] == v
end)

{ (sorted_array t 0 n) A (permut t ta) }

Fig. 1. The procedure insertion

which are the following:

(inv_n t § n v) = j=n=(sorted t 0 (j — 1)) A v <t[j]
(inv_0 t j n v) = j=0=(sorted t jn) A v <t[j]
(global_inv t j n v) L) <j<n =
(sorted t 0 (j — 1)) A (sorted t j n)
Atlj—1] <tlj+1] A v < t]jf]
The last property to establish is the preservation of the elements of the array.
There is a slight difficulty here, since during the loop iterations the array ¢ is no
more a permutation of the initial array. Indeed, an element is duplicated in ¢[j]

and t[j — 1], while the element to insert is kept in the variable v. Therefore, we do

not express that ¢ is a permutation of the initial array teo but that (store t j v)
is a permutation of t@g.

The sorting program itself. Once the proof of the procedure insertion is
completed, it is quite easy to certify the main program insertion_sort. It is simply

a loop which calls the procedure insertion for each position from 1 to the right
bound of the array. The invariant is simply:

(sorted t 0 (i — 1)) A (permut t tag) N 1<

which is easily established by the post-condition of insertion. The annotated
code of insertion_sort is given in Figure 2.

fun (N : Z)(t : array N of Z) —

{N>0}
leti = ref 1in
begin

while !4 < N do
{ invariant (sorted_array t 0 (¢ — 1)) A (permut t tap) A (1 <4)
variant N — ¢ }
(insertion N t li);
i=l+1
done
end
{ (sorted_array t 0 (N —1)) A (permut t tag) }

Fig. 2. The program insertion_sort

4.2 Quicksort

It is not necessary to introduce the quicksort algorithm, since it is the most
widely taught algorithm, as the paradigm of the divide-and-conquer methodol-
ogy, and also the most studied one, as one of the most efficient sorting algorithm.
Quicksort is due to C. A. R. Hoare [3] and has been improved and studied by
R. Sedgewick in his Ph.D.’s thesis [5]; the pages 115-131 of his book [6] are
devoted to it. A detailed study is available in D. E. Knuth’s book [4], pages
114-123.

We are going to write quicksort in the usual way, with two distinct parts:
first a partitioning function, which takes a sub-part of the array as argument, re-
arranges elements in that segment to obtain a left part with values less or equal
than those of the right part, and returns the position of the partitioning element;
secondly, a recursive divide-and-conquer procedure which call the partitioning
function and then calls itself recursively on both left and right sides of the
partitioning element.

Partitioning. Quicksort belongs to the family of sorting algorithms which pro-
ceed by exchanging elements of the array. Thus it is a good idea, for the clarity
of the code, to introduce a procedure swap which exchanges in the array ¢ the
two elements at positions ¢ and j. The post-condition of that procedure will be
simply

(exchange t ta @ j) (1)

where the predicate exchange has been introduced in Section 3. The code of
swap is given in Figure 3, and its proof of correctness is immediate. Notice that
it is not necessary to express that ¢ is preserved by the procedure swap since it
is a consequence of (1) by definition of the predicate permut.

fun (N : Z)(t : array N of Z)(i,5 : Z) —
{0<i<NAOLj<N }

let v = t[i] in begin t[i] := t[j]; t[j] := v end
{ (exchange t ta 7 j) }

Fig. 3. The procedure swap

Partitioning the segment [l..r] of the array t consists in selecting a value v
in t[l..r] and re-arranging the elements of that segment to obtain the following
situation:

0 l P r N-1
t | [<uw [v] > v | |

We are going to write a partitioning function partition which establishes the
above situation and returns the index p, called the partitioning element. To
specify that function, we define a predicate (partition_p t [r p) which expresses
the above property. It is the conjunction of three properties, the first one ex-
pressing that p belongs to the interval [I..r], and the other two ones expressing
that the values of the left and right sides of p are respectively less or equal and
greater or equal to v = t[p]. The definitions are the following;:

(array-le t | r v) f v <i<r=tli]<wv

(array_ge t 1 r v) e v <i<r=uv<ti
Lo< p<r A (arrayle t 1 (p—1) t[p])

A (array_ge t (p+1) r t[p])

(partition_p t I r p)

Then, the specification of the function partition is quite simple: its pre-condition
expresses that the bounds [and r are such that 0 <[< r < N holds, and its
post-condition expresses that the sub-part ¢[l..r] has been re-arranged in such a

way that the returned value — which is denoted by result — is a partitioning
element for the segment [I..r] i.e.

(partition_p t I r result) A (sub_permut I r t to)

Actually, it is a good idea to add explicitly the property | < result < r in the
post-condition, even if it is already included in the definition of partition_p.

Regarding the code, we didn’t make a complex choice of the partitioning
element, as it is often the case in efficient implementations of quicksort. We
simply chose the first element ¢[l], as in academic presentations. However, a
more complex choice wouldn’t change the specification, and would only make
some proof obligations a bit more complicated — and more numerous since the
code would also be bigger. The code of the partitioning function partition is given
in Figure 4. It is written in a standard way, with two indexes ¢ and j scanning
the segment [I..r] respectively from left to right and right to left, exchanging the
values t[i] and t[j] when they are on the wrong side of the partitioning value,
until they cross each other, which gives the final position of the partitioning
element — one has to take care at that point, since the partitioning position
may be ¢ or ¢ — 1. The invariants of the three loops are self-explanatory. The
label L is used to express that the indexes ¢ and j keep respectively increasing
and decreasing, which is necessary to establish to termination of the outer loop.

Divide-and-conquer. The second part of the quicksort algorithm applies the
famous technique known as divide-and-conquer: to sort the segment [l..r] of
the array ¢, we call the function partition, which establishes the partition and
returns the position p of the partitioning element, and we call recursively the
same program on both segments [I,p — 1] and [p + 1,r], until the segments
contain at most one element. Therefore, the recursive function quick_rec which
implements this algorithm has the pre-condition 0 < IAr < N and the following
post-condition:

(sorted_array t 1) A (sub_permut | r t tq)

which expresses that the segment ¢[l..r] has been sorted and that we only pro-
ceeded by a permutation of the elements of that part of ¢. The code for that
function is very simple to write, and is given in Figure 5. Its termination is easy
to prove, using the width of the segment [I..r] as variant, that is r — [, since it
clearly decreases in each recursive call. That code leads to a few number of proof
obligations, among which one is non trivial. It corresponds to the establishment
of the post-condition after the three function calls and can be illustrated by the
following situation:

fun (N : Z)(t :array N of Z)(l,r: Z) —
{0<I<r Ar<N }
(let pv = ¢t[l] in
let i = ref (I+1)in
let j = ref rin
begin
while 17 < !5 do
{ invariant I +1<i<r A j<r
A (arrayle t (I+1) (i —1) pv) A (array-ge t (j +1) r pv)
A (sub_permut I r t tag) A t[l] = taol]
variant j — i for (Zwf (—N —2)) }
label L;
while ¢[!4] < pv and !i < !j do
{ invariant tay < i <r A (array_le t (I+1) (1 — 1) pv)
variant r — ¢}
i:=li+1
done;
while t[lj] > pv and i < lj do
{ invariant | < j < jar A (array_ge t (j +1) r pv)
variant j }
ji=li—1
done;
if 19 < !j then begin
(swap N t i lj);

=i+ 1

ji=l -1
end
done;

if ¢[!4] < pv then begin
(swap N t 1 17);
1
end else begin
(swap N t 1 (li —1));
li—1
end
end)
{ [<result <r A (partition_p t I v result) A (sub_permut [7t ta) }

Fig. 4. The function partition

let rec quick_rec (N : Z)(¢t : array N of Z)(l,r: Z) : unit
{ variant r — [for (Zwf (-1)) } =
{0<IAr<N }

(if I < r then
let p = (partition N t 1 r)in
begin

(quick_rec N t 1 (p —1));
(quick_rec N t (p+1) r)
end)
{ (sorted_array t 1 r) A (sub_permut [r t tao) }.

Fig. 5. The recursive function quick_rec

0 ! p r N -1
to | | | |
tit | =t | <v] v [=t]
ty | =ti | sorted] =t [=t]
ts [=ty | =ty Jo] sorted | =t |

where % is the initial value of ¢, ¢; its value after the call to the partitioning func-
tion, and t» and t3 its values after the two recursive calls. This proof obligations
is established as a lemma, whose formal statement is the following:

Vto,tl,tQ,tg. Vl,T,p.

0<I<r<N

(partition_p t1 I 7 p) N (sub_permut I r t; to)
(sorted_array t2 1 (p — 1)) A (sub_permut ! (p— 1) t3 t1)
(sorted_array t3 (p+ 1) r) A (sub_permut (p+ 1) r t3 ta)
((sub

sorted_array t3 1 1) A (sub_permut I r t3 to)

At last, the sorting program itself is just a call to quick_rec on the whole
array i.e. with the bounds 0 and N — 1. The code is given in Figure 6 and its
proof of correctness is immediate.

4.3 Heapsort

We kept the best last. Indeed, even if quicksort is preferred to heapsort in prac-
tice, the latter has the best complexity in worst case, namely O(nlogn), which
is the optimal complexity for a sorting algorithm. Moreover, heapsort is a very
beautiful algorithm, based on a shrewd data structure, and which can be imple-
mented in-place with only a few lines of code. As for the two other sorting algo-
rithms, the reader can find a description of heapsort in R. Sedgewick’s book [6],

fun (N : Z)(t : array N of Z) —
(quick_rec N t 0 (N —1))
{ (sorted_array t 0 (N — 1)) A (permut t ta) }

Fig. 6. The program quicksort

pages 153-158, and a detailed study in The Art of Computer Programming [4],
pages 149-153.

The heapsort algorithm uses the structure of heap. Heaps, which are some-
times called tournament trees, are complete binary trees where each node has a
value greater or equal to those of its two sons — or that of its unique son. Heaps
are mainly used to implement priority queues. Indeed, in such a structure, get-
ting the greatest value is immediate — it is the root of the tree — and adding
or removing an element can be done in logarithmic time with respect to the
number of elements. The heapsort implementation uses the fact that a binary
tree can be represented inside an array where only the values of the nodes are
stored, and where the two sons of a node stored an index i are stored at indexes
2i+1 and 27 + 2. Assuming that we know how to manipulate the heap with such
a representation, the sorting algorithm proceeds as follows:

1. first, it builds a heap with all the elements of the array, in the array itself;

2. secondly, it sorts the array progressively by keeping a heap on the left part
of the array and a set of already sorted elements on the right part, which
can be illustrated like this:

0 k+1 N -1
t | heap with elements <#[k+1] | part already sorted |

We used here the code of R. Sedgewick ([6] page 155), which is incredibly short
and clever. To specify that program, we have to give a formal definition to the
heap structure.

Definition of the heap structure. We define a predicate (heap t n k) whose
meaning is the following: “In the array t, the tree of root k made of elements
at indexes less or equal than n is a heap.” That predicate heap is inductively
defined as follows:

2k +1<n= (t[k] > t[2k + 1] A (heap t n (2k + 1)))
2k +2 < n = (t[k] > t[2k + 2] A (heap t n (2k + 2)))
(heap t n k)

Even if most lemmas about heaps will be proved using the induction principle
associated to the above definition, a few lemmas will necessitate another induc-
tion principle, on natural numbers, which follows the encoding of heaps. That

principle is the following:
VP :Z — Prop.
(P0)=
Ve:Z.0<z=(Px)=(P 2z +1)A(P (2z+2))) =
Ve:Z. 0<z= (P x)

Another predicate will be useful to specify the code of heapsort. It expresses
that all the elements of a tree — still represented as above but which is not
necessarily a heap — are smaller or equal than a given value v. That predicate,
written (inftree t n v k), is also inductively defined, as follows:
tlk] <wv
2k +1 <n= (inftree t nv (2k + 1))
2k +2 <n = (inftree t n v (2k + 2))
(inftree t n v k)

Building and destructuring the heap. The code of heapsort is usually made
of two parts, one to build the heap with the use of a function upheap, and one to
sort the elements, removing them from the heap with the use of a function down-
heap. R. Sedgewick shows in [6] that both parts may be written using only the
procedure downheap, which leads to a very concise and elegant implementation.

The procedure downheap takes as argument an array ¢, an index k represent-
ing the root of a tree, and a maximal index n, with the pre-condition that all
the elements of the tree rooted at k, of indexes less or equal than n, form a heap
except may be the root k itself. Then it moves the value in t[k] down in the tree,
by exchanging it with the greatest of its two sons, until the property of heap
holds for the whole tree rooted at k. In our case, we can lower the generality of
this function and give it the following specification:

{Vi:Z. k+1<i<n= (heap tni)}
(downheap t k n) (2)
{ (permut t te) A Vi:Z k<i<n= (heap tni)}

which expresses that, if we have heaps at every position between k+1 and n then,
after the call of (downheap t k n), we will have heaps at every position between
k and n. (We also express the preservation of the array, which will be needed
to establish its preservation by the main program.) Assuming that downheap is
available, heapsort is really easy to write. To build the heap, the trick consists
in using a bottom-up approach, which can be done in only one line of code:

for k = (N — 2)/2 downto 0 do (downheap t k (N — 1)) done

Then, sorting the array can be done with another line of code, by successively
exchanging the greatest element of the heap — which is at position 0 — with
the last element of the heap:

for k= N — 1 downto 1 do (swap t 0 k); (downheap t 0 (k — 1)) done

This leads to the code given in Figure 7, where the invariants were easy to find.
(The procedure swap has already been introduced in section 4.2.)

fun (N : Z)(t : array N of Z) —
{1<N)
begin
for k = (N — 2)/2 downto 0 do
{ invariant —1<k<N -1
ANWVi:Z k+1<i<N—1 = (heap t (N —1) 1))
A (permut t tao)
variant k +1 }
(downheap N t k (N — 1))
done;
assert { (heap t (N —1) 0) A (permut t tao) };
for k = N — 1 downto 1 do
{ invariant 0 <k < N -1
ANWVi:Z 0<i<k = (heap t k 1))
Ak+1<N—1 = t[0] < t[k+1])
AN (k+1<N-1 = (sorted_array t (k+1) (N —1)))
A (permut t tao)
variant k£ }
(swap N t 0 k);
(downheap N ¢t 0 (k—1))
done
end
{ (sorted_array t 0 (N —1)) A (permut t ta) }

Fig. 7. The program heapsort

The procedure downheap. We still have to implement the downheap function.
It is usually written in an imperative style, with some code looking like!:

downheap t ko n def

let k = ref ko in

while 2x!k +1 < n do
let j = [select the greatest son of k | in
if t[j] < t[!k] then break;
(swap t 'k j);
k=7

done

! The code of R. Sedgewick does not use a break but a goto, but with the same purpose.

Since we do not have a break construction in our language, we have to write it
differently, keeping the same idea of stopping the process as soon as the node &
is greater or equal to its son(s). A good idea is to write it as a recursive function,
in the following way:

downheap t k n def

if 2x k+1<mn then
let j = [select the greatest son of k | in
if t[k] < t[j] then begin
(swap t k j);
(downheap t j n)
end

The code to select the greatest son of k, namely j, takes care of the case when
k has only one son. That piece of code is “abstracted” by being given the post-
condition (select_son t k n j) which is defined as:

L (G=2+1 A (2k+2<n=ij]> 12k +2))

Vii=2k+2 A j<n A t[j]>t2k+1])

(select_son t k n j)

When we come to the proof of correctness of the procedure downheap, with
the specification (2), we discover that we are not able to establish all the proof
obligations. The reason is that our specification of downheap is not strong
enough; in particular, we didn’t state what our function does not do. Indeed,
after the recursive call (downheap t j n) we get an array with the heap property
at root j, but we do not know if some elements outside that tree have been mod-
ified, and we are not able to establish the heap property at root k. Consequently,
we have to strengthen the post-condition. First, we claim that some elements
are not touched by the procedure, namely those with indexes ¢ such that ¢ < k,
k <i<2k+1orn <i. Secondly, we claim that the maximal value of the tree
at root k didn’t increase, which is expressed by:

Yv. (inftree ta n v k) = (inftree t n v k)

Then, with such a post-condition, the proof obligations can be established. The
final annotated code of downheap is given in Figure 8.

5 Discussion

Those three case studies show that the Coq system can be an effective framework
for developing proofs of pretty complex imperative programs. The tactic used
leads to very natural proof obligations, which are very close to the lemmas one
would require in a hand-made proof using Floyd-Hoare logic.

Some significant figures about the developments we presented are put to-
gether in Figure 9. In particular, they show that the full development of a formal

let rec downheap (N : Z)(t : array N of Z)(k,n: Z) : unit { variantn—%k } =
{0<k<n An<N
AVi:Z k+1<i:<n = (heap t ni) }
(letj = 2xk+1in
if 7 < n then
let j/ = (if j +1 < n then if ¢[j] < t[j + 1] then j + 1 else j else j)
{ (select_son t k n result) } in
if ¢[k] < ¢[j] then begin (swap N t k j'); (downheap N t j' n) end)
{ (permut t ta)
ANVi:Z k<i<n = (heap t n 1))
ANNMi:Z.(0<i<k V Ek<i<2xk+1V n<i<N) = t[i]=tali])
A (Yv: Z. (inftree ta n v k) = (inftree t n v k)) }

Fig. 8. The recursive procedure downheap

proof requires a reasonable amount of time (a few days). The total development
time for insertion sort is not given, since it involved the development of the li-
braries and also the debugging of the correctness tool. The annotations and the
proof obligations are not so numerous, in the same order of magnitude than the
lines of code. Moreover, the libraries we developed, about sorted arrays and per-
mutations, are independent of the programs and can be reused in other proofs,
allowing faster and easier developments.

Although it sometimes lacks more powerful automatic tactics, especially to
solve trivial goals, the Coq system provides some very useful tactics to solve proof
obligations without too much interacting with the system. The tactic Omega,
which is intended to solve quantifier-free problems in the Presburger arithmetic,
is of great help to the user when he or she tries to solve goals about the decreasing
of the variant or the inequalities expressing legal accesses within the bounds of
arrays.

But the main advantage of those developments is surely to have demonstrated
the relevance of a powerful logic, namely the Calculus of Inductive Constructions,
in the process of specifying programs and proving their correctness. Indeed, we
have defined and used some inductive predicates, as for instance permut and
heap, and even used higher order to prove a new induction principle based on
the coding of heaps.

References

[1] The Coq Proof Assistant. http://coq.inria.fr/.

[2] J.-C. Fillidtre. Proof of Imperative Programs in Type Theory. In Proceedings of
the TYPES’98 workshop, 1998. To appear.

[3] C. A. R. Hoare. Quicksort. Computer Journal, 1(5), 1962.

[4] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

| insertion sort|quicksort|heapsort|

lines of specification 15 13 23
lines of code 17 41 (4) 19 (2)
number of annotations 7 18 7
number of proof obligations 14 26 22
lemmas (manually introduced) 8 11 28
proof steps 300 468 626
|t0tal development time | —| 2 days| 3 days|

Fig. 9. Some significant figures

[6] R. Sedgewick. Quicksort. Garland, New York, 1978. Also appeared as the author’s
Ph.D. dissertation, Stanford University, 1975.
[6] R. Sedgewick. Algorithms. Addison-Wesley, 1988.

