
Dependently Typed Programming

in the Coq Proof Assistant

Nicolas Magaud

School of Computer Science and Engineering

The University of New South Wales

Dagsthul Seminar

12-17.09.2004



Outline 2

• The Coq Proof Assistant

• A System based on the Calculus of Inductive Constructions

• Designed to Write Programs and Reason about them

• Distinction between Logic and Computation (Set/Prop)

• Extraction Mechanism

• Dependently Typed Programming

• Writing Fully Specified Programs

• Describing Partial Functions, Well-founded Recursion

• Dependently Typed Programs and their Properties

or Coq as any other dependently typed programming language.



Functions Definitions 3

• Defining functions (only total functions)

• Structural recursive definitions:

Pattern Matching and Guarded Fixpoint

• One can also define functions by well-founded recursion.

• Example

Inductive nat : Set := O : nat | S : nat -> nat.

Fixpoint plus (n m:nat) {struct n} : nat :=

match n with | O => m

| S p => S (plus p m)

end.

• Computational behaviour (ι-reduction)

plus O m
ι−→ m plus (S p) m

ι−→ (S (plus p m))



Fully Specified Programs 4

• A predecessor function for natural numbers (pred.v)

• initial implementation: as a function of type nat → nat

and maybe a comment about what we do for 0

• refined into a function with a precondition:

∀n : nat, n 6= 0 → nat

• eventually as a fully-specified function

∀n : nat, {p : nat | n = (S p)}+ {n = 0}
This type contains all the information we want to know about

pred, especially the computed term p as well as its link with n.

• Especially useful to establish properties of functions for which

reasoning by induction will be difficult.



An Academic Example 5

• Computing elements of the Fibonacci sequence

Fixpoint fib (n : nat) : nat :=

match n with

| O => 0

| S p => match p with

| O => 1

| S q => fib p + fib q

end

end.

• How to define it with integers (Z) rather than natural numbers ?

• We’ll need well-founded induction and partial functions



Fibonacci with integers 6

• fib : ∀n : Z, 0 ≤ n → Z

• Recursion using accessibility and a well-founded order

Inductive Acc (A: Set) (R: A -> A -> Prop): A -> Prop :=

Acc_intro:

forall x: A, (forall y: A, R y x -> Acc R y) -> Acc R x

• Build a higher-order function (one-step computation)

This is always a dependently typed function.

• Case analysis on a strongly specified version of boolean expressions

Z le lt eq dec : ∀x y : Z, (x ≤ y) → {(x < y)}+ {x = y}

Not only we do case analysis on whether x < y and x = y, but we

also get it as an assumption in the corresponding branch.



Definitions by well-founded recursion 7

Definition F

(n : Z)

(g : forall m : Z, Zwf 0 m n -> (0 <= m) -> Z)

(h : (0 <= n)) : Z :=

match Z_le_lt_eq_dec 0 n h with

| left h’ =>

match Z_le_lt_eq_dec 1 n (t1 _ h’) with

| left h’’ =>

(g (n - 1) (t2 _ h’) (st _ _ (t2 _ h’)) +

g (n - 2) (t3 _ h’’) (st _ _ (t3 _ h’’)))

| right _ => 1

end

| right _ => 0

end.



Reasoning about these programs 8

• Generating associated Fix-point equations (Balaa and Bertot)

fib 0 h = 0

fib 1 h = 1

fib (S (S n)) h = fib (S n) h′ + fib n h′′

Handling functions with preconditions is a bit more complex.

• Alternative Approach:

Recursion on a Ad-Hoc predicate (Bove and Capretta)



Dependently Typed Programs 9

• Defining vectors (a.k.a. dependent lists)

Inductive vect (A : Set) : nat -> Set :=

vnil : vect A 0

| vcons : forall n : nat, A -> vect A n -> vect A (S n).

Definition app: forall n m:nat,

(vect A n) -> (vect A m) -> (vect A (plus n m)).

• But remember ! We are in a theorem prover. . .

• . . . so we want to prove theorems about these objects.

associativity of append on vectors

forall n:nat, forall vn:(vect A n), (rev n (rev n vn) vn)=vn



Equality over Dependently Typed Terms 10

• Leibnitz equality (as an inductive definition)

Inductive eq (A : Type) (x : A) : A -> Prop :=

refl_equal : x = x

• This equality only allows to compare objects

already known to be of the same type.

• Dependent Equality and John Major’s Equality

Inductive JMeq (A:Set) (x:A) : forall B:Set, B -> Prop :=

JMeq_refl : JMeq x x.

• Equality equipped with a special elimination principle:

forall (A:Set) (x y:A) (P:A -> Prop), P x -> JMeq x y -> P y.

• Let’s see how it works in Coq ! (app.v)



Proof Development 11

• append:

∀n m : nat, vect n → vect m → vect (n + m)

• reverse :

∀n : nat, vect n → vect n

• how to prove

∀n : nat, ∀vn : (vect n), reverse n (reverse n vn) = vn ?

• Trying to build reverse with append

reverse x :: xs → append n 1 xs x : (vect (n + 1))

• however we would prefer (vect (S n)) for the recursive definition

of reverse, hence we take a specific app right function.

(reverse.v, dep2.v)



Summary 12

• A few applications of dependent types to program in Coq

• Fully Specified Functions

• Building Functions using Well-founded Recursion

• Describing Partial Functions

• Actually Writing Dependently Typed Functions

• To what extend is it practicable to write dependently typed

programs in such a framework ?

• We remain in the same framework to do the proofs.

• We can extract the datatypes and functions to Ocaml or Haskell.


