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We consider regular open (or closed) sets in a topological space and possible generaliza-

tions for algebraic openings and closings in a complete lattice. We recall the well-known

characterization of any complete Boolean lattice as the set of regular open sets in a topol-

ogy. We show the relevance of such concepts for representating objects in continuous and

digital space.



1. Introduction

Suppose that we represent a material object by a Euclidean set X ⊆ IRd. Should X be

topologically closed or open, that is, should it contain its border or not? In [2] it is claimed

that known facts about the psychology of human vision “suggest that it is in the nature of

human vision to include boundaries of perceived objects, i.e., objects are always seen as being

closed.” However, from a physical point of view, the material object is not really continuous,

but made of molecules, themselves built from atoms, and we know from quantum mechanics

that below the atomic level the classical notions of space and localisation break down. This

should remind us that the Euclidean space IRd with its subsets is only a mathematical

representation of the physical reality, but not that reality itself. It is chosen because it is

more accurate than the digital space ZZd (limited in resolution), and offers more possibilities

than Qd.

Now the set X cannot be both open and closed (because IRd is connected). In view of

its link with a physical object, we can consider that the border of X does not matter. Or

we can assume that X and its complement Xc have nowhere zero thickness. We will see

in Section 4 that both conditions can be made precise in the same way in terms of regular

open or closed sets. One says that a set A is regular open if A = A
◦
, a set F is regular

closed if F = F ◦; there is a one-to-one correspondence between regular open and regular

closed sets, given by the equivalent relations F = A and A = F ◦. Now our two assumptions

mean both that for some regular open set A and the regular closed set F corresponding to

it, A ⊆ X ⊆ F ; moreover, all sets Y such that A ⊆ Y ⊆ F will represent the same object as

X .

A well-known fact (which we prove again in Section 3) is that the regular open sets

form a complete Boolean lattice; moreover the same holds for regular closed sets, the one-

to-one correspondence between regular open and regular closed sets given above being an

isomorphism between the two complete lattices. Thus the usual set-theoretic operations of

union, intersection, and complementation can be generalized to this framework. In Section 4

we show that the ‘cellular representation’ of digital space ZZd as a tesselation of IRd into

cells corresponding to pixels (or voxels) can be defined coherently if these cells are treated

as regular open or closed sets, and the two cellular representations of the lattice of digital

sets (as a lattice either of regular open sets, or of regular closed sets) correspond to the two

types of connectivity (axial and diagonal) that can be defined on digital sets. This removes

the ‘paradoxes’ of digital connectivity, as we explained in [8] (but now with a more correct

description of the cellular representation of digital space).

It is often thought that a complete Boolean lattice reduces by isomorphism to the

case of a family of subsets of a set E which is closed under complementation and arbitrary

unions and intersections; sometimes one even reduces it to the the case of the set P(E) of

parts of E. For example in Chapter 2 of [11] Serra writes a misleading comment on the

complete Boolean lattice P(E): “This case, more than example, will be an prototype. In

fact, according to a classical result in algebra, for any complete Boolean lattice P there exists

a set E such that P is isomorphic to a part of the set P(E) of subsets of E, with the empty

set as null element ∅, and with E itself as universal element U .” In [12] one finds an even
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more wrong characterization: “The most typical complete boolean lattice is that of the set

P(S) of parts of a set S, equipped with the order relation of inclusion. Moreover, one can

show that the study of complete boolean lattices can be reduced by isomorphism to the case

of P(S).” The error of both authors is to forget that in a complete lattice L of subsets of a

set E, ordered by inclusion, the operations of supremum and infimum (defined on any family

of elements of L) will not necessarily coincide with the operations of union and intersection,

even if it is true for the binary operations of supremum and infimum of two elements of that

lattice L (for example in the Stone representation of a complete Boolean lattice, consisting

of all sets both open and closed in a certain topology). In reaction to this confusion, we

give in Section 3 the classical results of Stone and others on the characterization of Boolean

lattices. It follows then that the prototype of a complete Boolean lattice is given by the

family of regular open sets (or alternately the family of regular closed sets) of an arbitrary

topological space. The set P(E) of parts of a set E corresponds to the particular case of

the discrete topology on E, where every subset of E is both open and closed.

The concept of regular open or closed sets can be generalized in the digital and Eu-

clidean spaces ZZd and IRd, as well as other complete lattices, to other algebraic openings

and closings than the topological ones. Let α be an opening and ϕ a closing. It is pos-

sible to envisage sets which are both open and closed, that is invariant under both α and

ϕ. For example in Section V.C of [10] one considers the ‘regular model’ consisting of all

compact sets in IRd which are invariant under both the morphological opening and closing

by a compact ball of radius r > 0. However, while the domains of invariance of α and of

ϕ respectively are both complete lattices, their intersection is generally not a lattice. This

prevents the definition of the join and meet of open and closed sets. A better solution is to

consider sets which are regular open (invariant under αϕ), or regular closed (invariant under

ϕα); regular open sets form a complete lattice isomorphic to the one of regular closed sets

(with the isomorphism given by F = ϕ(A) or equivalently A = α(F )). We will illustrate

this approach in the digital case in Section 4.

In this work we will use several results about morphological filters, that is idempotent

increasing operators on a complete lattice. We state them in Section 2.

2. Morphological filters and their domain of invariance

We assume the framework of [5,9] (more precisely, [5] up to and including Subsection 3.1,

and [9] up to and including Subsection 2.2). Let L be a complete lattice for the partial

order ≤, with least element O and greatest element I, and whose supremum and infimum

operations are written
∨

and
∧

. Let T be a group of automorphisms of L. Consider an

operator ψ : L → L. We recall several definitions from [5,9]. The range of ψ is the set

Ran(ψ) of all ψ(X) for X ∈ L; an invariant of ψ is some X ∈ L such that ψ(X) = X ; the

domain of invariance of ψ is the set Inv(ψ) of all invariants of ψ. Clearly Inv(ψ) ⊆ Ran(ψ);

moreover

ψ2 = ψ ⇐⇒ Ran(ψ) ⊆ Inv(ψ) ⇐⇒ Ran(ψ) = Inv(ψ); (2.1)

we say then that ψ is idempotent. We say that ψ is increasing if for any X,Y ∈ L, X ≤ Y

implies ψ(X) ≤ ψ(Y ). Finally ψ is called T-invariant if ψτ = τψ for all τ ∈ T. A subset B
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of L is T-invariant if τ(B) ∈ B for all B ∈ B and τ ∈ T.

For any B ⊆ L, we define the T-opening αT

B and the T-closing ϕT

B as respectively the

least and greatest T-invariant operators whose domain of invariance contain B (see [9]).

We define a morphological filter (or in brief a MF) as an increasing and idempotent

operator, and a T-morphological filter (or in brief a T-MF) as a T-invariant morphological

filter. In the case where T-invariance is not taken into account, all results on T-MFs apply

to MFs by taking T = {id}. A detailed study of morphological filters (without T-invariance)

has been made by Matheron in Chapter 6 of [11]. In particular, the following two results

characterising T-MFs in terms of T-invariant complete lattices embedded in L are simply

extensions to T-invariance of results from Section 6.2 of [11]:

Proposition 2.1. Let ψ be a T-MF. Then Inv(ψ) is a T-invariant complete lattice, with

least element ψ(O) and greatest element ψ(I); given S ⊆ Inv(ψ), the supremum and infimum

of S in Inv(ψ) are ψ(
∨

S) and ψ(
∧

S).

Proof. For S ∈ Inv(ψ) and τ ∈ T we have ψ
(

τ(S)
)

= τ
(

ψ(S)
)

= τ(S), so that τ(S) ∈

Inv(ψ); hence Inv(ψ) is T-invariant.

For X ∈ L, O ≤ X ≤ I, and as ψ is increasing, ψ(O) ≤ ψ(X) ≤ ψ(I), so that ψ(O)

and ψ(I) are the least and greatest elements of Ran(ψ) = Inv(ψ). Let S ⊆ Inv(ψ) and

suppose that U ∈ Inv(ψ) is an upper bound of S: for all S ∈ S, U ≥ S. Thus for S ∈ S we

have S ≤
∨

S ≤ U , and as ψ is increasing,

S = ψ(S) ≤ ψ(
∨

S) ≤ ψ(U) = U ;

this means that ψ(
∨

S) is the least upper bound of S in Ran(ψ) = Inv(ψ). We prove in the

same way that ψ(
∧

S) is the greatest lower bound of S in Inv(ψ).

Proposition 2.2. Let B be a T-invariant complete lattice included in L, with supremum

and infimum operations written
∨B

and
∧B

. The set of T-MFs having B as domain of in-

variance is not empty; its least element is ϕT

Bα
T

B and its greatest element is αT

Bϕ
T

B . Moreover,

for any X ∈ L, we have

ϕT

Bα
T

B (X) =

B
∨

{B ∈ B | B ≤ X}

and αT

Bϕ
T

B (X) =

B
∧

{B ∈ B | B ≥ X}.

Proof. We show only the half of the statement concerning ϕT

Bα
T

B . The other half about

αT

Bϕ
T

B follows by duality. As ϕT

B and αT

B are T-invariant, so is ϕT

Bα
T

B . Now ϕT

Bα
T

B is a MF by

Criterion 6.6 in Section 6.1 of [11]. Let X ∈ L and B(X) the set of B ∈ B such that B ≤ X .

As B is T-invariant, αT

B (X) =
∨

B(X) (see [9]). For any C ∈ B, C ≥ αT

B (X) =
∨

B(X) if

and only if C ≥ B for every B ∈ B(X), in other words if and only if C ≥
∨B B(X); hence

∨B B(X) is the least element of B which is ≥ αT

B (X). As B is T-invariant, we have (see [9]):

ϕT

Bα
T

B (X) =
∧

{C ∈ B | C ≥ αT

B (X)} =
∧

{C ∈ B | C ≥
B
∨

B(X)} =

B
∨

B(X).
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In particular ϕT

Bα
T

B (X) ∈ B and for B ∈ B we have B = ϕT

Bα
T

B (B); hence Ran(ϕT

Bα
T

B ) =

Inv(ϕT

Bα
T

B ) = B. Let ψ be a T-MF such that Inv(ψ) = B. For all B ∈ B(X) we have

B ≤ X and so B = ψ(B) ≤ ψ(X), since ψ is increasing; as ψ(X) ∈ B, we have thus

ϕT

Bα
T

B (X) =
∨B B(X) ≤ ψ(X). Therefore ϕT

Bα
T

B is the least T-MF having B as domain of

invariance.

As shown first by Matheron (see Section 6.2 of [11]), for any S ⊆ B and any T-MF ψ having

B as domain of invariance, ψ(
∨

S) = ϕT

Bα
T

B (
∨

S) = ϕT

B (
∨

S) and ψ(
∧

S) = αT

Bϕ
T

B (
∧

S) =

αT

B (
∧

S). Let us derive this result for
∨

S (the corresponding one for
∧

S follows by duality).

As B = Inv(ψ) = Inv(ϕT

Bα
T

B ), by Proposition 2.1 we have ψ(
∨

S) =
∨B S = ϕT

Bα
T

B (
∨

S);

as S ⊆ Inv(αT

B ) and Inv(αT

B ) is sup-closed (see [9]), αT

B (
∨

S) =
∨

S, so that ϕT

Bα
T

B (
∨

S) =

ϕT

B (
∨

S).

Given two MFs ψ and ξ, we have ψξ = ξ if and only if Inv(ξ) ⊆ Inv(ψ). In this case

we can prove the following:

Proposition 2.3. Let ψ and ξ be two MFs such that Inv(ξ) ⊆ Inv(ψ). For any S ⊆ Inv(ξ)

we have:

(i) ψ(
∨

S) ≤ ξ(
∨

S), and if ψ ≥ ξ, ψ(
∨

S) = ξ(
∨

S).

(ii) ψ(
∧

S) ≥ ξ(
∧

S), and if ψ ≤ ξ, ψ(
∧

S) = ξ(
∧

S).

Proof. We show only (i), since (ii) follows by duality. By Proposition 1 ξ(
∨

S) is the

supremum of S in the complete lattice Inv(ξ), and ψ(
∨

S) is the supremum of S the complete

lattice in Inv(ψ). As Inv(ξ) ⊆ Inv(ψ), the supremum of S in Inv(ξ) is an upper bound of

S in Inv(ψ), and hence it is greater than or equal the supremum of S in Inv(ψ). Therefore

ψ(
∨

S) ≤ ξ(
∨

S). When ψ ≥ ξ, we get the converse inequality ψ(
∨

S) ≥ ξ(
∨

S), and the

equality follows.

Proposition 2.4. Given two increasing operators ζ, η such that ζη and ηζ are MFs,

then Inv(ζη) and Inv(ηζ) are isomorphic complete lattices: Z ∈ Inv(ζη) and Y ∈ Inv(ηζ)

correspond under this isomorphism by the equivalent relations Z = ζ(Y ) and Y = η(Z).

The proof is straightforward and is left to the reader. In particular, for an adjunction (ε, δ),

Inv(εδ) and Inv(δε) are isomorphic.

When ζ and η are MFs and ζ ≥ η, then ζη and ηζ are MFs by Criterion 6.6 in

Section 6.1 of [11], ζ ≥ ζη and Inv(ζη) = Ran(ζη) ⊆ Ran(ζ) = Inv(ζ), η ≤ ηζ and

Inv(ηζ) = Ran(ηζ) ⊆ Ran(η) = Inv(η), and we can thus apply Propositions 2.1, 2.3, and 2.4:

Corollary 2.5. Let ζ and η be two T-MFs such that ζ ≥ η. Then Inv(ηζ) and Inv(ζη) are

isomorphic T-invariant complete lattices, where Y ∈ Inv(ηζ) corresponds to Z ∈ Inv(ζη)

by the equivalent relations Z = ζ(Y ) and Y = η(Z). For Y ⊆ Inv(ηζ), its supremum and

infimum in Inv(ηζ) are given by

Inv(ηζ)
∨

Y = ηζ(
∨

Y) and

Inv(ηζ)
∧

Y = ηζ(
∧

Y) = η(
∧

Y).

For Z ⊆ Inv(ζη), its supremum and infimum in Inv(ζη) are given by

Inv(ζη)
∨

Z = ζη(
∨

Z) = ζ(
∨

Z) and

Inv(ζη)
∧

Z = ζη(
∧

Z).
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In particular if we take for η an opening α and for ζ a closing ϕ, we get ϕα(
∨

S) = ϕ(
∨

S)

for S ⊆ Inv(ϕα), while αϕ(
∧

T ) = α(
∧

T ) for T ⊆ Inv(αϕ). This generalizes what we said

after Proposition 2.2 about ϕT

B and αT

B for a T-invariant complete lattice B ⊆ L.

Our next result uses the same framework as Corollary 2.5:

Proposition 2.6. Let ζ and η be two T-MFs such that ζ ≥ η. Then: (a) The following

two statements are equivalent for all Y, Z ∈ L:

(i) Y and Z are corresponding elements of Inv(ηζ) and Inv(ζη), in other words Y ∈

Inv(ηζ), Z ∈ Inv(ζη), Y = η(Z), and Z = η(Y ).

(ii) Y ≤ Z and there is some S ∈ L such that Y = ηζ(S) and Z = ζη(S).

(b) For any M ∈ L, the following two statements are equivalent:

(iii) There are Y, Z ∈ L satisfying (i) such that Y ≤M ≤ Z.

(iv) ηζ(M) ≤M ≤ ζη(M).

Moreover in (iii) Y and Z are uniquely determined by Y = η(M) and Z = ζ(M).

Proof. (a) (i) implies (ii): As η ≤ ζ, Y = η(Y ) ≤ ζ(Y ) = Z. We have Y = ηζ(Y ) and

Z = ζ(Y ) = ζη(Y ), so we take S = Y .

(ii) implies (i): As Y ∈ Ran(ηζ) and Z ∈ Ran(ζη), we get Y ∈ Inv(ηζ) and Z ∈ Inv(ζη).

As Y ≤ Z, ζ(Y ) ≤ ζ(Z) = Z; now ζηζ ≥ ζη, and so ζ(Y ) = ζηζ(S) ≥ ζη(S) = Z; combining

both inequalities, Z = ζ(Y ). Thus Y corresponds to Z and Y = η(Z).

(b) (iii) uniquely determines Y = η(M) and Z = ζ(M): Indeed, applying η to the inequality

Y ≤ M ≤ Z gives Y = η(Y ) ≤ η(M) ≤ η(Z) = Y , that is Y = η(M), and applying ζ to

that inequality gives Z = ζ(M).

(iii) implies (iv): We have ηζ(M) = η(Z) = Y ≤M and ζη(M) = ζ(Y ) = Z ≥M .

(iv) implies (iii): We set Y = ηζ(M) and Z = ζη(M), and (ii) is satisfied with S =M , so

that Y, Z verify (i).

In the next two sections, we will apply Corollary 2.5 and Proposition 2.6 in the case

where η is the topological interior and ζ the topological closure.

3. Characterization of complete Boolean algebras

A complete Boolean lattice can be characterized as the lattice of regular open sets in a

topology. We show this directly in the first subsection. In the second one we recall Stone’s

representation theorem and the refinement it gives to that characterization.

3.1. Direct analysis

Let E be a topological space; we momentarily drop the question of T-invariance. For any

X ⊆ E , write Xc for its complement in E . The operator α : E → E : X 7→ X◦, associating

to a set its interior, is an opening, while the operator ϕ : E → E : X 7→ X, associating to a

set its closure, is a closing. The set of regular open sets is Inv(αϕ), while the set of regular

closed sets is Inv(ϕα). Corollary 2.5 can be expressed as follows:

The set of regular open sets and the set of regular closed sets are isomorphic complete

lattices, where a regular open set A corresponds to a regular closed set F by the equivalent
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relations F = A and A = F ◦. Given a family of regular open sets Aj (j ∈ J), its supremum

and infimum are given by

(

⋃

j∈J

Aj

)◦

and
(

⋂

j∈J

Aj

)◦

=
(

⋂

j∈J

Aj

)◦

. (3.1)

Given a family of regular closed sets Fj (j ∈ J), its supremum and infimum are given by

(

⋃

j∈J

Fj

)◦

=
⋃

j∈J

Fj and
(

⋂

j∈J

Fj

)◦

. (3.2)

Note that ∅ and E are both regular open and regular closed; they are thus the universal

bounds of both complete lattices. Furthermore the infimum of two regular open sets is their

intersection:

A1 ∧ A2 = (A1 ∩ A2)
◦ = A1 ∩A2. (3.3)

Similarly the supremum of two regular closed sets is their union.

In addition to the isomorphism A 7→ A between the complete lattice of regular open

sets and that of regular closed sets, we have also the dual isomorphism A 7→ Ac. Together

they form a dual automorphism A 7→ (Ac)◦ =
(

A
)c

of the complete lattice of regular open

sets. Thanks to the underlying topology, we can prove the following:

Proposition 3.1. The complete lattice of regular open sets is Boolean, that is distributive

and complemented. The complement of a regular open set A is (Ac)◦ =
(

A
)c
.

Proof. Given an open set A and any T ⊆ E , we have

A ∩ T ◦ = (A ∩ T )◦

and A ∩ T ⊆ A ∩ T .
(3.4)

The first equality follows from the fact that (A∩ T )◦ = A◦ ∩ T ◦, while the second is proven

as follows: let x ∈ A ∩ T , and take any open neighbourhood V (x) of x; as x ∈ A (an open

set), A∩ V (x) is an open neighbourhood of x, and as x ∈ T , A∩ V (x) contains some t ∈ T ;

thus any V (x) contains t ∈ A ∩ T , and so x ∈ A ∩ T .

Let us now show that our complete lattice is distributive. Given regular open sets

A,B,C we obtain from (3.3) and (3.4):

A ∧ (B ∨ C) = A ∩ (B ∨ C) = A ∩
(

B ∪ C
)◦

=
[

A ∩
(

B ∪ C
)]◦

⊆
[

A ∩ (B ∪ C)
]◦

=
[

(A ∩B) ∪ (A ∩ C)
]◦

= (A ∧B) ∨ (A ∧ C).

Thus A∧ (B∨C) ⊆ (A∧B)∨ (A∧C); the converse inequality is trivial, and so distributivity

follows.

It remains to show that our lattice is complemented. For a regular open set A, A′ =

(Ac)◦ =
(

A
)c

is also regular open. We have

A ∧ A′ ⊆ A ∩ A′ = A ∩ (Ac)◦ ⊆ A ∩Ac = ∅,

and A ∨ A′ =
(

A ∪ A′
)◦

⊇
(

A ∪ A′
)◦

=
(

A ∪ (A)c
)◦

= E◦ = E .

Hence A ∧ A′ = O and A ∨ A′ = I.
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We will now show that every complete Boolean lattice is isomorphic to the complete lattice

of regular open sets in a suitable topology. The property (3.3) and the fact that ∅ and E

are regular open sets are sufficient to prove that characterization in the case of a complete

lattice of sets:

Theorem 3.2. Let E be a set and let L be a complete Boolean lattice of subsets of L,

ordered by inclusion, such that ∅, E ∈ L, and for any X,Y ∈ L, X ∩ Y ∈ L. Let A be the

family of subsets of E generated by arbitrary unions of elements of L. Then E is a topological

space with A as set of open sets and L as set of regular open sets.

Proof. A is the set of all
⋃

X for X ⊆ L. As ∅, E ∈ L, ∅, E ∈ A. Clearly a union of elements

of A remains in A. Given A =
⋃

X and B =
⋃

Y for X ,Y ⊆ L, infinite distributivity implies

that
(

⋃

X
)

∩
(

⋃

Y
)

=
⋃

Y ∈Y

(

(

⋃

X
)

∩ Y
)

=
⋃

Y ∈Y

⋃

X∈X

(X ∩ Y ),

which is again in A, since each X ∩ Y ∈ L. Thus the intersection of two elements of A is in

A. Therefore A endows E with a topology.

As L ⊆ A, elements of L are open. Consider a family Xj (j ∈ J) of elements of L. Let

U =
⋃

j∈J Xj and V =
∨

j∈J Xj . Clearly V ∈ L and U ∈ A. For every Y ∈ L we have the

following equivalences:

Y ⊆ V ′ ⇐⇒ Y ∧
(

∨

j∈J

Xj

)

= Y ∧ V = ∅;

⇐⇒ ∀j ∈ J, Y ∩Xj = Y ∧Xj = ∅ (by infinite distributivity in L);

⇐⇒ Y ∩ U = Y ∩
(

⋃

j∈J

Xj

)

= ∅;

⇐⇒ Y ⊆ U c;

⇐⇒ Y ⊆ U c◦ (since Y is open).

Thus V ′ is the greatest Y ∈ L such that Y ⊆ U c◦, and as U c◦ is the union of such sets Y ,

we have V ′ = U c◦, that is
(

∨

j∈J

Xj

)′

=
(

⋃

j∈J

Xj

)c◦

.

Applying this equality to the family consisting only of V ′, where V =
∨

j∈J Xj , we find that

V = (V ′)′ = (V ′)c◦ = (U c◦)c◦, in other words

∨

j∈J

Xj =
(

⋃

j∈J

Xj

)c◦c◦

=
(

⋃

j∈J

Xj

)◦

.

Now any U ∈ A takes the form U =
⋃

j∈J Xj , where Xj ∈ L, and clearly U ∈ L if and only

if U =
∨

j∈J Xj , which by the preceding equation is equivalent to U = U
◦
. Therefore L is

the set of regular open sets of A.

Now this result can be applied to any complete Boolean lattice:
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Corollary 3.3. Every complete Boolean lattice is isomorphic to the complete lattice of

regular open sets of some topological space.

Proof. Let L be a complete Boolean lattice. Let E = L\{O}, and define the map ψ : L →

P(E) by setting

ψ(X) = {Y ∈ E | Y ≤ X} for X ∈ L.

Let M = Ran(ψ), the set of all ψ(X), where X ∈ L. For any X,Y ∈ L, we have ψ(X) ⊆

ψ(Y ) ⇐⇒ X ≤ Y , and so ψ is an isomorphism L → M. Thus (M,⊆) is a complete

Boolean lattice isomorphic to (L,≤). Now ∅ = ψ(O) and E = ψ(I), so that ∅, E ∈ M.

Moreover, for any X,Y ∈ L we have ψ(X ∧ Y ) = ψ(X) ∩ ψ(Y ). Thus M is closed under

binary intersection. By Theorem 3.2, E can be endowed with a topology such that M is the

set of regular open sets.

Note that for any family Xj (j ∈ J) we have

ψ
(

∧

j∈J

Xj

)

=
∧

j∈J

ψ(Xj),

so that M is closed under arbitrary intersection.

We have shown that a complete lattice is Boolean if and only if its is isomorphic to

the complete lattice of regular open sets in some topological space. The complete Boolean

lattice (P(E),⊆) is a particular case, where E is endowed with the discrete topology; here

every subset of E is regular open.

3.2. Stone’s representation theory

We end this section by stating the classical results of Stone and others on the topological

characterization of Boolean lattices. For this purpose we must recall a few definitions.

Let T be a topological space. T is Hausdorff or T2 if every two distinct points in T have

disjoint neighbourhoods: for x, y ∈ T , x 6= y, there exists V (x), V (y) ⊆ T , with x ∈ V (x)◦,

y ∈ V (y)◦, and V (x) ∩ V (y) = ∅. One calls T compact if every family of open sets covering

T contains a finite subfamily covering it. T is connected if ∅ and T are the only open-and-

closed subsets of T . A subset S of T is said to be connected if the topology induced on it

by T makes it a connected space, in other words: given A,F ⊆ T such that A is open and

F is closed, if A ∩ S = F ∩ S = X , then either X = ∅ or X = S. It is well-known that

T can be partitioned into its connected components, in other words its maximal connected

subsets. T is disconnected if it is not connected. T is totally disconnected if every subset

of it having at least two points is disconnected, in other words if its connected components

are the singletons. We say that T is Boolean if it is totally disconnected, compact, and

Hausdorff.

Consider now the following six statements:

— Regular closed sets coincide with regular open sets.

— Regular closed sets coincide with open-and-closed sets.

— Regular open sets coincide with open-and-closed sets.

— The interior of a closed set is closed.
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— The closure of an open set is open.

— The closure of the interior of a set is contained in the interior of the closure of that set.

They are equivalent. Indeed, given the opening α : X 7→ X◦ and the closing ϕ : X 7→ X,

they can be expressed respectively as: Inv(ϕα) = Inv(αϕ), Inv(ϕα) = Inv(ϕ) ∩ Inv(α),

Inv(αϕ) = Inv(ϕ) ∩ Inv(α), ϕαϕ = αϕ, αϕα = ϕα, and ϕα ≤ αϕ, which are equivalent

formulas by Criterion 6.6 in Section 6.1 of [11]. When anyone of these six statements holds,

we say that T is extremally disconnected (cfr. [4], where the fifth statement is used in the

definition). The choice of this terminology is justified by the following property:

If T is extremally disconnected and Hausdorff, then for any two distinct points x, y ∈ T ,

there is an open-and-closed set S such that x ∈ S and y /∈ S. In particular T is totally

disconnected.

Indeed, as T is Hausdorff, there are disjoint open sets Ax, Ay with x ∈ Ax and y ∈ Ay, and

so y /∈ Ax. As T is extremally disconnected, S = Ax is open-and-closed.

Now we come to Stone’s representation theorem (see [1], Chapter 9):

There is a one-to-one correspondence between Boolean lattices L and Boolean topological

spaces T , under which the elements of L correspond to the open-and-closed subsets of T ,

and the points of T to the maximal ideals of L.

The Boolean space T corresponding to the Boolean lattice L is called the Stone space of

L. In this representation of L as the lattice of open-and-closed subsets of T , the binary

join and meet are the binary union and intersection (since the union and intersection of two

open-and-closed sets is open-and-closed), and the lattice complementation reduces to the

set complementation (since the complement of an open-and-closed set is open-and-closed).

For complete lattices, we have the following characterization (see [4]):

A Boolean space is the Stone space of a complete Boolean lattice if and only if it is extremally

disconnected.

One of the definitions we gave of an extremally disconnected space is that open-and-closed

sets coincide with regular open sets. Thus L is isomorphic to the complete lattice of regular

open sets of its Stone space T . In this representation, although the binary join and meet are

the union and intersection, this is not so for infinitary supremum and infimum operations.

Given an infinite family Cj (j ∈ J) of open-and-closed subsets of an extremally disconnected

Stone space T , their supremum and infimum are respectively
⋃

j∈J

Cj and
⋂

j∈J

Cj

◦

.

Thus the operations of complete Boolean lattices do generally not correspond to union and

intersection. This justifies our criticism of the assertions of Serra and Vincent quoted in the

Introduction.

4. Practical interpretations

In the first subsection we show how the cellular representation of digital pixels as regular

open or closed sets eliminates the so-called ‘paradoxes’ of the two types of digital connec-

tivities on square grids. In the second subsection we explain that regular open sets and the
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corresponding regular closed sets can be used to represent objects so as to satisfy certain

common-sense physical requirements. The third subsection discusses briefly similar digital

models, where algebraic openings and closings dual under complementation take the role of

topological interior and closure.

4.1. Digital and cellular pixels

Digital pixels are elements of ZZ2. The cellular representation of ZZ2 associates to each pixel

(i, j) ∈ ZZ2 a subset C(i, j) of IR2, called a cellular pixel, in such a way that the union

of all C(i, j) for (i, j) ∈ ZZ2 covers the whole of IR2. One assumes in general that this

representation is translation-invariant, in other words each C(i, j) is the translate of C(0, 0)

by (i, j). A natural choice for C(i, j) is the closed square of size 1 centered about (i, j):

C(i, j) = {(x, y) ∈ IR2 | |x− i| , |y − j| ≤ 1/2}. (4.1)

Given a digital set S ⊆ ZZ2, we define its cellular representation C(S) by

C(S) =
⋃

(i,j)∈S

C(i, j).

Thus C(i, j) = C({(i, j)}). Note that C(ZZ2) = IR2. From the definition we have for any

family of subsets Sr of ZZ2 (r ∈ R):

C
(

⋃

r∈R

Sr

)

=
⋃

r∈R

C(Sr). (4.2)

However the equality does not hold for intersection:

C
(

⋂

r∈R

Sr

)

⊆
⋂

r∈R

C(Sr).

Indeed, given two vertically adjacent pixels (i, j) and (i + 1, j), {(i, j)} ∩ {(i + 1, j)} = ∅,

but C(i, j) ∩ C(i + 1, j) 6= ∅, since it contains the closed segment spanned by the points

(i+ 1/2, j− 1/2) and (i+1/2, j + 1/2) (see Figure 1). Moreover the cellular representation

does not commute with complementation; for any S ⊆ ZZ2,

IR2 \ C(S) =
(

C(ZZ2 \ S)
)◦

and C(ZZ2 \ S) = IR2 \ C(S). (4.3)

Thus the cellular representation of digital sets does not transpose the complete Boolean

lattice structure of (P(ZZ2),⊆,
⋃

,
⋂

, c) into that of (P(IR2),⊆,
⋃

,
⋂

, c).

The solution to this defect is to consider the cellular representation of digital sets as a

map from P(ZZ2) into the complete lattice of regular closed sets. Indeed, it is not hard to

check that for each S ⊆ ZZ2, C(S) is regular closed, C(Sc) = C(S)c, and for any family of

subsets Sr of ZZ2 (r ∈ R) we have

C
(

⋃

r∈R

Sr

)

=
⋃

r∈R

C(Sr)

and C
(

⋂

r∈R

Sr

)

=
(

⋂

r∈R

C(Sr)
)◦

.
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By (3.2) and the dual version of Proposition 3.1, this means that the cellular representation

of digital sets satisfies the following properties for S, T, Sr ⊆ ZZ2 (r ∈ R):

S ⊆ T ⇔ C(S) ⊆ C(T ),

C
(

⋃

r∈R

Sr

)

=
∨

r∈R

C(Sr),

C
(

⋂

r∈R

Sr

)

=
∧

r∈R

C(Sr),

C(Sc) = C(S)′,

(4.4)

where the supremum
∨

, infimum
∧

, and complementation ′ are taken in the complete

Boolean lattice of regular closed sets. In other words this map is an isomorphism from

(P(ZZ2),⊆,
⋃

,
⋂

, c) to a complete Boolean sublattice of the one of regular closed sets.

As the isomorphism from the lattice of regular closed sets to the one of regular open sets

is given by map F 7→ F ◦, the map S 7→ C(S)◦ is an isomorphism from (P(ZZ2),⊆,
⋃

,
⋂

, c)

to a complete Boolean sublattice of the one of regular open sets. The interest of considering

both C(S) and C(S)◦ lies in their relation between the two types of digital connectivity in

ZZ2, called the 4-connectivity and 8-connectivity. As remarked in [8]:

For any S ⊆ ZZ2, S is 8-connected if and only if C(S) is connected, and S is 4-connected if

and only if C(S)◦ is connected.

Now by (4.3) we have C(S)c = C(Sc)◦ (where the first complementation is in ZZ2, and

the second one in IR2). Thus if we consider 8-connectivity on S ⊆ ZZ2, we must consider

4-connectivity on its complement Sc. The so-called ‘paradoxes’ of digital connectivity on a

square grid disappear, thanks to the two distinct cellular representations of an object and its

background in ZZ2 as subsets of IR2 which are respectively regular closed and regular open.

In this exposition, we restricted ourselves to the 2-dimensional case. Of course every-

thing generalizes to the d-dimensional space. Here the two types of digital connectivity on

ZZd can be called axial and diagonal; they correspond to two types of adjacency relations,

where a point has respectively 2d and d3− 1 neighbours (namely 4 and 8 for d = 2, or 6 and

26 for d = 3).

4.2. Admissible representation of objects

We will give here a few conditions on a subset X of IRd which correspond intuitively to

the fact that X represents a real physical object or phenomenon. We will see that they

are equivalent to the existence of a regular open set A and a regular closed set F which

correspond each other (that is, A = F ◦ or equivalently F = A), such that the set X is

comprised between A and F ; moreover, all sets comprised between A and F will represent

the same physical phenomenon.

For the sake of brievity, let us write R for the set of pairs (A,F ) such that A and

F are corresponding regular open and regular closed sets that is, A = A
◦
, F = F ◦, and

F = A or equivalently A = F ◦. The mathematical basis for this subsection is provided by

Proposition 2.6, whose interpretation in terms of regular open and regular closed sets is the

following:
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(a) Given A,F ∈ P(IRd), (A,F ) ∈ R if and only if A ⊆ F and there exists S ∈ P(IRd) such

that A = S
◦
and F = S◦.

(b) Given M ∈ P(IRd), there exist A and F such that (A,F ) ∈ R and A ⊆ M ⊆ F , if and

only if M
◦
⊆ M ⊆M◦. Moreover, A and F are then uniquely determined by A =M◦ and

F =M .

Let us now come to our consideration of mathematical representations of physical phenom-

ena. A key idea is that we do not physically distinguish between open and closed sets, and

that observable phenomena must have a non-zero ‘magnitude’. Thus there are classes of sets

which are equivalent, because they represent the same materially measurable phenomenon.

A first expresson of this idea is to say that we consider only sets X whose border does

not matter. Thus isolated points (in X or Xc) are physically meaningless. An interpretation

of the lack of value of the border X \X◦ of X is that we can always reconstruct it from X

or X◦, in other words

X
◦
= X◦ and X◦ = X. (4.5)

It is easily seen by statement (b) above that this is equivalent to A ⊆ X ⊆ F , where

(A,F ) ∈ R; moreover we have A = X◦ and F = X.

A second expresson is to say that X and Xc have nowhere zero thickness. For example

X and Xc do not contain isolated portions of dimension d − 1. A possible meaning of the

non-zero thickness of a set S is that every point of that set is adherent to an open ball

completely contained in that set, in other words S ⊆ S◦. Hence we require X ⊆ X◦ and

Xc ⊆ Xc◦ = X
◦c
, or simply

X
◦
⊆ X ⊆ X◦. (4.6)

Again, we find by statement (b) above that (4.6) is equivalent to (4.5), that is A ⊆ X ⊆ F ,

where (A,F ) ∈ R (with A = X◦ and F = X).

Given X such that A ⊆ X ⊆ F , where (A,F ) ∈ R, the fact that the border of X does

not count implies that X is equivalent to X◦ = A and to X = F . Thus all sets Y such that

A ⊆ Y ⊆ F are equivalent. We obtain thus a family of equivalence classes of Euclidean sets,

corresponding to all pairs (A,F ) ∈ R; each such class is closed under non-empty unions

and intersections. As the correspondence between A and F gives the isomorphism between

the complete Boolean lattice of regular open sets and the one of regular closed sets, these

equivalence classes form themselve a complete Boolean lattice isomorphic to the previous

two. The complement of the class corresponding to (A,F ) ∈ R is the one corresponding to

(F c, Ac), and is obtained by taking all complements of elements of that class.

Thus we have a representation of physical phenomena or objects by equivalence classes

of Euclidean sets, and the corresponding structure of a complete Boolean lattice provides

an analogue of the one of sets with operations of union, intersection, and complementation.

However, the resulting lattice is not atomic (generated by points), and so we cannot apply

arguments of the form “a point x belonging to supj Xj must belong to at least one Xj”.

We can now consider a weaker condition, that the border of X is negligible. Here X

can have isolated points, so that we do not necessarily have X ⊆ X◦, and hence X does

not satisfy (4.6), that is A ⊆ X ⊆ F for (A,F ) ∈ R. If by negligible we mean of Lebesgue
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measure zero, a negligible set must have empty interior, since a non-empty open set has

positive Lebesgue measure. Let us thus assume that the border of X has empty interior.

The border of X is X \X◦, and for two sets V,W we have (V \W )◦ = V ◦ \W ; hence the

interior of the border of X is
(

X \ X◦
)◦

= X
◦
\ X◦, and the condition that it is empty

simply means:

X
◦
⊆ X◦. (4.7)

By statement (a) above this means that (X
◦
, X◦) ∈ R. Note that every (A,F ) ∈ R arises

in this way, because A = A
◦
= F

◦
and F = A◦ = F ◦. Moreover (4.7) is satisfied whenever

X is closed or open.

However in (4.7) X does not necessarily lie between the two X
◦
and X◦, as in (4.6).

Here X has a physically meaningless part X \X◦, and a meaningful part X◦. Moreover all

sets Y such that Y
◦
= X

◦
and Y ◦ = X◦ are equivalent to X . In particular, as (X

◦
, X◦) ∈ R,

we have

X
◦
= X◦ and X◦

◦
= X

◦
.

This mean that X◦ and X are equivalent toX . We get thus again a complete Boolean lattice

of equivalence classes of Euclidean sets, corresponding to all pairs (A,F ) ∈ R, each one being

closed under the operations of topological closure and interior. The classes obtained here

are strictly wider than those considered before. In particular they cover together all closed

and all open sets. Moreover, they are not closed under non-empty unions and intersections

(for example the one corresponding to (∅, ∅) contains all discrete sets, but the union of all

discrete sets is IRd, which belongs to the class corresponding to (IRd, IRd)). Note that X

belongs to the equivalence class corresponding to (A,F ) ∈ R if and only if Xc belongs to

the one corresponding to (F c, Ac). Thus the complementation of classes is straightforward,

but their supremum or infimum is not so easily built.

For another type of topological representation of physically meaningful objects, see

also the ‘hit-or-miss topology’ [6,7,10].

4.3. Digital models of objects

The problem that two sets may represent the same physical object, or that a too small set

may be physically insignifiant, is even more present in a digital framework, due to the loss

of resolution arising from quantization.

Consider subsets of a digital space E . We can say that an isolated pixel in a figure or

its background does not count, and that there is a digital structuring element B such that

B and its translates are the smallest significant portions in a set or its complement. Let

T be the group of translations of the digital space. Let αB the structural T-opening by B

and ϕB the structural T-closing by Bc [9]; clearly ϕB is the dual by complementation of

αB, which applies αB to the complement of a set: for X ⊆ E , ϕB(X) =
(

αB(X
c)
)c

(see

[9]). More generally we can consider any opening α and the closing ϕ which is its dual by

complementation: ϕ(X) =
(

α(Xc)
)c
.

It is possible to restrict ourselves to sets X such that both X and Xc are invariant

under α, that is X = α(X) = ϕ(X). This is the analogue for algebraic openings and
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closings of open-and-closed sets in a topological space (see Subsection 3). Note also that

in continuous space Serra (see [10], Section V.C) defines the regular model consisting of

all compact sets invariant under both α and ϕ, where α is the structural T-opening by

a compact ball of positive radius. The problem with such a restriction is that the family

Inv(α)∩ Inv(ϕ) in general does not constitute a complete lattice, and is relatively small and

difficult to construct.

On the other hand Inv(αϕ) = Ran(αϕ) and Inv(ϕα) = Ran(ϕα) are isomorphic com-

plete lattices for the ordering by inclusion (see Corollary 2.5), where A ∈ Inv(αϕ) corre-

sponds to F ∈ Inv(ϕα) by A = α(F ) and F = ϕ(A). As ϕ is the dual of α by complemen-

tation, for A ∈ Inv(αϕ) we have Ac ∈ Inv(ϕα), and so α(Ac) ∈ Inv(αϕ); as Inv(αϕ) is a

lattice, it has an element included in both A and α(Ac) ⊆ Ac, that is ∅ ∈ Inv(αϕ). Thus the

least and greatest elements of Inv(αϕ) are ∅ and α(E). Moreover if for any A ∈ Inv(αϕ), we

set A′ = α(Ac) =
(

ϕ(A)
)c
, then the map A 7→ A′ is a dual automorphism of Inv(αϕ), and

it forms a complementation in the sense that A∧A′ = ∅ (the least element of Inv(αϕ)) and

A ∨ A′ = αϕ(A ∪ A′) = α(E) (the greatest element of Inv(αϕ)). Note however that these

two lattice are generally not Boolean.

We illustrate in Figure 2 an element A of Inv(αϕ), where α is the structural T-opening

by a 3× 3-square B, and the corresponding element ϕ(A) of Inv(ϕα).

The set R of pairs (A,F ) such that A ∈ Inv(αϕ) and F = ϕ(A) is a complete lattice

isomorphic to Inv(αϕ) and Inv(ϕα). As in the preceding subsection, we can now build

models of objects by equivalence classes corresponding to such pairs. For example if we

assume that we consider only sets X such that the difference between α(X) and ϕ(X) does

not matter, then to each (A,F ) ∈ R corresponds the equivalence class of sets X such that

A ⊆ X ⊆ F , and we restrict objects to members of these classes. It is also possible to

associate to (A,F ) ∈ R the class of sets X such that αϕ(X) = A and ϕα(X) = F , but then

the meaning of such equivalence classes is less clear.

What we said in this subsection for digital sets is also valid for subsets of the continuous

space IRd, or objects in more general types of spaces (e.g., grey-level functions), provided

that we still have the structure of a complete lattice.
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