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In an algebraic framework for mathematical morphology [8], Matheron defined a new class

of operators called inf-overfilters, which generalize openings. They allow the design of

new types of openings, some of them having a meaningful practical interpretation. Their

algebraic properties and characterizations have been considered in [6,8]. We study here

some complete lattices formed by such operators or by their associated openings.

AMS 1980 Mathematics Subject Classification: 68U10, 68T10, 06A23, 06A15.

Keywords: mathematical morphology, complete lattice, opening, closing, inf-overfilter,

sup-underfilter, rank-max opening.



1. Introduction

The concept of an inf-overfilter is due to Matheron (see Chapter 6 of [8]). Some of its

properties are found in Sections 6.3, 6.4, and 9.9 of [8], and in Section 4 of [6]. The purpose

of this document is to deepen this study.

We adopt the notation and terminology of [1] for lattices, and of [3,6] for mathematical

morphology and its expression in the framework of complete lattices. The object space (set

of images on which we work) is a complete lattice L with universal bounds O and I, and the

set O of operators L → L inherits that complete lattice structure, having universal bounds

O and I. The identity operator is written id. We also consider a group T of automorphisms

of the object space L, and call a T-operator an operator which is T-invariant, in other words

which commutes with every element of T. We assume that the reader is acquainted with

the basic properties of dilations, erosions, openings, and closings (see Section 2 of [3] and

Subsections 2.1 and 2.2 of [6], or Chapters 1 and 5 of [8]).

Definition 1. An inf-overfilter is an increasing operator η such that η(id∧ η) = η. Dually,

a sup-underfilter is an increasing operator ζ such that ζ(id ∨ ζ) = ζ.

By duality, we can restrict our analysis to inf-overfilters and openings, the corresponding

results for sup-underfilters and closings following immediately. Note that for an increasing

operator η we always have η(id∧η) ≤ η id = η; hence η will be an inf-overfilter if η(id∧η) ≥

η. We call a T-inf-overfilter a T-invariant inf-overfilter. When T-invariance is not necessary,

one can set T = {id} and drop the prefix ‘T-’.

The following elementary result (see [6], Proposition 4.1) highlights the meaning of the

concept of an inf-overfilter:

Proposition 1. Given an inf-overfilter η, η ≤ η2 and id ∧ η is an opening.

An operator ψ such that ψ2 ≥ ψ is called by Matheron an overfilter, and this explains the

origin of the term ‘inf-overfilter’. Any opening is an inf-overfilter as it corresponds to the

particular case where η = id ∧ η.

An inf-overfilter can be interpreted as an increasing operator η applying to X ∈ L

an opening id ∧ η, but adding to it something more (the difference between η(X) and

(id ∧ η)(X)), which does not depend on X , but only on the result (id ∧ η)(X) of that

opening.

A practical example of inf-overfilters is given by the operators introduced in [5] for

digital grey-level images. By composing a rank filter ρkB associated to a rank k and a

structuring element B with the dilation δB by B (in other words the max filter associated

to the reflected structuring element B̌), one obtains an inf-overfilter (see Subsection 4.2 of

[6]); the corresponding opening id∧ δBρkB has the following interpretation: it transforms an

image X into the supremum of all portions of it which consist of a sufficiently large subset of

a translate of B. It is thus a generalization of the morphological opening by B, obtained for

k = 1, which associates to image X the supremum of all portions of it equal to a translate

of B.

Matheron and Serra (see [8], Sections 6.3, 6.4, and 9.9) sudied basic properties and

characterizations of inf-overfilters. This work was extended in Section 4 of [6], with the
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assumption of T-invariance. We recall some of these results in Section 2. In Section 3 we

study the complete lattice of inf-overfilters associated to any given opening, and in Section 4

we give decomposition formulas for such inf-overfilters.

2. Basic properties of inf-overfilters

The following five results are proved in Subsection 4.1 of [6], and generalize some results of

Matheron and Serra.

Although the converse of Proposition 1 is not true (see Subsection 4.1 of [6] for a

counterexample), nevertheless an opening of the form id ∧ ψ, where ψ is increasing, arises

in fact from an inf-overfilter:

Proposition 2. Let ψ be an increasing operator such that id ∧ ψ is an opening. Let

η = ψ(id ∧ ψ). Then η is an inf-overfilter and id ∧ η = id ∧ ψ.

Proposition 3. The set of T-inf-overfilters is sup-closed and has I as greatest element.

Proposition 4. Let η be a T-inf-overfilter, α a T-opening, ε a T-erosion, and ψ an

increasing T-operator. Then the following operators are T-inf-overfilters:

(i) ψη, if ψ ≥ id ∧ η.

(ii) η2.

(iii) ψα, if ψ ≥ α.

(iv) ψε, if ψ ≥ ε
˙
.

Note that any constant operator γA : X 7→ A is an inf-overfilter. It is T-invariant if A is

fixed by T.

Corollary 5. Given an increasing T-operator η, the following three statements are equiv-

alent:

(i) η is a T-inf-overfilter.

(ii) If αη is the greatest T-opening ≤ η, then ηαη = η.

(iii) There is a T-opening α and an increasing T-operator θ such that θ ≥ α and η = θα.

3. The complete lattice of T-inf-overfilters associated to a T-opening

From Corollary 5 we know that T-inf-overfilters can be characterized as operators of the

form θα for a T-opening α and an increasing T-operator ≥ α. We make thus the following:

Definition 2. Given a T-opening α, write HT(α) for the set of all T-inf-overfilters θα,

where θ is an increasing T-operator ≥ α.

Let now α be a fixed T-opening.

Lemma 6. Given a T-operator η, η ∈ HT(α) if and only if η is increasing, η ≥ α, and

ηα = η.

Proof. If η ∈ HT(α), that is η = θα for an increasing θ ≥ α, then η is increasing,

η = θα ≥ αα = α, and ηα = θαα = θα = η. If η is increasing, η ≥ α, and ηα = η, then we

take θ = η.
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Corollary 7. α is the unique T-opening in HT(α).

Proof. For an opening α′ ∈ HT(α), by Lemma 6 we have α′ ≥ α and α′α = α′; now the

latter equality implies α′ ≤ α (see Proposition 2.3 of [6]), so that α′ = α.

Theorem 8. HT(α) ∪ {O} is a complete sublattice of O.

Proof. Consider a non-empty family of elements ηj of HT(α) (j ∈ J 6= ∅). As ηj ≥ α and

ηjα = α for each j ∈ J (by Lemma 6), we get
∧

j∈J ηj ≥ α and (
∧

j∈J ηj)α =
∧

j∈J (ηjα) =
∧

j∈J ηj ; now
∧

j∈J ηj is T-invariant, hence it belongs toHT(α). Similarly
∨

j∈J ηj ∈ HT(α).

Thus HT(α) is closed under non-empty suprema and infima. Now I ∈ HT(α), and so

HT(α) ∪ {O} is both sup- and inf-closed.

Note that HT(α) is itself a complete lattice, with the same supremum and infimum opera-

tions as in O, except that sup ∅ = α instead of O.

Proposition 9. Given an increasing T-operator θ ≥ α, for any η ∈ HT(α), θη ∈ HT(α).

In particular HT(α) is closed under composition.

Proof. By Lemma 6 we have ηα = η and η ≥ α, so that θηα = θη and θη ≥ αα = α, that

is θη ∈ HT(α).

Lemma 10. Let α′ be an opening such that α′ ≥ α. Then ηα′ = η for every η ∈ HT(α); in

particular when η ≥ α′ we have η ∈ HT(α
′).

Proof. As id ≥ α′ ≥ α and ηα = η, we get η ≥ ηα′ ≥ ηα = η, that is ηα′ = η. If η ≥ α′,

then η ∈ HT(α
′) by Lemma 6.

Corollary 11. For every η, η′ ∈ HT(α), η(id∧ η′) = η and (id∧ η)(id ∧ η′) = id∧ η ∧ η′.

Proof. As id ∧ η′ is an opening ≥ α, η(id ∧ η′) = η by Lemma 11. Thus

(id ∧ η)(id ∧ η′) = id(id ∧ η′) ∧ η(id ∧ η′) = (id ∧ η′) ∧ η = id ∧ η ∧ η′.

Definition 3. Write AT(α) for the set of all T-openings of the form id ∧ η, where η ∈

HT(α).

Proposition 12. AT(α) ∪ {I} is inf-closed, and for any α1, . . . , αn ∈ AT (α) (n ≥ 2),

α1 · · ·αn = α1 ∧ . . . ∧ αn.

Moreover, if L satisfies the infinite supremum distributy condition

X ∧ (
∨

j∈J

Yj) =
∨

j∈J

(X ∧ Yj), (ISD)

then AT(α) ∪ {O} is sup-closed and AT(α) ∪ {O, I} is a complete sublattice of O.

Proof. For α1 = id ∧ η1 and α2 = id ∧ η2, where η1, η2 ∈ HT(α), Corollary 11 says that

α1α2 = (id ∧ η1)(id ∧ η2) = id ∧ η1 ∧ η2 = α1 ∧ α2.
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For α1, . . . , αn ∈ AT (α), where n > 2, the equality α1 · · ·αn = α1 ∧ . . . ∧ αn follows by

induction:

α1 · · ·αn = (α1 · · ·αn−1)αn = (α1 ∧ . . . ∧ αn−1)αn

= α1αn ∧ . . . ∧ αn−1αn = (α1 ∧ αn) ∧ . . . ∧ (αn−1 ∧ αn) = α1 ∧ . . . ∧ αn.

Given a non-empty family of elements ηj of HT(α) (j ∈ J 6= ∅), by Theorem 8 we have
∧

j∈J ηj ∈ HT(α). Hence
∧

j∈J (id ∧ ηj) = id ∧
∧

j∈J ηj ∈ AT(α). Thus AT(α) is closed

under non-empty infima, and so AT(α) ∪ {I} is inf-closed.

By Theorem 8 again,
∨

j∈J ηj ∈ HT(α); now if L satisfies the condition (ISD), then O

satisfies it also and we get
∨

j∈J (id ∧ ηj) = id ∧ (
∨

j∈J ηj) ∈ AT(α). Thus AT(α) is closed

under non-empty suprema, and so AT(α) ∪ {O} is sup-closed. Therefore AT(α) ∪ {O, I} is

both sup- and inf-closed.

This result is very interesting, because in general an infimum or composition of openings is

not an opening. Some examples will be given at the end of the next section.

Proposition 13. Given openings αj and ηj ∈ HT(αj) (j ∈ J), we have
∨

j∈J ηj ∈

HT(
∨

j∈J αj).

Proof. For J = ∅, this reduces to O ∈ HT(O). Assume thus that J 6= ∅. Clearly

η =
∨

j∈J ηj is increasing and T-invariant. Now α =
∨

j∈J αj is a T-opening, and for each

j ∈ J we have η ≥ ηj = ηjαj and id ≥ α ≥ αj ; hence η ≥ ηα ≥ ηjαj = ηj , that is ηα = η.

As ηj ≥ αj for each j ∈ J , we get η ≥ α.

4. Decomposition formulas

We will give formulas representing elements of HT(α). We recall that in a T-adjunction

(ε, δ), δ is a T-dilation, ε is a T-erosion, δ = δεδ, ε = εδε, and δε is a T-opening, called a

morphological T-opening.

Proposition 14. For any T-adjunction (ε, δ), the lattice HT(δε) is the set of all ψε, where

ψ is an increasing T-operator ≥ δ.

Proof. If η ∈ HT(δε), then η = ηδε and η ≥ δε. Setting ψ = ηδ, ψ is an increasing

T-operator, η = ηδε = ψε, and ψ = ηδ ≥ δεδ = δ. Conversely, if η = ψε for an increasing

T-operator ψ ≥ δ, then η = ψε ≥ δε and ηδε = ψεδε = ψε = η, that is η ∈ HT(δε).

Proposition 15. Given two non-empty index sets J,K, let (εj , δj) be a T-adjunction for

j ∈ J , let ψkj be an increasing T-operator for j ∈ J and k ∈ K, and assume that ψkj ≥ δj

for every j, k. Then the operator

η =
∧

k∈K

∨

j∈J

ψkjεj (1)

belongs to HT(
∨

j∈J δjεj).

Proof. By Proposition 14 we have ψkjεj ∈ HT(δjεj) for every j ∈ J, k ∈ K. Proposition 13

implies that ηk =
∨

j∈J ψkjεj ∈ HT(
∨

j∈J δjεj) for every k ∈ K. As HT(
∨

j∈J δjεj) is closed

under non-empty infima (by Theorem 8), η =
∧

k∈K ηk ∈ HT(
∨

j∈J δjεj).
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The invariants of the opening id ∧ η for η as in (1) are characterized in Theorem 4.6 and

Corollary 4.7 of [6].

In order to give a converse of Proposition 15, we use a decomposition of an increasing

T-operator θ as an infimum of T-dilations. This requires of course that θ(O) = O, but even

then such a decomposition is not always possible (see for example Subsection 4.2 of [3]).

Theorem 16. Suppose that in L every increasing T-operator fixing O is an infimum of

T-dilations. Let α =
∨

j∈J δjεj , where J 6= ∅ and each (εj , δj) is a T-adjunction. Let η

be a T-operator. Then η ∈ HT(α) if and only if there exists a non-empty index set K, a

family of increasing T-operators ψkj (j ∈ J, k ∈ K), such that ψkj ≥ δj for every j, k, and

η takes the form (1). Moreover, if η(O) = O, then we can choose the operators ψkj to be

T-dilations.

Proof. By Proposition 15 we have only to prove that every η ∈ HT(α) takes this form.

Define the operators γ and θ by γ(X) = η(O) for X ∈ L, θ(O) = O, and θ(X) = η(X) for

X 6= O. It is easy to check that θ is an increasing T-operator and that η = θ ∨ γ. By our

assumption we have the decomposition θ =
∧

k∈K δ′k, where δ
′
k is a dilation for each k ∈ K.

As θ(O) = O, θ 6= I, and so K 6= ∅. Let η′ =
∧

k∈K(δ′k ∨ γ); we will show that η′ = η.

First, given X 6= O, for each k ∈ K we have δ′k(X) ≥ θ(X) = η(X) ≥ η(O) = γ(X), and so

(δ′k ∨ γ)(X) = δ′k(X); then

η′(X) =
∧

k∈K

(δ′k ∨ γ)(X) =
∧

k∈K

δ′k(X) = θ(X) = η(X).

Next, for each k ∈ K we have δ′k(O) = O and so (δ′k ∨ γ)(O) = γ(O) = η(O); then

η′(O) =
∧

k∈K

(δ′k ∨ γ)(O) =
∧

k∈K

η(O) = η(O).

Thus η′(X) = η(X) for each X ∈ L, that is η′ = η. Now we have

η = ηα = η′α =
[

∧

k∈K

(δ′k ∨ γ)
]

(
∨

j∈J

δjεj) =
∧

k∈K

[

(δ′k ∨ γ)(
∨

j∈J

δjεj)
]

=
∧

k∈K

[

δ′k(
∨

j∈J

δjεj) ∨ γ(
∨

j∈J

δjεj)
]

=
∧

k∈K

[

(
∨

j∈J

δ′kδjεj) ∨ γ
]

=
∧

k∈K

∨

j∈J

(δ′kδjεj ∨ γ) =
∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj.

We used above the two facts that each δ′k commutes with the supremum and that γβ = γ

for every operator β. Finally δ′k∨γ ≥ δ′k ≥ θ ≥ α ≥ δjεj and so (δ′k∨γ)δj ≥ δjεjδj = δj. We

take thus ψkj = (δ′k ∨ γ)δj for j ∈ J, k ∈ K. If η(O) = O, then γ = O and so ψkj = δ′kδj , a

dilation.

Remark. (i) For T = {id}, every increasing operator fixing O is an infimum of dilations

(see [3], Theorem 2.4), and every opening is a supremum of morphological openings (see [6],

Proposition 2.9). In this case Theorem 16 characterizes H{id}(α) for any opening α.

(ii) If T 6= {id}, then we have not always such decompositions. However:
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— if L satisfies the so-called Basic Assumption (T is abelian and transitive on a sup-

generating family of L), then every T-opening is a supremum of morphological T-

openings (see [6], Theorem 2.11);

— if L satisfies the dual of that Basic Assumption (T is abelian and transitive on an inf-

generating family of L), then every increasing T-operator is an infimum of T-dilations

(see [3], Theorem 3.11 and Remark 3.2 (iv)).

Note that if L satisfies the Basic Assumption or its dual, I is the only increasing T-operator

which does not fix O. Thus in the case of Boolean or grey-level images on a Euclidean or

digital space, Theorem 16 characterizes HT(α) for any T-opening α, and the operators ψkj

will be dilations, except for η = I.

(iii) Taking θ, γ as defined in the above proof, if we set η0 = θα, then η0 ∈ HT(α), η0(O) =

O, η = η0 ∨ γ, and

η0 =
∧

k∈K

∨

j∈J

δ′kδjεj , while η =
∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj.

The real difficulty in the proof is in showing that γ ∨
∧

k∈K δ′k =
∧

k∈K(δ′k ∨ γ) and

γ ∨
∧

k∈K

∨

j∈J

δ′kδjεj =
∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj

without assuming (ISD) (if we assume it, this is trivial).

Example. The rank-max opening for Boolean or grey-level images on a digital space de-

scribed in [5] is one example in a larger class of openings. The basic idea, which is explained

in Subsection 4.2 of [6], is to take an opening which transforms an image X into the supre-

mum of all portions of it which contain ‘most’ of a translate of a finite structuring element

B. If C1, . . . , Cm are the smallest subsets of B which contain ‘most’ of B, then the resulting

T-opening takes the form

α = id ∧ δB(
m
∨

i=1

εCi), where B ⊇
m
⋃

j=1

Cj . (2)

If we take for sets Ci all subsets of B having size t (1 ≤ t ≤ |B|), then we get the rank-max

opening for the rank k = |B| − t+ 1. For t = |B|, this gives k = 1, m = 1 and C1 = B, and

then α reduces to αB. Thus the opening by B is a particular case of (2).

Clearly the T-opening (2) is of the form id ∧ η, where η has the form δ(
∨

j∈J εj) =
∨

j∈J δεj , and for each j ∈ J , (εj , δj) is a T-adjunction and δ ≥ δj . Thus it is a particular

form of (1), with ψkj = δ for each k ∈ K and j ∈ J , and so η ∈ HT(α) for α =
∨

j∈J δjεj .

While keeping the Cj constant (j ∈ J), we can modify δB (with the constraint B ⊇
⋃m

j=1
Cj , in other words δB ≥

∨m
i=1

δCj
), and we obtain thus different openings in AT(α),

where α =
∨m

j=1
δCj

εCj
. They satisfy the property of Proposition 12: given a non-empty

family of such openings, we can take their composition or equivalently their infimum, and

also their supremum, and we still get an opening in AT(α). In other words openings of the
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form (2), together withO, I, generate a complete sublatticeA∗
T
(α)∪{O, I} ofAT(α)∪{O, I},

which is also closed under composition; clearly element of A∗
T
(α) take the form

id ∧ ψ(
m
∨

i=1

εCi), where ψ(O) = O and ψ ≥
m
∨

i=1

δCi . (3)

Conversely every such ψ is an infimum of a non-empty family of dilations δB ≥
∨m

i=1
δCi ,

and so an operator of the form (3) can be written as

id ∧ (
∧

k∈K

δBk
)(

m
∨

i=1

εCi), where K 6= ∅ and Bk ⊇
m
⋃

j=1

Cj for k ∈ K. (4)

Thus (3) and (4) are equivalent characterizations of the openings in A∗
T
(α), and so such

openings are non-empty infima of openings of the form (2).
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