Logique et Programmation Logique

Contrôle Terminal

Durée : 2 heures

Responsable: Prof. Christian RONSE

Tous documents en papier autorisés mais non partagés

 $Calculettes\ inutiles$

Téléphones et appareils électroniques éteints et rangés dans un sac fermé

Justifiez soigneusement vos réponses

(1) Fonctions booléennes.

Soit $B = \{0, 1\}$. On définit l'ordre marginal $\leq \sup B^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in B\}$ par

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \iff \begin{cases} x_1 \leq y_1, \\ \ldots \\ x_n \leq y_n. \end{cases}$$

Une fonction booléenne à n variables $f: B^n \to B$ est *croissante* si pour $(x_1, \ldots, x_n) \le (y_1, \ldots, y_n)$ on a $f(x_1, \ldots, x_n) \le f(y_1, \ldots, y_n)$. On peut montrer qu'une fonction booléenne est croissante si et seulement si elle peut s'exprimer comme une somme de monômes conjonctifs où aucune variable n'est complémentée (par exemple $f(x_1, x_2, x_3, x_4) = x_1 + x_2x_3 + x_3x_4$).

- (i) Décrire toutes les fonctions booléennes croissantes à 1 ou 2 variables, et donner pour chacune son support.
- (ii) Étant donnée une fonction booléenne croissante à n variables, que peut-on dire de ses monômes maximaux (utilisés dans la méthode de Quine) ?

(2) Unification.

Pour chaque paire d'atomes ci-dessous, donner le plus grand unificateur s'ils s'unifient, sinon expliquer pourquoi ils ne s'unifient pas :

$$\begin{split} p\big(X,Z,Y\big) & \text{ et } & p\big(f(Y,a),h(X,a),g(Z,W)\big) \\ p\big(f(X,b),Y,Z\big) & \text{ et } & p\big(Y,f(Z,W),g(a)\big) \\ p\big(Y,f(h(a)),T\big) & \text{ et } & p\big(f(X),Y,g(X,a)\big) \\ p\big(g(T),f(Z),X\big) & \text{ et } & p\big(Z,X,f(h(b))\big) \end{split}$$

(NB. Les majuscules désignent des variables, les minuscules des fonctions ou des constantes.)

(3) Forme prénexe et élimination des quantificateurs.

Mettre la formule suivante sous forme prénexe, puis éliminer les quantificateurs par la méthode de Skolem :

$$\Big(\left[\forall \, X \, \exists \, Y \, \, p(X,Y) \right] \implies \left[\exists \, X \, \, q(X) \right] \Big) \implies \left[\exists \, Z \, \forall \, X \, \, r(Z,X) \right]$$

(4) Calcul propositionnel.

La Guerre des Écoles (d'après Vincent Le Ligeour): Un polytechnicien, un normalien et un centralien promeuvent leurs Écoles respectives.

Le polytechnicien dit : "Le normalien ment." Le normalien dit : "Le centralien ment."

Le centralien dit : "Le polytechnicien et le normalien mentent tous les deux."

Lesquels des trois disent la vérité, et lesquels mentent ?

Indication : définir 3 symboles propositionnels correspondant au mensonge de chacun, et traduire les 3 phrases ci-dessus en formules liant ces propositions. Ensuite, la méthode utilisée pour déterminer lesquelles de ces propositions sont valides ou non est laissée au choix.