

Circular code motifs in the ribosome: a missing link in the evolution of translation? Gopal Dila¹, Raymond Ripp¹, Claudine Mayer^{1,2,3}, Olivier Poch¹, Christian J. Michel^{1,*} and Julie D. Thompson^{1,*}

Figure S1. Distribution of the number and total nucleotide lengths of *X* motifs in the SSU (16/18S) and LSU (23/28S) rRNA multiple alignments conserved in the 3 domains of life, in bacteria and archaea only, and 'universal' *X* motifs conserved in all 3 domains. *X* Motifs are considered to be conserved if they are present in >90% of sequences.

Figure S2. Comparison of sequence conservation (90% identity), universal *X* codons and the universal *X* motifs (*uX* motifs) in the rRNA multiple alignments containing 130 species. The x-axis shows the position in each of the 3 multiple alignments corresponding to the 16/18S rRNA, the 23/28S rRNA and the 5S rRNA. Positions with *X* codons in >90% of the sequences are identified as universal *X* codons. Universal *X* motifs indicate consecutive runs of universal *X* codons of length >=6 nucleotides.

Figure S3. Comparison of the number of *uX* and *uR* random motifs and their nucleotide lengths in the SSU and LSU rRNA alignments. The number and total length of *uX* motifs are represented by a blue cross. The distribution of the *uR* random motifs obtained from 100 random codes *R* is indicated by boxplots representing the mean and ±0.99 confidence interval. A. The number of *uX* motifs in the SSU (=13) is significantly higher than the mean number of *uR* motifs (=10.2) according to a one-sided Student's t-test ($p \approx 10^{-21}$). B. The nucleotide length of the *uX* motifs in the SSU (=121) is also significantly higher than the mean nucleotide length of *uR* motifs (=100.5) according to a one-sided Student's t-test ($p \approx 10^{-14}$). C. Similarly, the number of *uX* motifs in the LSU (=19) is significantly higher than the mean number of *uR* motifs (=12.8) according to a one-sided Student's t-test ($p \approx 10^{-33}$). The nucleotide length of the *uX* motifs in the LSU (=175) is also significantly higher than the mean nucleotide length of *uR* motifs (=120.1) according to a one-sided Student's t-test ($p \approx 10^{-33}$). The nucleotide length of *uR* motifs in

	Total	No. of conserved	No. of <i>uX</i> motif	No. (and %) of <i>uX</i>	No. (and %) of
	sequence	positions and	positions and	motif positions	conserved
	length	percentage of	percentage of	that are not	positions that are
	(E. coli)	total length	total length	conserved	not <i>uX</i> motifs
16/18S	1542	490 (31.8%)	121 (7.8%)	34 (28.1%)	403 (82.2%)
23/285	2904	870 (30.0%)	175 (6.0%)	50 (28.6%)	745 (85.6%)
5S	120	20(16.7%)	0 (0%)	0 (0%)	20 (100%)

Table S1. Sequence conservation and *uX* motifs in the rRNA multiple alignments containing 130 species. In columns 2 and 3, the number of conserved positions and number of *uX* motif positions are shown as a percentage of the total sequence length. Column 4 shows the proportion of positions that are in *uX* motifs but are not conserved. Column 5 shows the proportion of positions that are conserved but are not in *uX* motifs.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	X universality	97.7	97.7	97.7	97.7	97.7	97.7	97.7	97.7	97.7						
а	Sequence conservation	97	100	100	100	95.6	100	100	100	98.5						
	X universality	100	99.3	99.3	99.3	99.3	99.3	99.3	99.3	99.3	99.3					
b	Sequence conservation	100	100	97	100	100	98.5	98.5	98.5	100	100					
	X universality	94.7	94.7	94.7	94.7	95.5	95.5	95.5	98.5	95.5	95.5	94	94			
С	Sequence conservation	100	100	100	100	68.7	56.1	98.5	84.4	95.6	100	100	57.1			
	X universality	98.5	98.5	98.5	98.5	98.5	98.5	98.5	98.5	98.5						
d	Sequence conservation	100	100	100	97	100	59.5	98.5	100	100						
	X universality	100	100	99.3	99.3	99.3	99.3	99.3	100	100						
е	Sequence conservation	72.2	100	100	100	94.1	100	100	98.5	63.9						
	X universality	97.7	98.5	98.5	98.5	99.3	99.3	99.3	99.3	99.3	93.2					
f	Sequence conservation	70.9	92.7	92.6	61.6	89.9	100	100	66.3	97	83.1					
	X universality	98.5	98.5	98.5	98.5	98.5	98.5									
g	Sequence conservation	100	100	100	61.7	97	100									
	X universality	97.7	97.7	97	97	97	97.7	97.7	97.7	97.7	97.7	91	91.7	93.2	93.2	
h	Sequence conservation	100	100	100	100	98.5	97	100	75.9	64.8	98.5	46.8	33.4	48.9	48.2	
	X universality	91	90.2	92.5	92.5	92.5	92.5	92.5	94	94	94	100	94.7	90.2	90.2	90.2
i	Sequence conservation	80.9	79.7	48.3	50.3	44.5	100	64.8	64.8	37.3	74.3	97	49.7	79.8	100	97
	X universality	94	94	94	94	94	94									
j	Sequence conservation	98.5	54.6	33.4	33.8	100	100									
	X universality	92.5	93.2	97.7	97.7	97.7	97.7	97.7	98.5	98.5						
k	Sequence conservation	92.7	45.3	100	57.8	72	100	87.3	67.7	55.6						
	X universality	97.7	97.7	97.7	97.7	97	97	97	96.2	95.5	95.5					
1	Sequence conservation	63.6	82.1	64.8	95.6	100	57	95.6	67.1	100	100					
	X universality	99.3	99.3	99.3	99.3	99.3	99.3	99.3	100	100						
т	Sequence conservation	58.1	55	100	100	98.5	97	94.1	65.6	100						

Table S2. Comparison of *X* motif universality (number of species having an *X* motif) and sequence conservation (percent sequence identity) for each position in the 13 universal *X* motifs (*uX* motifs) in the SSU rRNA alignments (prokaryotic 16S and eukaryotic 18S). Each row represents one *uX* motif and each column represents one position within the *uX* motif. There is no correlation between *X* motif universality and sequence conservation: Pearson correlation coefficient r = 0.37 ($p < 10^{-4}$), Spearman correlation coefficient $\rho = 0.25$ (p = 0.006) and Kendall coefficient $\tau = 0.19$ (p = 0.007) are weakly positively related. Furthermore, a two-tailed matched sample signed ranks Wilcoxon test shows that the 2 distributions are significantly different ($p < 10^{-3}$).

Fully conserved nucleotides in the SSU rRNA alignment are provided in a separate file: supp table S2b.pdf.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	X universality	97	97.7	97.7	97.7	97.7	97.7	,	0	,	10		12	15		15
	Sequence conservation	63.2	98.5	100	95.6	98.5	57									
В	X universality	99.3	99.3	99.3	100	99.3	99.3	100	98.5	98.5	98.5	98.5	98.5	98.5	98.5	98.5
	Sequence conservation	63.6	100	55.3	95.6	94.1	98.5	97	95.6	100	100	98.5	100	88.4	74.3	100
С	X universality	100	100	94	94	94	97	97.7	97.7	97.7	93.2					
	Sequence conservation	34	62.4	100	81.7	100	65.3	100	62	86	40.7					
D	X universality	94	94	94	94	94	94	94	94	97	97	97	97	96.2		
	Sequence conservation	95.5	60.2	100	100	100	88.4	100	100	100	98.5	100	100	54.4		
Ε	X universality	100	100	100	100	100	100	100	100	100	100					
	Sequence conservation	100	83.2	95.6	49.6	100	98.5	98.5	100	100	84.7					
F	X universality	91.7	91.7	93.2	93.2	93.2	93.2	93.2	93.2	93.2	94	94	91.7			
	Sequence	64.8	50.7	100	100	86	87.3	100	62.4	100	100	39.1	60.1			
G	X universality	90.2	92.5	93.2	93.2	93.2	93.2									
	Sequence conservation	89.8	49.7	100	100	98.5	51									
Η	X universality	94.7	94.7	94	94	93.2	94	94.7								
	Sequence conservation	100	98.5	94.1	69.2	77.4	62	37.3								
Ι	X universality	91	90.2	90.2	90.2	91	96.2	95.5	96.2	96.2						
	Sequence conservation	97	100	98.5	100	87.3	100	29.5	79.8	88.6						
J	X universality	97.7	98.5	98.5	98.5	97	97	97.7	97	97	96.2					
	Sequence conservation	97	88.6	94.1	31.2	75.1	95.5	100	100	92.7	40.3					
K	X universality	94.7	94.7	100	100	100	100	100								
	Sequence conservation	100	39.5	46.5	54.9	100	100	67.4								
L	X universality	97.7	92.5	92.5	94	94.7	94	94	94	94						
	Sequence conservation	94.1	95.6	100	97	83	100	100	94.1	98.5						
М	X universality	90.2	91	94	94	91	91	91	91	91	90.2					
	Sequence conservation	42.6	84.6	97	61.8	100	100	83.2	94.1	86	100					
Ν	X universality	94.7	94.7	96.2	96.2	96.2	96.2									
	Sequence conservation	89.8	39.2	71.5	100	39	100									
0	X universality	99.3	98.5	98.5	98.5	98.5	98.5	99.3	99.3	99.3						
	Sequence conservation	97	100	98.5	100	98.5	100	100	97	100						
Р	X universality	96.2	95.5	95.5	95.5	95.5	94.7	97	95.5							
	Sequence conservation	37.9	82.9	95.5	79.2	57.8	100	97	67.1							
Q	X universality	94	94	94	94	93.2	93.2									
	Sequence conservation	62.4	58.4	98.5	100	46.4	70									
R	X universality	97.7	97.7	97.7	97	97	97	97	97	94						
	Sequence conservation	83.3	92.7	95.5	49.1	100	100	95.6	94.1	66.5						
S	X universality	93.2	93.2	93.2	93.2	94	94	93.2	94	94	94	93.2				
	Sequence conservation	87	95.5	98.5	75.5	56.7	94.1	64.2	98.5	94.1	86	94.1				

Table S3. Comparison of X motif universality (number of species having an X motif) and sequence conservation (percent sequence identity) for each position in the 19 universal X

motifs (*uX* motifs) in the LSU rRNA alignments (prokaryotic 23S and eukaryotic 25/28S). Each row represents one *uX* motif and each column represents one position within the *uX* motif. There is no correlation between *X* motif universality and sequence conservation: Pearson correlation coefficient r = 0.04, Spearman correlation coefficient $\rho = 0.07$ and Kendall coefficient $\tau = 0.05$. Furthermore, a two-tailed matched sample signed ranks Wilcoxon test shows that the 2 distributions are significantly different ($p < 10^{-4}$).

Fully conserved nucleotides in the LSU rRNA alignment are provided in a separate file: supp table S2c.pdf.

Nucleotide	frequencies	(%)	А	С		G	Т
rRNA	A sequences		24.6	23.7	'	31.1	20.5
X cir	cular code		25.0	25.0)	25.0	25.0
Trinucleoti	de frequenci	es (%)					
AAA	1.9	CT.	A 1	.1		AAC	1.7
AAG	2.4	СТ	Г 1	.1		AAT	1.4
ACA	1.1	GC	A 1	.5		ACC	1.6
ACG	1.4	GC	G 2	.0		ATC	1.1
ACT	1.2	GC	Г 1	.5		ATT	1.0
AGA	1.6	GG	A 2	.3		CAG	1.5
AGC	1.9	GG	G 3	.3		СТС	1.2
AGG	2.4	GT	G 2	.1		CTG	1.7
AGT	1.6	TA	A 1	.7	(GAA	2.6
ATA	1.0	TA	G 1	.4		GAC	1.4
ATG	1.3	TA	Т 0	.7	(GAG	2.2
CAA	1.3	TC	A 1	.0		GAT	1.5
CAC	1.0	ТС	C 1	.4		GCC	2.0
CAT	0.9	ТС	G 1	.3		GGC	2.2
CCA	1.2	TC	Г 1	.0		GGT	2.2
CCC	1.9	TG	A 1	.9		GTA	1.6
CCG	2.3	TG	C 1	.3		GTC	1.4
ССТ	1.5	TG	G 2	.1		GTT	1.4
CGA	1.8	TG	Г 1	.2		ТАС	1.0
CGC	1.5	TT	A 1	.1	1	ТТС	1.0
CGG	2.3	TT	G 1	.4			
CGT	1.4	TT	Г 1	.0			

Table S4. Nucleotide and trinucleotide composition of sequences in the SSU and LSU rRNA alignments. Trinucleotides belonging to the *X* circular code are highlighted in red. The mean frequency of *X* trinucleotides (1.58) is not significantly greater than the mean frequency of non-*X* trinucleotides (1.55), according to a Mann-Whitney U test z = -0.51419 (p = 0.61).

		1	2	3	4	5	6	7	8	9	10	11	12	13				
	А	131(98)	0(0)	133(100)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)								
	С	0(0)	133(100)	0(0)	133(100)	130(98)	0(0)	133(100)	133(100)	132(99)						. ^ / ` /		l Y Y Y
а	G	0(0)	0(0)	0(0)	0(0)	0(0)	133(100)	0(0)	0(0)	0(0)							L J J 7	
	Т	2(2)	0(0)	0(0)	0(0)	3(2)	0(0)	0(0)	0(0)	1(1)							VYV	VVV
-	A	133(100)	133(100)	0(0)	0(0)	0(0)	1(1)	1(1)	132(99)	133(100)	0(0)							
	С	0(0)	0(0)	1(1)	0(0)	133(100)	0(0)	0(0)	1(1)	0(0)	133(100)				Λ		рот	
b	G	0(0)	0(0)	131(98)	0(0)	0(0)	132(99)	0(0)	oioi	0(0)	0(0)				#•			ΔΔι.
	Т	0(0)	0(0)	1(1)	133(100)	0(0)	ົດເຄັ	132(99)	0(0)	0(0)	0(0)							nnv.
-	Δ.	122(100)	0(0)	0(0)	0(0)	108(81)	8(6)	0(0)	1(1)	0(0)	0(0)	133(100)	0(0)			2 7 7		
	C	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	132(99)	122(92)	3(2)	0(0)	0(0)	25(19)					ТЛ
С	G	0(0)	133(100)	133(100)	0(0)	2(2)	95(71)	0(0)	2(2)	130(98)	0(0)	0(0)	97(73)		* 1			
	т	0(0)	0(0)	0(0)	133(100)	23(17)	30(23)	1(1)	8(6)	0(0)	133(100)	0(0)	11(8)					
-	1	0(0)	122(100)	122(100)	0(0)	23(17)	0(0)	06(72)	0(0)		0(0)	0(0)	11(0)		2 g g g g g			
	A C		135(100)	133(100)	0(0)	2(2)		90(72)	122(00)	0(0)	122(100)							
d	G		0(0)		0(0)		133(100)	37(28)	0(0)	133(100)	0(0)							
	т				122(100)	121(00)	0(0)	0(0)	1(1)	0(0)								
-	1	0(0)	122(100)	0(0)	133(100)	131(90)	0(0)	0(0)	1(1)	0(0)	0(0)					<u>, , , , , , , , , , , , , , , , , , , </u>		
	A	0(0)	133(100)	0(0)	133(100)	0(0)	133(100)	0(0)	0(0)	3(2)								
е	C	22(17)	0(0)	0(0)	0(0)	0(0)	0(0)	133(100)	132(99)	103(7)								
	G	0(0)	0(0)	133(100)	0(0)	4(3)	0(0)	0(0)	0(0)	27(20)								
_	1	111(83)	0(0)	0(0)	0(0)	129(97)	0(0)	0(0)	1(1)	0(0)						, Ç , \		
	A	22(17)	0(0)	3(2)	2(2)	0(0)	0(0)	133(100)	106(80)	0(0)	121(92)							.
f	C	1(1)	128(96)	2(2)	7(5)	6(5)	0(0)	0(0)	3(2)	1(1)	0(0)				a. 🦰			
J	G	110(83)	0(0)	128(96)	102(//)	0(0)	133(100)	0(0)	0(0)	0(0)	8(6)							
	Т	0(0)	5(4)	0(0)	22(17)	126(95)	0(0)	0(0)	23(17)	131(99)	3(2)							6 6 6
	A	133(100)	0(0)	0(0)	99(74)	0(0)	0(0)											
a	С	0(0)	0(0)	133(100)	34(26)	2(2)	133(100)											
9	G	0(0)	133(100)	0(0)	0(0)	131(98)	0(0)											
	Т	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)			-								
	А	0(0)	0(0)	0(0)	0(0)	0(0)	131(98)	133(100)	0(0)	103(77)	0(0)							
h	С	0(0)	133(100)	0(0)	0(0)	0(0)	0(0)	0(0)	15(11)	0(0)	132(99)							
"	G	133(100)	0(0)	133(100)	133(100)	1(1)	2(2)	0(0)	3(2)	0(0)	1(1)							
	Т	0(0.0)	0(0)	0(0)	0(0)	132(99)	0(0)	0(0)	115(86)	30(23)	0(0)				J			
	А		13(10)	14(11)	69(52)	0(0)	42(32)	133(100)	0(0)	30(23)	30(23)	0(0)	131(98)	64(48)				
	С		1(1)	0(0)	0(0)	74(56)	9(7)	0(0)	103(77)	0(0)	0(0)	113(85)	0(0)	0(0)		Λ		\frown
I	G		119(89)	118(89)	62(47)	0(0)	78(59)	0(0)	0(0)	103(77)	36(27)	0(0)	0(0)	69(52)			(;(j_)	
	Т		0(0)	0(0)	2(2)	59(44)	4(3)	0(0)	30(23)	0(0)	67(50)	20(15)	2(2)	0(0)		ŢŹŊ	╇Ă╬	Y LA
	А		132(99)	0(0)	0(0)	34(26)	0(0)	0(0)										
,	С		1(1)	40(30)	39(29)	47(35)	0(0)	0(0)									Λ	
J	G		0(0)	90(68)	52(39)	0(0)	133(100)	133(100)									AG	
	Т		0(0)	3(2)	42(32)	52(39)	0(0)	0(0)									N¢	₹ <mark>₩</mark> ₩.
	Α	0(0)	77(59)	0(0)	38(29)	12(9)	0(0)	0(0)	1(1)	40(30)								
,	С	5(4)	2(2)	0(0)	1(1)	9(7)	0(0)	0(0)	18(14)	2(2)								
К	G	0(0)	6(5)	133(100)	0(0)	0(0)	133(100)	124(93)	6(5)	91(68)								ITG
	Т	128(96)	46(35)	0(0)	94(71)	112(84)	0(0)	9(7)	108(81)	0(0)								¥4A
	А	0(0)	0(0)	0(0)	130(98)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)							
,	С	26(20)	12(9)	103(78)	0(0)	0(0)	92(69)	3(2)	106(80)	0(0)	0(0)							
l	G	103(78)	1(1)	0(0)	3(2)	133(100)	0(0)	0(0)	26(20)	133(100)	0(0)							
	Т	3(2)	120(90)	30(23)	0(0)	0(0)	41(31)	130(98)	1(1)	0(0)	133(100)				, K	₽ ₩	VTL	XV I .
-	А	25(19)	1(1)	133(100)	133(100)	0(0)	1(1)	129(97)	29(22)	0(0)								
	С	0(0)	90(68)	0(0)	0(0)	132(99)	1(1)	0(Ò)	0(0)	133(100)						Λ		
n	¹ G	98(74)	1(1)	0(0)	0(0)	0(0)	131(98)	4(3)	104(78)	0(0)								4(1 ,
	Т	10(8)	41(31)	0(0)	0(0)	1(1)	0(0)	0(0)	0(0)	0(0)						, <mark>≽`Y</mark> ∩		UXV
																		E

Table S5. Nucleotide composition of the 13 universal *X* motifs (*uX* motifs: number of species having an *X* motif) in the SSU rRNA alignments (prokaryotic 16S and eukaryotic 18S). Each row represents one *uX* motif and each column represents one position within the *uX* motif. Each cell contains the number (percentage) of species with a given nucleotide at each position in the *uX* motifs. The final column show the WebLogos for each of the *uX* motifs, constructed on the web server: https://weblogo.berkeley.edu/logo.cgi.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	A 0(0)	0(0)	0(0)	130(98)	0(0)	3(2)										
Α	C = 0(0)	132(99)	0(0)	0(0)	132(99)	36(27)										
	G 32(24)	1(1)	133(100)	3(2)	0(0)	94(71)										
	1 101(70) A 102(77)	0(0)	6(5)	0(0)	2(2)	0(0)	121(00)	0(0)	0(0)	0(0)	0(0)	0(0)	2(2)	0(0)	0(0)	
	A = 103(77)	133(100)	93(70)	3(2)	3(2) 129(97)	0(0)	2(2)	3(2)	0(0)	0(0)	132(99)	0(0)	0(0)	113(85)	0(0)	
В	G 0(0)	0(0)	0(0)	0(0)	0(0)	132(99)	0(0)	0(0)	133(100)	0(0)	0(0)	133(100	125(94)	0(0)	0(0)	
	T 4(3)	0(0)	34(26)	130(98)	1(1)	1(1)	0(0)	130(98)	0(0)	133(100)	1(1)	0(0)	5(4)	20(15) 1	33(100)	
	A 27(20)	0(0)	133(100)	7(5)	0(0)	28(21)	0(0)	6(5)	0(0)	4(3)						
C	C 65(49)	100(75)	0(0)	4(3)	133(100)	104(78)	0(0)	1(1)	10(8)	33(25)						
U	G 33(25)	0(0)	0(0)	2(2)	0(0)	0(0)	0(0)	102(77)	123(92)	76(57)						
_	T 8(6)	33(25)	0(0)	120(90)	0(0)	1(1)	133(100)	24(18)	0(0)	20(15)	0(0)	0(0)	0(0)			
	A $1(1)$	0(0)	0(0)	133(100)	0(0)	5(4)	0(0)	0(0)	0(0)	1(1)	0(0)	0(0)	0(0)			
D	G 130(98)	0(0)	133(100)	0(0)	133(100)	0(0)	0(0)	133(100)	133(100)	132(99)	0(0)	0(0)	0(0)			∴ − − − − − − − − − − − − − − − − − − −
	T 0(0)	97(73)	0(0)	0(0)	0(0)	3(2)	133(100)	0(0)	0(0)	0(0)	133(100)	133(100	87(65)			
_	A 133(100)) 10(8)	130(98)	67(50)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	. ,					
F	C 0(0)	2(2)	0(0)	66(50)	133(100)	0(0)	1(1)	133(100)	0(0)	11(8)						
E	G 0(0)	121(91)	0(0)	0(0)	0(0)	132(99)	0(0)	0(0)	133(100)	0(0)						
_	T 0(0)	0(0)	3(2)	0(0)	0(0)	1(1)	132(99)	0(0)	0(0)	122(92)						
	A	30(23)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	33(25)	0(0)	0(0)	32(24)	100(75)			
F	G	103(77)	3(2)	0(0)	133(100)	0(0)	9(7)	0(0)	100(75)	0(0)	0(0)	10(8)	8(6)			
	Т	0(0)	48(36)	133(100)	0(0)	123(92)	124(93)	0(0)	0(0)	0(0)	0(0)	16(12)	25(19)			
	A 1(1)	0(0)	0(0)	133(100)	132(99)	90(68)	()	- (-)	- (-)		- (-)		-(-)			
C	C 2(2)	64(48)	0(0)	0(0)	1(1)	28(21)										
G	G 126(95)	0(0)	133(100)	0(0)	0(0)	14(11)										
_	T 4(3)	69(52)	0(0)	0(0)	0(0)	1(1)										
	A 133(100)) 132(99)	129 (97)	0(0)	0(0)	24(18)	8(6)									
Η		1(1)	2(2)	108(81)	116(87)	1(1) 102(77)	15(11) 42(32)									
	T 0(0)	0(0)	1(1)	25(19)	16(12)	6(5)	$\frac{42}{52}$									
-	A 0(0)	0(0)	1(1)	133(100)	9(7)	0(0)	46(35)	0(0)	0(0)							
	C 2(2)	0(0)	0(0)	0(0)	0(0)	0(0)	43(33)	118(89)	125(94)							
1	G 0(0)	133(100)	132(99)	0(0)	124(93)	133(100)	7(5)	0(0)	0(0)							
	T 131(98)	0(0)	0(0)	0(0)	0(0)	0(0)	36(27)	15(11)	8(6)							
	A 131(98)	8(6)	4(3)	27(20)	0(0)	2(2)	133(100)	133(100)	5(4)	1(1)						
J	C 0(0)	U(U)	0(0)	8(6) 52(20)	18(14)	0(0)	0(0)	0(0)	0(0)	73(55)						
-	α 2(2) Τ ((())	0(0)	0(0)	32(39) 46(35)	114(86)	120(28)	0(0)	0(0)	0(0)	39(30) 19(14)						
_	A 5(4)	1(1)	133(100)	133(100)	0(0)	3(2)	130(98)	2(2)	50(38)	17(17)						
	C 0(0)	24(18)	0(0)	0(0)	106(80)	1(1)	1(1)	25(19)	18(14)							
K	G 70(53)	13(10)	0(0)	0(0)	0(Ò)	129(97)	0(0)	64(48)	33(25)							GTAAC 14
_	T 58(44)	95(71)	0(0)	0(0)	27(20)	0(0)	2(2)	42(32)	32(24)							
	A 129(97)	0(0)	0(0)	0(0)	5(4)	0(0)	0(0)	4(3)	1(1)							
L	C = 4(3)	0(0)	133(100)	0(0)	6(5)	0(0)	0(0)	0(0)	132(99)							
		720(90) 720(90)		∠(∠) 131(0Ջ)	1(1)	0(0)	133(100)	129(97)								
	A 0(0)	39(29)	1(1)	0(0)	102(77)	133(100)	133(100)	0(0)	4(3)	0(0)	0(0)	1				
	C	11(8)	10(8)	2(2)	6(5)	0(0)	0(0)	121(91)	0(0)	10(8)	133(100)					
M	G	77(58)	122(92)	0(0)	23(17)	0(0)	0(0)	10(8)	129(97)	123(92)	0(0)					
	Т	6(5)	0(0)	131(98)	2(2)	0(0)	0(0)	2(2)	0(0)	0(0)	0(0)					

N	A C G	126(95) 5(4) 0(0)	0(0) 22(17) 69(52)	3(2) 19(14) 111(83)	0(0) 0(0) 0(0)	0(0) 28(21) 34(26)	133(100) 0(0) 0(0)						
0	A 131(98) C 0(0) G 1(1) T 1(1)	2(2) 0(0) 0(0) 133(100) 0(0)	$ \begin{array}{r} 42(32) \\ 0(0) \\ 1(1) \\ 0(0) \\ 132(99) \end{array} $	0(0) 133(100) 0(0) 0(0) 0(0)	$ \begin{array}{r} 133(100) \\ 0(0) \\ 132(99) \\ 0(0) \\ 1(1) \end{array} $	0(0) 0(0) 133(100) 0(0)	$ \begin{array}{c} 0(0) \\ 133(100) \\ 0(0) \\ 0(0) \\ 0(0) \end{array} $	2(2) 0(0) 131(98) 0(0)	133(100) 0(0) 0(0) 0(0)				AGTACGAGA
Р	A C G T	4(3) 71(53) 24(18) 34(26)	4(3) 5(4) 121(91) 3(2)	130(98) 2(2) 0(0) 1(1)	118(89) 6(5) 0(0) 9(7)	94(71) 0(0) 38(29) 0(0)	133(100) 0(0) 0(0) 0(0)	0(0) 2(2) 0(0) 131(98)	10(8) 1(1) 108(82) 12(9)				GAAAATG
Q	A 100(75) C 33(25) G 0(0) T 0(0)	1(1) 4(3) 97(73) 31(23)	0(0) 1(1) 132(99) 0(0)	0(0) 0(0) 0(0) 133(100)	7(5) 0(0) 51(38) 75(56)	17(13) 0(0) 110(83) 6(5)							AGCTIG
R	A C G T	0(0) 121(92) 0(0) 11(8)	0(0) 0(0) 128(97) 4(3)	130(98) 0(0) 0(0) 2(2)	25(19) 13(10) 6(5) 89(67)	0(0) 0(0) 133(100) 0(0)	133(100) 0(0) 0(0) 0(0)	130(98) 3(2) 0(0) 0(0)	4(3) 0(0) 129(97) 0(0)	28(21) 0(0) 105(79) 0(0)			CGA_GAAGG
S	A C G T	3(2) 5(4) 124(93) 1(1)	2(2) 0(0) 130(98) 1(1)	1(1) 0(0) 0(0) 132(99)	3(2) 12(9) 3(2) 115(86)	98(74) 11(8) 18(14) 6(5)	129(97) 2(2) 0(0) 2(2)	5(4) 5(4) 18(14) 105(79)	132(99) 1(1) 0(0) 0(0)	3(2) 0(0.0) 1(1) 129(97)	0(0) 10(8) 0(0) 123(92)	1(1) 129(97) 0(0) 3(2)	GGTT_ATTC

Table S6. Nucleotide composition of the 19 universal *X* motifs (*uX* motifs: number of species having an *X* motif) in the LSU rRNA alignments (prokaryotic 23S and eukaryotic 25/28S). Each row represents one *uX* motif and each column represents one position within the *uX* motif. Each cell contains the number (percentage) of species with a given nucleotide at each position in the *uX* motifs. The final column show the WebLogos for each of the *uX* motifs, constructed on the web server: <u>https://weblogo.berkeley.edu/logo.cgi</u>.

	а	b	С	d	е	f	g	h	i	j	k	1	m
AAC	0(0)	1(0)	8(2)	0(0)	0(0)	1(0)	0(0)	15(3)	46(9)	32(11)	0(0)	0(0)	155(40)
AAT	0(0)	0(0)	0(0)	0(0)	0(0)	3(1)	0(0)	113(23)	24(5)	2(1)	0(0)	0(0)	1(0)
ACC	130(50)	0(0)	7(2)	0(0)	131(34)	0(0)	0(0)	35(7)	0(0)	0(0)	0(0)	0(0)	1(0)
ATC	0(0)	0(0)	6(1)	0(0)	1(0)	0(0)	0(0)	0(0)	3(1)	0(0)	0(0)	1(0)	0(0)
ATT	0(0)	0(0)	1(0)	131(49)	2(1)	3(1)	0(0)	30(6)	11(2)	0(0)	1(0)	0(0)	0(0)
CAG	0(0)	0(0)	0(0)	0(0)	22(6)	1(0)	194(74)	38(8)	50(10)	0(0)	0(0)	101(21)	4(1)
СТС	2(1)	1(0)	0(0)	0(0)	1(0)	0(0)	0(0)	0(0)	0(0)	0(0)	1(0)	90(18)	0(0)
CTG	0(0)	0(0)	2(0)	0(0)	55(14)	5(1)	1(0)	0(0)	1(0)	31(11)	5(1)	0(0)	0(0)
GAA	0(0)	83(24)	0(0)	8(3)	0(0)	105(28)	0(0)	9(2)	0(0)	114(40)	0(0)	0(0)	26(7)
GAC	0(0)	1(0)	0(0)	95(35)	0(0)	4(1)	0(0)	1(0)	84(16)	1(0)	8(2)	0(0)	3(1)
GAG	0(0)	1(0)	1(0)	0(0)	4(1)	0(0)	0(0)	0(0)	16(3)	34(12)	18(5)	0(0)	131(34)
GAT	0(0)	0(0)	0(0)	0(0)	149(38)	22(6)	0(0)	2(0)	65(13)	9(3)	30(8)	0(0)	23(6)
GCC	130(50)	0(0)	88(20)	0(0)	4(1)	3(1)	68(26)	0(0)	0(0)	8(3)	0(0)	25(5)	0(0)
GGC	0(0)	0(0)	2(0)	35(13)	0(0)	4(1)	0(0)	0(0)	45(9)	8(3)	17(5)	1(0)	29(7)
GGT	0(0)	0(0)	72(17)	1(0)	0(0)	97(26)	0(0)	129(26)	36(7)	2(1)	107(30)	26(5)	5(1)
GTA	0(0)	131(38)	217(50)	0(0)	0(0)	0(0)	0(0)	55(11)	21(4)	0(0)	56(16)	25(5)	3(1)
GTC	0(0)	130(37)	0(0)	0(0)	22(6)	0(0)	0(0)	0(0)	114(22)	29(10)	7(2)	182(37)	2(1)
GTT	0(0)	0(0)	0(0)	0(0)	0(0)	20(5)	0(0)	0(0)	0(0)	12(4)	92(26)	25(5)	7(2)
TAC	0(0)	0(0)	2(0)	0(0)	0(0)	109(29)	0(0)	41(8)	3(1)	0(0)	0(0)	0(0)	0(0)
TTC	0(0)	1(0)	24(6)	0(0)	0(0)	3(1)	0(0)	30(6)	0(0)	0(0)	17(5)	12(2)	0(0)

Table S7. Trinucleotide composition of the 13 universal *X* motifs (*uX* motifs) in the SSU rRNA alignments (prokaryotic 16S and eukaryotic 18S). Each row represents an *X* trinucleotide and each column represents a *uX* motif. Each cell contains the number (percentage) of trinucleotides observed in each *uX* motif.

	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S
AAC	0(0)	0(0)	5(2)	0(0)	64(21)	0(0)	6(2)	14(4)	0(0)	0(0)	107(19)	0(0)	121(25)	16(5)	0(0)	1(0)	0(0)	2(0)	4(1)
AAT	0(0)	0(0)	0(0)	0(0)	0(0)	8(2)	0(0)	7(2)	0(0)	2(0)	29(5)	0(0)	2(0)	47(15)	0(0)	92(25)	1(0)	0(0)	90(20)
ACC	6(2)	71(10)	8(3)	0(0)	66(21)	33(7)	28(10)	99(30)	35(9)	1(0)	2(0)	0(0)	3(1)	9(3)	0(0)	3(1)	1(0)	3(1)	5(1)
ATC	101(34)	6(1)	116(40)	2(0)	0(0)	0(0)	2(1)	14(4)	2(1)	1(0)	20(4)	3(1)	0(0)	7(2)	0(0)	1(0)	0(0)	11(3)	10(2)
ATT	3(1)	0(0)	24(8)	0(0)	0(0)	54(11)	53(19)	12(4)	0(0)	2(0)	52(9)	1(0)	0(0)	0(0)	0(0)	9(2)	0(0)	0(0)	109(24)
CAG	0(0)	3(0)	0(0)	43(9)	43(14)	0(0)	1(0)	12(4)	0(0)	101(22)	2(0)	14(4)	2(0)	0(0)	19(7)	1(0)	0(0)	0(0)	61(13)
СТС	0(0)	90(13)	8(3)	0(0)	0(0)	1(0)	0(0)	1(0)	8(2)	0(0)	2(0)	79(22)	4(1)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
CTG	2(1)	0(0)	100(35)	127(27)	0(0)	73(15)	6(2)	8(2)	40(10)	0(0)	11(2)	123(34)	0(0)	19(6)	0(0)	1(0)	0(0)	0(0)	13(3)
GAA	0(0)	0(0)	4(1)	0(0)	0(0)	0(0)	120(42)	125(37)	51(13)	131(29)	15(3)	0(0)	20(4)	64(21)	2(1)	113(30)	12(3)	174(42)	3(1)
GAC	128(43)	8(1)	0(0)	0(0)	0(0)	0(0)	0(0)	1(0)	44(11)	1(0)	24(4)	0(0)	0(0)	0(0)	0(0)	10(3)	30(9)	19(5)	1(0)
GAG	4(1)	1(0)	3(1)	125(27)	0(0)	16(3)	0(0)	1(0)	116(29)	1(0)	59(11)	0(0)	0(0)	0(0)	130(45)	0(0)	53(15)	7(2)	4(1)
GAT	2(1)	127(18)	1(0)	1(0)	0(0)	8(2)	0(0)	0(0)	2(1)	25(6)	53(9)	3(1)	0(0)	3(1)	0(0)	49(13)	30(9)	84(20)	14(3)
GCC	0(0)	0(0)	9(3)	0(0)	1(0)	91(19)	3(1)	2(1)	41(10)	30(7)	0(0)	0(0)	6(1)	0(0)	0(0)	34(9)	1(0)	40(10)	6(1)
GGC	27(9)	171(24)	4(1)	0(0)	0(0)	0(0)	18(6)	2(1)	10(3)	17(4)	73(13)	0(0)	189(39)	0(0)	0(0)	3(1)	92(26)	51(12)	1(0)
GGT	2(1)	23(3)	5(2)	124(27)	0(0)	5(1)	34(12)	2(1)	0(0)	74(16)	10(2)	0(0)	23(5)	80(26)	0(0)	6(2)	54(15)	2(0)	17(4)
GTA	1(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	11(3)	9(2)	4(1)	66(12)	4(1)	101(21)	1(0)	6(2)	47(13)	8(2)	0(0)	4(1)
GTC	13(4)	137(19)	0(0)	0(0)	131(42)	0(0)	0(0)	2(1)	33(8)	13(3)	12(2)	0(0)	6(1)	27(9)	0(0)	2(1)	0(0)	11(3)	11(2)
GTT	11(4)	2(0)	0(0)	43(9)	0(0)	69(14)	13(5)	21(6)	3(1)	47(10)	1(0)	124(34)	2(0)	22(7)	0(0)	0(0)	70(20)	3(1)	102(22)
TAC	0(0)	32(5)	0(0)	0(0)	3(1)	0(0)	1(0)	1(0)	0(0)	0(0)	0(0)	0(0)	0(0)	10(3)	132(46)	1(0)	0(0)	0(0)	2(0)
TTC	0(0)	37(5)	0(0)	0(0)	1(0)	123(26)	0(0)	0(0)	1(0)	0(0)	20(4)	11(3)	0(0)	0(0)	0(0)	0(0)	0(0)	3(1)	2(0)

Table S8. Trinucleotide composition of the 19 universal *X* motifs (*uX* motifs) in the LSU rRNA alignments (prokaryotic 23S and eukaryotic 25/28S). Each row represents an *X* trinucleotide and each column represents a *uX* motif. Each cell contains the number (percentage) of trinucleotides observed in each *uX* motif.

	Mainly globular	Globular domain with a long unstructured extension	Hairpin extension	Helical hairpin extension	and
SSU	S2, S3 , S4, S14 , S15	S7 , S9 , S11 , S12 , S13, S19	S5 , S8, S10	S17	
LSU	L1, L6 , L7, L11, L12, L23 , L29, L30	L2, L15, L16 , L18, L24	L3, L4, L5, L13, L14, L22		

Table S9. Universal ribosomal proteins, classified according to their known 3D structure as defined in Smith et al. 2008. Extensions refer to protein segments that extend away from the more compact or globular part of the protein for a significant distance. Proteins in contact with a uX motif are shown in bold.

Bacteria	Archaea	Eukaryota
Acinetobacter sp.	Aeropyrum pernix	Adineta vaga
Agrobacterium tumefaciens	Archaeoglobus fulgidus	Aedes albopictus
Anabaena variabilis	Caldivirga maquilingensis	Anolis carolinensis
Azoarcus sp.	Haloarcula marismortui	Arabidopsis thaliana
Bacillus anthracis	Halobacterium sp.	Caenorhabditis briggsae
Bacteroides thetaiotaomicron	Haloferax volcanii	Caenorhabditis elegans
Bartonella henselae	Haloquadratum walsbyi	Cryptosporidium hominis
Bifidobacterium longum	Halorubrum lacusprofundi	Cyanidioschyzon merolae
Blochmannia floridanus	Hyperthermus butylicus	Danio rerio
Bradyrhizobium japonicum	Ignicoccus hospitalis	Dictyostelium discoideum
Buchnera aphidicola	Metallosphaera sedula	Drosophila melanogaster
Burkholderia sp.	Methanocaldococcus jannaschii	Eremothecium gossypii
Caulobacter crescentus	Methanococcoides burtonii	Gallus gallus
Chlamydophila caviae	Methanococcus aeolicus	Guillardia theta
Chlorobium tepidum	Methanocorpusculum	Homo sapiens
	labreanum	
Coxiella burnetii	Methanoculleus marisnigri	Latimeria chalumnae
Crocosphaera watsonii	Methanopyrus kandleri	Leishmania major
Cytophaga hutchinsonii	Methanoregula boonei	Monodelphis domestica
Dechloromonas aromatica	Methanosaeta thermophila	Mus musculus
Dehalococcoides ethenogenes	Methanosarcina acetivorans	Oryza sativa
Deinococcus radiodurans	Methanosarcina barkeri	Pan troglodytes
Escherichia coli	Methanosarcina mazei	Plasmodium falciparum
Fusobacterium nucleatum	Methanosphaera stadtmanae	Rattus norvegicus
Geobacillus kaustophilus	Methanospirillum hungatei	Saccharomyces cerevisiae
Geobacter sulfurreducens	Methanothermobacter	Schizosaccharomyces pombe
	thermautotrophicus	
Gloeobacter violaceus	Nanoarchaeum equitans	Tetrahymena thermophila
Gluconobacter oxydans	Natronomonas pharaonis	Thalassiosira pseudonana
Haemophilus influenzae	Picrophilus torridus	Trypanosoma brucei
Helicobacter hepaticus	Pyrobaculum calidifontis	Yarrowia lipolytica
Legionella pneumophila	Pyrococcus furiosus	Xenopus laevis
Leifsonia xyli	Staphylothermus marinus	
Listeria monocytogenes	Sulfolobus acidocaldarius	
Magnetococcus sp.	Sulfolobus tokodaii	
Magnetospirillum	Thermococcus kodakarensis	
magnetotacticum		

Mesoplasma florum	Thermofilum pendens	
Mycobacterium leprae	Thermoplasma volcanium	
Neisseria gonorrhoeae		
Nitrosomonas europaea		
Novosphingobium		
aromaticivorans		
Oceanobacillus iheyensis		
Photorhabdus luminescens		
Polaromonas sp.		
Porphyromonas gingivalis		
Propionibacterium acnes		
Pseudomonas aeruginosa		
Ralstonia eutropha		
Rhodobacter sphaeroides		
Rhodopirellula baltica		
Shewanella oneidensis		
Sinorhizobium meliloti		
Staphylococcus aureus		
Streptococcus pneumoniae		
Streptomyces coelicolor		
Symbiobacterium thermophilum		
Synechococcus sp.		
Synechocystis sp.		
Thermoanaerobacter		
tengcongensis		
Thermosynechococcus elongatus		
Thermotoga maritima		
Thermus thermophilus		
Treponema pallidum		
Tropheryma whipplei		
Wolbachia_endosymbiont		
Xanthomonas_axonopodis		
Yersinia_pestis		
Zymomonas_mobilis		

Table S10. List of the 133 organisms included in the multiple sequence alignments of LSU rRNAs (23S/28S and 5S) and SSU rRNAs (16S/18S).