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Dipartimento di Matematica “U.Dini”, viale Morgagni 67/A, 50134 Firenze, Italy
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Abstract

The comma-free codes and circular codes are two important classes of codes in code theory and in genetics. Fifty years ago
before the discovery of the genetic code, a trinucleotide (triletter) comma-free code was proposed for associating the codons
of genes with the amino acids of proteins. More recently, in the last ten years, trinucleotide circular codes have been identified
statistically in different genomes. Here, we identify a relation between these two classes of trinucleotide codes by constructing a
hierarchy of comma-free and circular codes.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The genetic code associates trinucleotides (triletters) over the 4-letter alphabet {A, C, G, T } with amino acids
(letters) over a 20-letter alphabet. There are 61 trinucleotides among 43

= 64 coding 20 amino acids because the three
stop trinucleotides {TAA, TAG, TGA} do not code. There are three start trinucleotides {ATG, GTG, TTG} where ATG is
the standard one that codes the methionine amino acid. These start and stop trinucleotides close a series of nucleotides
(letters) in a genome which are translated from three in three nucleotides by the genetic code. This particular series of
trinucleotides in a reading frame (also called codons), defines a gene which codes a series of amino acids constituting
a protein.

Fifty years ago (in 1957), before the discovery of the genetic code, a class of trinucleotide codes, called comma-
free codes (or codes without commas) was proposed by Crick et al. [5] for explaining how the reading of a series
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of trinucleotides could code amino acids. The two questions of interest were: why are there more trinucleotides than
amino acids and, how does one choose the reading frame?

Crick et al. [5] proposed that only 20 trinucleotides among 64 code the 20 amino acids. Such a bijective code
implies that the coding trinucleotides are found only in one frame. The determination of a set of 20 trinucleotides
forming a comma-free code has several constraints:

(i) A trinucleotide with identical nucleotides must be excluded from such a code. Indeed, the concatenation of AAA
with itself (for instance) does not allow the (original) reading frame to be retrieved as there are three possible
decompositions: . . . AAA, AAA, AAA, . . . , . . . A, AAA, AAA, AA . . . and . . . AA, AAA, AAA, A . . . , the commas
showing the adopted decomposition.

(ii) Two trinucleotides related to circular permutation, for example AAC and ACA, must also be excluded from such a
code. Indeed, the concatenation of AAC with itself (for instance) does not allow the reading frame to be retrieved
as there are two possible decompositions: . . . AAC, AAC, AAC, . . . and . . . A, ACA, ACA, AC . . . .

Therefore, by excluding the four trinucleotides with identical nucleotides AAA, CCC, GGG and TTT and by gathering
the 60 remaining trinucleotides in 20 classes of three trinucleotides such that, in each class, three trinucleotides are
deduced from each other by circular permutations, e.g., AAC, ACA and CAA, we see that a comma-free code has only
one trinucleotide per class and therefore contains at most 20 trinucleotides. This trinucleotide number is identical to
the amino acid number, thus leading to a code assigning one trinucleotide per amino acid without ambiguity.

Some basic results on trinucleotide comma-free codes were obtained by Golomb et al. [9,10]. However, no
trinucleotide comma-free codes have been identified in genes statistically. Furthermore, in the late fifties, the discovery
that the trinucleotide TTT , an excluded trinucleotide in a comma-free code, codes phenylalanine [13], led to the
abandonment of the concept of a comma-free code over the alphabet {A, C, G, T }. For several biological reasons,
in particular the interaction between mRNA and tRNA, this concept was again taken up over the purine/pyrimidine
alphabet {R, Y } (R = {A, G}, Y = {C, T }) with two trinucleotide comma-free codes for primitive genes: RRY [4]
and RNY (N = {R, Y }) [6].

Back in 1996, a statistical study of trinucleotide occurrences per frame has identified a set X (EUK PRO) of 20
trinucleotides in the gene populations of both eukaryotes EUK and prokaryotes PRO [1]. This set is a trinucleotide
circular code with several strong biomathematical properties. A circular code is a set of words over an alphabet
such that any word written on a circle has at most one decomposition into words of the circular code [11]. The
construction frame of a word generated by any concatenation of words of a circular code can be retrieved after the
reading, anywhere in the generated word, of a certain number of nucleotides depending on the code. This series of
nucleotides is called the window of the circular code. The minimal window length is the size of the longest ambiguous
word that can be read in at least two frames, added with one letter. Similar to the existence of variant genetic codes
(compared to the universal one), several trinucleotide circular codes have been found in genes: one code X (MIT) in
mitochondria [2], 15 codes X (Garchaea) in archaeal genomes [7] and 72 codes X (Gbacteria) in 175 complete bacterial
genomes (with several bacterial genomes having the same codes) [8].

A circular code has weaker conditions compared to a comma-free code. In particular, some trinucleotides of a
circular code can be found in the non-reading frame, i.e., in the two shifted frames (the reading frame shifted by
one and two nucleotides in the 5′–3′ direction), while the 20 trinucleotides of a comma-free code are found only
in the reading frame. On the other hand, the lengths of the minimal windows of a circular code and a comma-free
code are less than or equal to 13 and four nucleotides, respectively. A comma-free code in genes is too constrained
from an evolutionary point of view compared to a circular code. Perhaps, this is the reason why it is not observed in
current genes statistically. From a code theory point of view, these two classes of codes are analysed separately. Here,
we present several results leading to the identification of a relation between these two classes of trinucleotide codes
by constructing a hierarchy of codes that are closed by the comma-free and circular codes. More precisely, all the
trinucleotide codes in this hierarchy are circular, the strongest ones being comma-free.

2. Definitions

For the classical notions of an alphabet, empty word, length, factor, proper factor, prefix, proper prefix, suffix,
proper suffix, we refer the reader to [3]. Let A denote a finite alphabet and let A∗ denote the set of all words
over A. Given a subset X of A∗, Xn is the set of the words over A which is the product of n words from X , i.e.,
Xn

= {x1x2 · · · xn | xi ∈ X}.
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There is a correspondence between the genetic and language-theoretic concepts. The letters (or nucleotides or
bases) define the genetic alphabet A4 = {A, C, G, T }. The set of non-empty words (resp. words) over A4 is denoted
by A+

4 (resp. A∗

4). The set of the 16 words of length two (or dinucleotides or diletters) is denoted by A2
4. The set of

the 64 words of length three (or trinucleotides or triletters) is denoted by A3
4. The total order over the alphabet A4 is

A < C < G < T . Consequently, A+

4 is alphabetically ordered: given two words u, v ∈ A+

4 , u is smaller than v in
alphabetical order, written u < v, if and only if either u is a proper prefix of v or there exist x, y ∈ A4, x < y, and
r, s, t ∈ A∗

4 such that u = r xs and v = r yt .

2.1. Two genetic maps

Definition 1. The complementarity map C:A+

4 → A+

4 is defined by C(A) = T , C(T ) = A, C(C) = G and C(G) = C
and by C(uv) = C(v)C(u) for all u, v ∈ A+

4 , e.g., C(AAC) = GTT . This map C is associated to the property of the
complementary and antiparallel (one DNA strand chemically oriented in a 5′–3′ direction and the other DNA strand,
in the opposite 3′–5′ direction) double helix. This map on words is naturally extended to word sets: a complementary
trinucleotide set is obtained by applying the complementarity map C to all its trinucleotides.

Definition 2. The circular permutation map P: A3
4 → A3

4 permutes circularly each trinucleotide l1l2l3 as follows
P(l1l2l3) = l2l3l1. The kth iterate of P is denoted Pk . This map on words is also naturally extended to word sets: a
permuted trinucleotide set is obtained by applying the circular permutation map P to all its trinucleotides.

Remark 1. Two trinucleotides u and v are conjugate if there exist two words s and t such that u = st and v = ts.
Therefore, if u and v satisfy Pk(u) = v for some k, then u and v are conjugate.

2.2. Codes, trinucleotide comma-free codes and trinucleotide circular codes

The notion of a code has very different meanings in biology and language theory. In biology, the “genetic code”
associates trinucleotides with amino acids, while in language theory a “code” is a set of words with a unique
decipherability condition.

Definition 3. Code: A set X of words is a code if, for each x1, . . . , xn, x ′

1, . . . , x ′
m ∈ X , n, m ≥ 1, the condition

x1 · · · xn = x ′

1 · · · x ′
m implies n = m and xi = x ′

i for i = 1, . . . , n.

The set A3
4 itself is a code. More precisely, it is a uniform code [3]. Consequently, any non-empty subset of A3

4 is
a code called trinucleotide codes in this paper.

Definition 4. Trinucleotide comma-free code: A trinucleotide code X is comma-free if, for each y ∈ X and u, v ∈ A∗

4
such that uyv = x1 · · · xn with x1, . . . , xn ∈ X , n ≥ 1, it holds that u, v ∈ X∗.

Several varieties of trinucleotide comma-free codes were described in [12].

Definition 5. Trinucleotide circular code: A trinucleotide code X is circular if, for each x1, . . . , xn, x ′

1, . . . , x ′
m ∈ X ,

n, m ≥ 1, p ∈ A∗

4, s ∈ A+

4 , the conditions sx2 · · · xn p = x ′

1 · · · x ′
m and x1 = ps imply n = m, p = ε (empty word)

and xi = x ′

i for i = 1, . . . , n.

Remark 2. A3
4 is obviously not a circular code and even less a comma-free code (see also Propositions 1 and 2).

Definition 6. Self-complementary code: A trinucleotide code X is self-complementary if, for each y ∈ X , C(y) ∈ X .

Definition 7. C3 self-complementary code: A trinucleotide code X is C3 self-complementary if X , X1 = P(X) and
X2 = P2(X) are codes satisfying the following properties: X = C(X) (self-complementary), C(X1) = X2 and
C(X2) = X1.

Example 1. The set X (EUK PRO) of 20 trinucleotides identified in the gene populations of both eukaryotes EUK and
prokaryotes PRO, i.e., X (EUK PRO) = {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT,

GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} is a maximal (20 words on A3
4) C3 self-complementary circular

code [1].
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Fig. 1. A graphical representation of the regularities given in the Letter Diletter Necklaces (LDN) and Letter Diletter Continued Necklaces (LDCN)
definitions.

Fig. 2. A graphical representation of the regularities given in the Diletter Letter Necklaces (DLN) and Diletter Letter Continued Necklaces (DLCN)
definitions.

Fig. 3. A graphical representation of the 5LDCN definition.

2.3. Necklace concept

The concept of a necklace was introduced by Pirillo for circular codes in [14] and was used for studying the
self-complementary circular codes and the trinucleotide comma-free codes in [16] and [12] respectively. Here, we
extend this concept to both the trinucleotide comma-free and the circular codes with the notions of a Letter Diletter
(Continued) Necklace (LDN, LDCN) and a Diletter Letter (Continued) Necklace (DLN, DLCN).

In the following definitions, l1, l2, . . . , ln−1, ln, . . . are letters in A4, d1, d2, . . . , dn−1, dn, . . . are diletters in A2
4

and n is an integer satisfying n ≥ 2.

Definition 8. Letter Diletter Necklaces (LDN): We say that the ordered sequence l1, d1, l2, d2, . . . , dn−1, ln, dn is an
nLDN for a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2, d2l3, . . . , dn−1ln ∈ X .

Definition 9. Letter Diletter Continued Necklaces (LDCN): We say that the ordered sequence l1, d1, l2, d2, . . . , dn−1,
ln, dn, ln+1 is an (n + 1)LDCN for a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2, d2l3, . . . , dn−1ln, dnln+1 ∈

X .

Definition 10. Diletter Letter Necklaces (DLN): We say that the ordered sequence d1, l1, d2, l2, . . . , ln−1, dn, ln is an
nDLN for a subset X ⊂ A3

4 if d1l1, d2l2, . . . , dnln ∈ X and l1d2, l2d3, . . . , ln−1dn ∈ X .

Definition 11. Diletter Letter Continued Necklaces (DLCN): We say that the ordered sequence d1, l1, d2, l2, . . . , ln−1,
dn, ln, dn+1 is an (n + 1)DLCN for a subset X ⊂ A3

4 if d1l1, d2l2, . . . , dnln ∈ X and l1d2, l2d3, . . . , ln−1dn, lndn+1 ∈

X .

Figs. 1 and 2 give a graphical representation of the regularities in the LDN, LDCN, DLN and DLCN definitions. In
particular, they show the forbidden LD and DL configurations for the codes in our hierarchy (see Definitions 8–11).

Fig. 3 gives a graphical representation of the 5LDCN definition. If a code X admits a 5LDCN then for some i, j ,
1 ≤ i ≤ j ≤ 5, li = l j . If j − i = 4 then l1 = l5 and this configuration (written on a circle in Fig. 4) is impossible for
a circular code. If j − i = 1 (or j − i = 2 or j − i = 3 or j − i = 4) then there are similar configurations which are
forbidden for a circular code.
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Fig. 4. The 5LDCN forbidden configuration for a circular code.

Proposition 1 ([14]). Let X be a trinucleotide code. The following conditions are equivalent.

(i) X is circular code.
(ii) X has no 5LDCN.

Proposition 1 of [12] gives several necessary and sufficient conditions for a trinucleotide code to be a comma-free
code. In particular, the following equivalence, useful in this paper, holds.

Proposition 2 ([12]). Let X be a trinucleotide code. The following conditions are equivalent.

(i) X is a comma-free code.
(ii) X has no 2LDN and no 2DLN.

Remark 3. A circular code can have a 2LDN, 3LDN, 4LDN, 2DLN, 3DLN and 4DLN but, by Proposition 1, it has
no 5LDCN. Given a non-circular code, by Proposition 1, for any k there exists n ≥ k such that X admits an nLDN
and an nDLN. By Proposition 2, a comma-free code has no 2LDN and no 2DLN. A non-comma-free code must have
either a 2LDN or a 2DLN.

3. A hierarchy of trinucleotide comma-free and circular codes

A hierarchy of variable length codes is presented in [15]. We propose here a hierarchy specific for trinucleotide
codes. In this proposed hierarchy, all the codes are trinucleotide circular codes and the constraints ones are
trinucleotide comma-free codes.

Definition 12. Let X be a trinucleotide code. For k ∈ {2, 3, 4, 5}, we say that X belongs to the class CkLDN if X has
no kLDN and that X belongs to the class CkDLN if X has no kDLN. Similarly, for k ∈ {3, 4, 5}, we say that X belongs
to the class CkLDCN if X has no kLDCN and that X belongs to the class CkDLCN if X has no kDLCN.

Notation 1. I n
= CnLDN

∩ CnDLN , I nC = CnLDCN
∩ CnDLCN , U n

= CnLDN
∪ CnDLN , U nC = CnLDCN

∪ CnDLCN .

Proposition 3. The following chains of inclusions hold.

(i) C2LDN
⊂ C3LDCN

⊂ C3LDN
⊂ C4LDCN

⊂ C4LDN
⊂ C5LDCN

⊂ C5LDN .
(ii) C2DLN

⊂ C3DLCN
⊂ C3DLN

⊂ C4DLCN
⊂ C4DLN

⊂ C5DLCN
⊂ C5DLN .

(iii) C2LDN
⊂ C3DLCN

⊂ C3LDN
⊂ C4DLCN

⊂ C4LDN
⊂ C5DLCN

⊂ C5LDN .
(iv) C2DLN

⊂ C3LDCN
⊂ C3DLN

⊂ C4LDCN
⊂ C4DLN

⊂ C5LDCN
⊂ C5DLN .

(v) I 2
⊂ I 3C ⊂ I 3

⊂ I 4C ⊂ I 4
⊂ I 5C ⊂ I 5.

(vi) U 2
⊂ U 3C ⊂ U 3

⊂ U 4C ⊂ U 4
⊂ U 5C ⊂ U 5.

Proof. (i) We first prove that C2LDN
⊂ C3LDCN . By way of contradiction, suppose that X ∈ C2LDN but X /∈ C3LDCN ,

i.e., X has a 3LDCN: l1, d1, l2, d2, l3. Immediately, l1, d1, l2, d2 is a 2LDN for X , i.e., X /∈ C2LDN , a contradiction.
The inclusions C3LDCN

⊂ C3LDN , C3LDN
⊂ C4LDCN , etc., are proved similarly.

The proofs of (ii)–(iv) are similar to (i). Moreover, (v) and (vi) follow from (i) and (ii), respectively. �

Proposition 4. C5LDN
= C5LDCN

= C5DLN .

Proof. We first prove that C5LDN
= C5LDCN . By (i) of Proposition 3 , C5LDCN

⊂ C5LDN . It remains to prove that
C5LDN

⊂ C5LDCN . By way of contradiction, suppose X ∈ C5LDN but X /∈ C5LDCN . Let l1, d1, l2, d2, l3, d3, l4, d4, l5



22 C.J. Michel et al. / Theoretical Computer Science 401 (2008) 17–26

be a 5LDCN for X . As A4 contains four letters, then for some i, j ∈ {1, 2, 3, 4, 5} with i < j , li = l j . So
li , di , . . . , l j−1, d j−1, li is a ( j − i +1)LDCN for X having li as its first and last letter. Using this property, an nLDCN
with an arbitrary n can be constructed for X . A suitable “prefix” of one of them is a 5LDN for X , a contradiction.

The fact that C5DLN
= C5LDCN is proved similarly using (iv) of Proposition 3 and considering a “factor” of a

suitable nLDCN that is a 5LDN for X and begins with di . �

Remark 4. As, by Proposition 1, C5LDCN is the class of circular codes, Proposition 4 shows that all the chains of
inclusions of Proposition 3 end with the class of circular codes. The chain of inclusions in (v) of Proposition 3 begins
with I 2 which is exactly the class of comma-free codes.

On the other hand, C5DLCN
6= C5LDCN . More precisely, there is the following inclusion.

Proposition 5. C5DLCN
⊂ C5LDCN with C5DLCN

6= C5LDCN .

Proof. By Propositions 3 and 4, the codes in C5DLCN are circular. By Proposition 1, C5LDCN is the class of circular
codes. So, C5DLCN

⊂ C5LDCN .
Now, consider the following set Y of diletters and letters d1 = AC, l1 = A, d2 = AG, l2 = C, d3 = AT, l3 = G,

d4 = CG, l4 = T, d5 = CT and the following code X = {ACA, AAG, AGC, CAT, ATG, GCG, CGT, TCT}.
It is circular as it is in the class C5LDCN but, by construction, it is not in the class C5DLCN . So the inclusion
C5DLCN

⊂ C5LDCN is strict. �

Remark 5. We will see in the next section that the inclusion C5DLCN
⊂ C5LDCN remains strict in the class of the

528 maximal self-complementary circular codes and in the case of the 216 maximal C3 self-complementary circular
codes.

Remark 6. By Proposition 4, C5LDN
= C5DLN . The strict inclusion C5DLCN

⊂ C5LDCN holds too. The first level
in which some codes can be in the class LD but not in the class DL and vice-versa, is 4LDN − 4DLN. Indeed,
the code X ′

= {ACA, AAG, AGC, CAT, ATG, GCG, CGT} obtained from X (used in the proof of Proposition 5) by
suppressing TCT , is in the class C4LDN but, by construction, X ′ is not in the class C4DLN . On the other hand, the code
X1 = {AAC, ACC, CAG, AGG, GAT, ATT, T CG} built using the diletters and letters l1 = A, d1 = AC, l2 = C, d2 =

AG, l3 = G, d3 = AT, l4 = T, d4 = CG is in the class C4DLN but, by construction, X1 is not in the class C4LDN .

The hierarchies in Proposition 3 concern the class of trinucleotide circular codes. The following proposition
explains some symmetries of hierarchies within the 528 maximal self-complementary codes and the 216 maximal
C3 self-complementary codes.

Proposition 6. For the class of the 528 maximal self-complementary circular codes, the following equalities hold.

(i) C2LDN
= C2DLN .

(ii) C3LDN
= C3DLN .

(iii) C4LDN
= C4DLN .

(iv) C5LDN
= C5DLN .

Proof. (i) Let X ⊂ A3
4 be a maximal self-complementary code. We have to prove that X is in the class C2LDN if and

only if X is in the class C2DLN . By way of contradiction, suppose that X ∈ C2LDN and X /∈ C2DLN . Then, X has a
2DLN denoted by d1, l1, d2, l2. Consider the sequence C(l2), C(d2), C(l1), C(d1). By the self-complementary property
of X , C(l2)C(d2) ∈ X as d2l2 ∈ X , C(l1)C(d1) ∈ X as d1l1 ∈ X and C(d2)C(l1) ∈ X as l1d2 ∈ X , i.e., X has a 2LDN,
a contradiction. So X is in the class C2DLN . In a similar way, we prove that if X is in the class C2DLN then X is also
in the class C2LDN . The proofs of (ii)–(iv) are similar to (i). �

4. Computer results

We consider the following partition of A3
4 \ {AAA, CCC, GGG, TTT, ATA, TAT, CGC, GCG} into 28 self-

complementary pairs (Table 1). The first element of each pair is the smallest in alphabetical order and the 28 pairs
are ordered according to the alphabetical order of their first components. Finally, we denote them by the following
symbols {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, z′, z′′

} which are the letters of the English
alphabet with the two additional symbols z′ and z′′.
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Table 1
Partition ofA3

4 \ {AAA, CCC, GGG, TTT, ATA, TAT, CGC, GCG} into 28 self-complementary pairs

a = {AAC, GTT} b = {AAG, CTT } c = {AAT, ATT} d = {ACA, T GT }

e = {ACC, GGT} f = {ACG, CGT} g = {ACT, AGT } h = {AG A, TCT}

i = {AGC, GCT} j = {AGG, CCT} k = {ATC, GAT} l = {ATG, CAT}

m = {CAA, TTG} n = {CAC, GTG} o = {CAG, CTG} p = {CCA, TGG}

q = {CCG, CGG} r = {CGA, T CG} s = {CT A, TAG} t = {CTC, GAG}

u = {GAA, TTC} v = {GAC, GTC} w = {GCA, TGC} x = {GCC, GGC}

y = {GGA, TCC} z = {GTA, TAC} z′
= {TAA, TTA} z′′

= {TCA, TGA}

Table 2
Hierarchy of the 528 maximal self-complementary codes

C2LDN C3LDCN C3LDN C4LDCN C4LDN C5LDCN C5LDN

0 96 96 96 64 + 96 368 + 64 + 96 368 + 64 + 96

C2DLN C3DLCN C3DLN C4DLCN C4DLN C5DLCN C5DLN

0 0 96 64 + 96 64 + 96 64 + 96 368 + 64 + 96

I 2 I 3C I 3 I 4C I 4 I 5C I 5

0 0 96 96 64 + 96 64 + 96 368 + 64 + 96

U2 U3C U3 U4C U4 U5C U5

0 96 96 64 + 96 64 + 96 368 + 64 + 96 368 + 64 + 96

The number of codes is given in each class.

Table 3
Hierarchy of the 216 maximal C3 self-complementary codes

C2LDN C3LDCN C3LDN C4LDCN C4LDN C5LDCN C5LDN

0 56 56 56 56 + 56 104 + 56 + 56 104 + 56 + 56

C2DLN C3DLCN C3DLN C4DLCN C4DLN C5DLCN C5DLN

0 0 56 56 + 56 56 + 56 56 + 56 104 + 56 + 56

I 2 I 3C I 3 I 4C I 4 I 5C I 5

0 0 56 56 56 + 56 56 + 56 104 + 56 + 56

U2 U3C U3 U4C U4 U5C U5

0 56 56 56 + 56 56 + 56 104 + 56 + 56 104 + 56 + 56

The number of codes is given in each class.

Table 4a
List of the 56 maximal C3 self-complementary codes of the class C3LDCN (class C1)

abcegiktvx abcfgjlnoq abcflnoqst abclnoqstv abcikntvxz abcknotvxz
aceghijkvx aceghikvxy acfghijlnq achiknvxyz acegiktuvx acikntuvxz
acknotuvxz anuvwxyzz′z′′ akntuvwxzz′ aknotuvxzz′ bcdefgiktx bcdefgjloq
bcdfgjlopq bcdflopqst cdefghijkx cdefghijqz′′ cdefghijxz′′ cdefghijlq
cdefghikxy cdefghixyz′′ cdfghijpqz′′ cdfghijlpq deghrwxyz′z′′ dehrwxyzz′z′′

dghjpqrwz′z′′ dghpqrwyz′z′′ dghprwxyz′z′′ dhjpqrswz′z′′ dhpqrswyz′z′′ dhprwxyzz′z′′

deuvwxyzz′z′′ dektuvwxzz′ dpqrstuwz′z′′ dpuvwxyzz′z′′ bcfgjlmnoq bcflmnoqst
bclmnoqstv bmopqrstz′z′′ blmnoqrstz′ blmnoqstvz′ hjmopqrsz′z′′ hmopqrsyz′z′′

hjlmnoqrsz′ hmnrwxyzz′z′′ mopqrstuz′z′′ lmnoqrstuz′ lmnoqstuvz′ mnuvwxyzz′z′′

kmntuvwxzz′ kmnotuvxzz′

In this section, we present the computer results for the 528 maximal self-complementary codes and the 216 maximal
C3 self-complementary codes with a code classification according to the hierarchies of Proposition 3 (Tables 2 and 3).
For both hierarchies, the classes C2LDN and C2DLN are empty. Moreover, the cardinalities of the classes from C3LDN

to C5LDN and also from C3DLN to C5DLN are increasing. The class C3LDCN is the first one that is non-empty. New
codes occur in the class C4DLCN , and then in the class C5LDCN . According to Proposition 1, the class C5LDCN contains
all codes. But, for the DL codes, it is the class C5DLN that contains all codes and not the class C5DLCN .



24 C.J. Michel et al. / Theoretical Computer Science 401 (2008) 17–26

Table 4b
List of the 40 maximal non-C3 self-complementary codes of the class C3LDCN (class C2)

abcegikvxy abcfgjlopq abcflopqst abciknvxyz abcknovxyz abclopqstv
acegijkuvx acfghijlpq acfghijpqz′′ achijknvxz acijknuvxz ahnrwxyzz′z′′

ahprwxyzz′z′′ akptuvwxzz′ apuvwxyzz′z′′ bcdefgikxy bcdefgixyz′′ bcdefloqst
bcefgjlmoq bceflmoqst bdpqrstwz′z′′ bdpqrswyz′z′′ blmnoqrsyz′ bmopqrsyz′z′′

cdefgijkux cdefgiktux cefghijlmq cfghijlmnq dgjpqruwz′z′′ djpqrsuwz′z′′

dkptuvwxzz′ eghmrwxyz′z′′ ehmrwxyzz′z′′ ekmotuvxzz′ ekmtuvwxzz′ emuvwxyzz′z′′

hlmnoqrsyz′ jlmnoqrsuz′ jlmnoqsuvz′ jmopqrsuz′z′′

Table 5a
List of the 56 maximal C3 self-complementary codes of the class C4DLCN that are not already in the class C3LDCN (class C3)

abcefgijkx abcefgijlq abcefgiktx abcefgjloq abcefgloqt abcegijkvx
abcegkotvx abcfgijlnq abcfglnoqt abcgijknvx abcgikntvx abcgjlnoqv
abcgknotvx abcglnoqtv aceghivxyz′′ acehikvxyz aehvwxyzz′z′′ acegikuvxy
aceikuvxyz aekuvwxyzz′ aeuvwxyzz′z′′ bcdfgjopqz′′ bcdfjlopqs bdjopqrsz′z′′

cdeghikvxy cdeghivxyz′′ cdfghjopqz′′ cdfghjlopq deghvwxyz′z′′ dehvwxyzz′z′′

dghjopqrz′z′′ dhjopqrsz′z′′ cdegikuvxy deguvwxyz′z′′ dekuvwxyzz′ bcfgjlmopq
bcfjlmopqs bjmopqrsz′z′′ bjlmopqrsz′ cfghjlmopq ghjmopqrz′z′′ hjlmopqrsz′

mpqrsuwyz′z′′ mpqrstuwz′z′′ mopqrsuyz′z′′ mpruwxyzz′z′′ mopqstuvz′z′′ mpuvwxyzz′z′′

mptuvwxzz′z′′ mnoqrsuyz′z′′ mnoqrstuz′z′′ mnruwxyzz′z′′ mnoqstuvz′z′′ mntuvwxzz′z′′

mnouvxyzz′z′′ mnotuvxzz′z′′

Table 5b
List of the eight maximal non-C3 self-complementary codes of the class C4DLCN that are not already in the class C3LDCN (class C4)

abcefgkotx abcgijlnqv acehivxyzz′′ bcdfjopqsz′′ degkuvwxyz′ ghjlmopqrz′

mnoruxyzz′z′′ mpqstuvwz′z′′

Table 6a
List of the 104 maximal C3 self-complementary codes of the class C5LDCN that are not already in the class C4DLCN (class C5)

abcefgijqz′′ abcefgijxz′′ abceiktvxz abcekotvxz abcfjlnoqs abcjlnoqsv
ablnoqrstz′ ablnoqstvz′ abkntvwxzz′ abknotvxzz′ acefghijkx acefghijqz′′

acefghijxz′′ acefghijlq acefghikxy acefghixyz′′ aceghijvxz′′ acfghjlnoq
acghiknvxy acegkotuvx aceiktuvxz acekouvxyz acekotuvxz acgikntuvx
acgknotuvx aciknuvxyz acknouvxyz aektuvwxzz′ aekouvxyzz′ aekotuvxzz′

aknuvwxyzz′ antuvwxzz′z′′ aknouvxyzz′ anouvxyzz′z′′ anotuvxzz′z′′ bcdefgijkx
bcdefgijqz′′ bcdefgijxz′′ bcdefgijlq bcdefgjoqz′′ bcdegiktvx bcdfgijpqz′′

bcdfgijlpq bcdfglopqt cdefghiqyz′′ cdefghilqy cdefghjoqz′′ cdefghjloq
cdeghijkvx cdeghijvxz′′ cdfghijkpx cdfghijpxz′′ deghqrwyz′z′′ dehqrswyz′z′′

dghjprwxz′z′′ dghopqryz′z′′ dhopqrsyz′z′′ dhjprwxzz′z′′ dghpvwxyz′z′′ dhpvwxyzz′z′′

degruwxyz′z′′ deruwxyzz′z′′ detuvwxzz′z′′ dgpqruwyz′z′′ dgpruwxyz′z′′ dpqrsuwyz′z′′

dopqrstuz′z′′ dpruwxyzz′z′′ dgpuvwxyz′z′′ bcflmopqst bcjlmopqsv bclmopqstv
bcfglmnoqt bcfjlmnoqs bcgjlmnoqv bcglmnoqtv bcjlmnoqsv blmopqrstz′

bjlmopqsvz′ bmopqstvz′z′′ blmopqstvz′ bjlmnoqrsz′ bmnoqrstz′z′′ bjlmnoqsvz′

bmnoqstvz′z′′ ghjmpqrwz′z′′ ghmpqrwyz′z′′ ghmprwxyz′z′′ ghmopqryz′z′′ hjmpqrswz′z′′

hmpqrswyz′z′′ hmprwxyzz′z′′ hjmnoqrsz′z′′ hmnvwxyzz′z′′ cflmnoqstu clmnoqstuv
cikmntuvxz ckmnotuvxz gmpqruwyz′z′′ gmpruwxyz′z′′ lmopqrstuz′ lmopqstuvz′

kmnuvwxyzz′ kmnouvxyzz′

Tables 4a, 4b, 5a, 5b, 6a and 6b list the 528 maximal self-complementary codes organized according to their
occurrences in the hierarchy. Precisely, we define a partition of these 528 codes into six classes C1, C2 , C3, C4, C5
and C6.

In a compact way, by using the above partition of the 528 maximal self-complementary codes, the following
hierarchies are observed (Table 7).
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Table 6b
List of the 264 maximal non-C3 self-complementary codes of the class C5LDCN that are not already in the class C4DLCN (class C6)

abcefgikxy abcefgixyz′′ abcefgkoxy abcefloqst abcegivxyz′′ abcegkovxy
abceikvxyz abceivxyzz′′ abcekovxyz abcfgijlpq abcfgijpqz′′ abcfgjopqz′′

abcfglnoqy abcfglopqt abcfjlopqs abcfjopqsz′′ abcflnoqsy abcfopqstz′′

abcgijlpqv abcgiknvxy abcgikptvx abcgjlopqv abcgknovxy abcglopqtv
abcijknvxz abcikptvxz abcinvxyzz′′ abcjlopqsv abkptvwxzz′ ablnoqrsyz′

abnoqrstz′z′′ abnoqrsyz′z′′ abnoqstvz′z′′ abnorxyzz′z′′ abnotvxzz′z′′ abnovxyzz′z′′

abnrwxyzz′z′′ abntvwxzz′z′′ abnvwxyzz′z′′ abopqrstz′z′′ abopqrsyz′z′′ abopqstvz′z′′

abpqrstwz′z′′ abpqrswyz′z′′ abpqstvwz′z′′ abprwxyzz′z′′ abptvwxzz′z′′ abpvwxyzz′z′′

acefgijkux acefgiktux acefgkotux acehijkvxz acehijvxzz′′ aceijkuvxz
acfghilnqy acfghjlopq acfghjopqz′′ acfghlnoqy acghijknvx acghijkpvx
acghijlnqv acghijlpqv acghijpvxz′′ acgijknuvx acgijkpuvx acgikptuvx
achijkpvxz achijnvxzz′′ achijpvxzz′′ achinvxyzz′′ acijkpuvxz acikptuvxz
aehrwxyzz′z′′ ahjlnoqrsz′ ahjnoqrsz′z′′ ahjnrwxzz′z′′ ahjnvwxzz′z′′ ahjopqrsz′z′′

ahjpqrswz′z′′ ahjprwxzz′z′′ ahjpvwxzz′z′′ ahlnoqrsyz′ ahnoqrsyz′z′′ ahnorxyzz′z′′

ahnvwxyzz′z′′ ahopqrsyz′z′′ ahpqrswyz′z′′ ahpvwxyzz′z′′ ajknuvwxzz′ ajkpuvwxzz′

ajnuvwxzz′z′′ ajpuvwxzz′z′′ akpuvwxyzz′ anoruxyzz′z′′ anruwxyzz′z′′ apruwxyzz′z′′

aptuvwxzz′z′′ bcdefgkotx bcdefgkoxy bcdefgloqt bcdefgloqy bcdefgoqyz′′

bcdefjloqs bcdefjoqsz′′ bcdefloqsy bcdefoqstz′′ bcdefoqsyz′′ bcdegikvxy
bcdegivxyz′′ bcdfgikptx bcdfopqstz′′ bcdgikptvx bcefgijlmq bcefglmoqt
bcefglmoqy bcefjlmoqs bceflmoqsy bcfgijlmnq bcfglmnoqy bcflmnoqsy
bcgijlmnqv bdektvwxzz′ bdeoqrstz′z′′ bdeoqrsyz′z′′ bdeqrstwz′z′′ bdeqrswyz′z′′

bderwxyzz′z′′ bdetvwxzz′z′′ bdevwxyzz′z′′ bdjpqrswz′z′′ bdkptvwxzz′ bdopqrstz′z′′

bdopqrsyz′z′′ bdpqstvwz′z′′ bdprwxyzz′z′′ bdptvwxzz′z′′ bdpvwxyzz′z′′ belmoqrstz′

belmoqrsyz′ bemoqrstz′z′′ bemoqrsyz′z′′ blmopqrsyz′ bmnoqrsyz′z′′ bmpqrstwz′z′′

bmpqrswyz′z′′ bmpqstvwz′z′′ cdefghloqy cdefghoqyz′′ cdefgijlqu cdefgikuxy
cdefgjloqu cdefgkotux cdefgloqtu cdefloqstu cdegijkuvx cdegiktuvx
cdfgijkpux cdfgijlpqu cdfgikptux cdfgjlopqu cdfglopqtu cdflopqstu
cdghijkpvx cdghijpvxz′′ cdgijkpuvx cdgikptuvx cefghijkmx cefghikmxy
cefghilmqy cefghjlmoq cefghlmoqy cefgijkmux cefgijlmqu cefgikmtux
cefgjlmoqu cefgkmotux cefglmoqtu ceflmoqstu ceghijkmvx ceghikmvxy
cegijkmuvx cegikmtuvx cegkmotuvx cfghijlmpq cfghilmnqy cfghjlmnoq
cfghlmnoqy cfgijlmnqu cfgjlmnoqu cfglmnoqtu cghijkmnvx cghijlmnqv
cghikmnvxy cgijkmnuvx cgijlmnquv cgikmntuvx cgjlmnoquv cgkmnotuvx
cglmnoqtuv chijkmnvxz chikmnvxyz cijkmnuvxz deghoqryz′z′′ degktuvwxz′

dehoqrsyz′z′′ deoqrstuz′z′′ deqrstuwz′z′′ dghjpvwxz′z′′ dgjkpuvwxz′ dgjopqruz′z′′

dgjpuvwxz′z′′ dgkptuvwxz′ dgkpuvwxyz′ dhjpvwxzz′z′′ djkpuvwxzz′ djopqrsuz′z′′

djpqsuvwz′z′′ djpuvwxzz′z′′ dkpuvwxyzz′ dpqstuvwz′z′′ dptuvwxzz′z′′ eghlmoqryz′

eghmoqryz′z′′ eghmvwxyz′z′′ egkmtuvwxz′ egkmuvwxyz′ egmruwxyz′z′′ egmuvwxyz′z′′

ehlmoqrsyz′ ehmoqrsyz′z′′ ehmorxyzz′z′′ ehmvwxyzz′z′′ ekmouvxyzz′ ekmuvwxyzz′

elmoqrstuz′ emoqrstuz′z′′ emoruxyzz′z′′ emotuvxzz′z′′ emouvxyzz′z′′ emruwxyzz′z′′

emtuvwxzz′z′′ ghjlmnoqrz′ ghlmnoqryz′ ghlmopqryz′ gjlmnoqruz′ gjlmopqruz′

gjmopqruz′z′′ gjmpqruwz′z′′ hjmnrwxzz′z′′ hjmnvwxzz′z′′ hlmopqrsyz′ hmnoqrsyz′z′′

hmnorxyzz′z′′ jkmnuvwxzz′ jlmopqrsuz′ jlmopqsuvz′ jmnoqrsuz′z′′ jmnoqsuvz′z′′

jmnuvwxzz′z′′ jmopqsuvz′z′′ jmpqrsuwz′z′′ jmpqsuvwz′z′′ kmptuvwxzz′ lmnoqrsuyz′

Table 7
Hierarchy of the 528 maximal self-complementary codes according to the classes C1, C2, C3, C4, C5 and C6

C3LDCN C4LDN C5LDCN

C1 ∪ C2 C1 ∪ C2 ∪ C3 ∪ C4 C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6

C3DLN C4DLCN C5DLN

C1 ∪ C2 C1 ∪ C2 ∪ C3 ∪ C4 C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6

Remark 7. The maximal C3 self-complementary circular code X (EUK PRO) belongs to the class C5LDCN and is the
code acekotuvxz in 6a.
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