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A convergence theorem of asynchronous iterations of discrete systems partitioned into blocks is
given. The mathematical model developed generalizes several classical block discrete models:
parallel (Jacobi), series (Gauss-Seidel) and chaotic. Numerical applications with boolean net-
works show convergences predicted by this theorem.
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1. INTRODUCTION

Asynchronous evolution of general discrete systems with » components is
studied in this paper. Boolean networks represent particular cases of such
systems.

Each component { takes a finite number of values x;, i€ {1,...,n}. This
system is partitioned into « blocks. Each block i has n; components,
> iy ni = n. The value of a block i is denoted by X; and the value of the
block system, by X = (X, ..., X,). The dynamic of the system is described
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according to a function f

FO) = (filxt, s Xn)y oy Su(X1, -0, X0)).

This function f'is partitioned into a compatible way, i.e.,
Fx)=FX)=(F1(X1, -, Xa)s -, FalX1,. ., Xa)).

The iterations considered are asynchronous, i.e., chaotic iterations taking
into account delays which may be generated by different communications
and computation sizes of the elements of the system. The state of a system
(resp. a block system) at the time ¢ is represented by x’ (resp. X'), or more
precisely by

X =X"=(,. . x) =&, .., XD,

Y7n

In the case of an asynchronous system, the block 7 at the time ¢ is either

5(0)

iterated by using some blocks j with states ij available at the previous

time sj(r) = ¢ — r{(t) < t where ri(t) is the delay of the block j compared to
the block i at the time ¢, i.e., X!™! = F; (Xfl' (1), - ,Xéi’(')), or not iterated, i.e.,
X,»“’1 = X/. These two alternatives are described by the iteration strategy
{J(D}ren, J()CTH{1,...,a}, Vte N. The dynamic of the system is then de-

scribed by the following algorithm

Given X% = (x9,...,X9)
t=0,1,...
i=1...,«a
el = JEESO L xEOY i e ()
' X'if i ¢ J(6).

There is neither synchronization condition nor management of the critical
section which can be found, for example, in synchronous algorithms.

The convergence results in the asynchronous continuous framework are
well known and are based on a contraction hypothesis with respect to a
maximum norm, see e.g. [3, 5, 4, 7, 1, 2]. However, this approach cannot be
applied to the discrete framework. Indeed, the hypothesis in the continuous
framework leads to constant functions in the discrete framework (detailed in
Remark 3.1). A new study is necessary for the discrete case. We suppose that
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Fis a contraction with respect to a vectorial distance. The contraction with
respect to a vectorial distance was first introduced by [6] in order to study a
particular case of asynchronous iterations, namely the chaotic ones.

For analyzing the convergence of discrete systems, preliminary results
concerning the boolean matrices [6] and the decomposition of a discrete
system are introduced in Section 2. The asynchronous discrete model is for-
mulated in Section 3. The convergence theorem is given in Section 4. Finally
in Section 5, classical particular cases of the asynchronous discrete model
and numerical applications with a boolean network are presented.

2. PRELIMINARY RESULTS

2.1. Specific Results of Boolean Matrices (Detailed in {6])

DEfFINITION 2.1 Consider the Cartesian product E = []i_,E; where
E; represents the finite set of possible values x; of the component i of the
discrete system. The vectorial distance d:Ex E— {0,1}" is defined by
forall (x,y) € ExXE

(x,y) = d(x,y) = (6(x1,51),- -+, 6(Xn, ¥n))

where

o 1 ifx,'§£y,'
6(.761,)’1)—{0 if x; = ;.

DerFiNITION 2.2 Consider a discrete system whose dynamic is described
according to a function f: E— E. The boolean matrix B( f) associated with f
is defined by its general term by, i, j€ {1,...,n}, so that

b = 1 if the ith component of f depends on x;
Y710 otherwise.

As B( f) is a boolean matrix, its only possible eigenvalues are 0 or 1.

Example 2.1 The following simple example shows that to have the boolean
matrix B(f) is equivalent to have the connexion graph of the discrete
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system. Consider a discrete system with 3 components 1, 2 and 3. Assume
that the notation 1 — 2 means that component 1 informs component 2. If
these components are connected as shown in the figure below

1 2

[ IU—

3

then, the contraction matrix of any mapping f = ( f1,/2,/f3) describing the
dynamic of the system according to the above graph is

01 1
B(f)=|1 0 1
010

Prorosition 2.1 d(f(x), f(3)) < B(d(x,y), for all (x,y) € E x E where
the componentwise order relation < is defined in {0,1}" by 0<0<1<1.

DerinITION 2.3 The function f is a contraction if the associated matrix
B(f) has all eigenvalues equal to 0, i.e., with a spectral radius p(B) = 0.
B (f) is called the contraction matrix of f.

ProrosiTiON 2.2 B(f) is a contraction matrix if and only if there exists a
permutation matrix P so that PTBP is a strictly lower triangular matrix where
PT is the transpose of P.

ProprosITION 2.3 If the function fis a contraction on E = ], E; then there
exists a unigue x* € E s0 that x™ = f(x™). x" is called the fixed point of f.
2.2. Decomposition of the Discrete System

Consider « integers n; so that X% n; = n. Define the integers g;, i € {1, . .., o},
by

q1=0

gi =n 4+ ni-y.
Then x = (x1,...,x,) € [].., E; is partitioned as follows:

x=X=(X,...,X,)
Xi= (xqi+1’ e ’XQi+ni) € H’L Egj.
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The function f'is partitioned into a compatible way

fior = B
F;= (fq,--%—la s 7fQi+ni)'

{0,1}" is considered as [, {0, 1}".

DerINITION 2.4 The block vectorial distance is defined as follows
dX,Y) = (6(X1,Y1),...,6(Xs,Ya)),

such that

1 ifX;#Y;
6(Xi)Yi) = {0 if X; i Y.

3. ASYNCHRONOUS DISCRETE MODEL

DeriniTION 3.1 Let the strategy {J(f)},en be a sequence of non-empty
subsets of {1,...,a} at the time . Let {si(t)},cn, i,/ € {1,...,0}, be a
sequence of integers at the time ¢ satisfying the 3 following conditions:

(i) 5j(r) = t — rj(z) with 0 <rj(r) < t, ri(r) being the delay of the block ;
compared to the block i.
(i) Vi, je{l,...,a}, lim_ s}(t) = 0o, lLe., the delays associated with the
block i are unbounded but follow the iterations of the system.
(i) Vie {1,...,a}, Card ({t,i € J(£)}) = oo, i.e., no block is definitively lost.

Then, the asynchronous iterations with delays {rj’:(t)} according to the
strategy {J(f)} are described by the algorithm

Given X% = (x9,...,X?)
1=0,1,...
i=1,...,a ‘ _ (1)
g+l {Fi(xfl(”, o X2OYifie g(r)
' XPifi ¢ J().

If the block i belongs to the s‘fjrategy J(t) at the time ¢, then its state X/ ™! is
iterated by F,, i.e., X,f“ = Fy(X;' : yen ,X(f“m) otherwise its state X}“ is not
iterated, i.e., X' = X/.
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Remark 3.1 Even if the convergence of asynchronous iterations is well
studied in the continuous framework, the discrete framework remains parti-
cular and needs a specific convergence analysis. Indeed, the convergence in
the continuous framework is based on a contraction hypothesis of F with
respect to the maximum norm max; <; <,0(x;, ;). In the discrete framework,
this hypothesis implies constant functions which have no interest in simu-
lation. Therefore, a new study for the discrete framework is necessary
with a contraction hypothesis with respect to a new distance: the vectorial
distance here.

4. RESULTS

DeriniTION 4.1 Consider the strictly increasing sequence of integers
{pi}ien as follows:

Po=0
pr+1 is the smallest integer satisfying
UPISSmin(l)SKpM J(t) = {1, Cee a}

where J(f) C {1,...,a} and smin(f) = mini<; j<a{sj(1)}.

This sequence { p;} is well defined thanks to the conditions (ii) and (iii) of
Definition 3.1.

TueoreM 4.1  Let a discrete dynamic system of n components be partitioned
into o blocks and described by an iteration function F = (Fy,...,F,). If Fisa
contraction with respect to the block vectorial distance of Definition 2.4 on the
finite Cartesian product set E = [[i, E; and if the 3 conditions of Definition
3.1 are satisfied, then all asynchronous iterations from any initial state X° =
(x0,...,X0) converge to a unique fixed point X* within p,, steps, i.e.,

X*=X', t=pa,pat+1,...
where X' is defined in (1) and { p;};cn, in Definition 4.1.

Proof Denote: For teN*and i, je{l,...,a}

X'=(X],...,Xh),

XS‘(I) — (lel(’), L ,X;i"(l)),
x50 = (x0 . xe0),
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and 4,_1, a n x n matrix defined by
1 ifi=j¢Jit-1)
(A-); =40 ifi=jeJ(t-1) (2)
0 ifis#].
The proof is divided into 3 parts.

() dX',X*) <A, 1dX'™ ', X7)+ B(F) d(X*“~ D, X",
Define the vectors X and X} as follows

fori ¢ J(t—1), (X;);=X and forieJ(r—1), (X};);, =X/,
so according to (1), we have
(Xp); =X; ! and (Xy), = Fi(ij(lvl))-

By Proposition 2.3, F has a unique fixed point denoted by X™ so that
X* = F(X™). By applying Definition 2.4 of the vectorial distance 4 and
after reordering the blocks

1 () ()

By using the componentwise order relation < defined in {0,1}" by 0 <
0<1<1, we obtain

dX',X*) < Ad(X' X7 +d(F(X*), F(X™)),

where for all integers 1> 1, 4,_ | is defined by (2).
By applying Proposition 2.1, we deduce

d(X',X*) < A1d(X7X*) + B(F)d (XD, x*). (3)

@) dX',X )<Zq (B(F) Jd(XO *) with k; > o for t > p,.

(iia) d(X',X") < I(B(F» Bd(X0,X7).
By remarking that for all ¢, A,B(F)< B(F) and B(F)A;< B(F), the
induction formulae (3) leads to

t—1
d(x',x*) < [J4d(x°,x* +Z(B Nad(x0, x*),
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where ¢ is a finite integer.
Due to Definition 4.1 of {p}ien,

Vie{l,...,a},Yie N,3je{p;,...,pi-1— 1} so that (4;); =0. (4)
Therefore,
=1
[[4=0ift>p:.

j=0

Then for > p,,
q
d(X',x*) <> (B(F)¥d(X°,X7).
j=1

(iib) k;> o for t > p,,.
Due to the construction of {p;};en in Definition 4.1, if 1> p, then
k> o Indeed, for ¢=py,d(X',X*) < Y0 (B(F))" d(X°,X*) thanks
to(@) and k;> 1,V €{1,..., ¢} as all the blocks are updated at least one
time. Suppose that for {p1,...,p,} We have for all 1> p,,

{d(X',X*> <YL (B(F))d(X°, X*)
kj >a,vje{l,...,q},

if 1> p,, then,

{d(X,-’,X,-*) <L T (BOF)Y), (X9, X))
ki>aVie{l,..., q}.

Let 1> p, + 1, then due to the construction of { pi}ien, Vi€ {l,...,a}, 3gs0
that ps < Smin(9) < g < a1 and X/ = F;(X*'(@) so,

d(X!,X7) < (B(F)d(x*@,x*)),

<D BF)d(%,9.X;),

m=1

as po < Smin(g), we have by the induction hypothesis

{d(Xityxi*) S E?n:l B(F)im _;'1=1 E?:l ((B(F))kj)m]d(X[O’Xl*)
kj Z a,VjE {1a"'7q}’
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o
A X7) < Z > S B (BP0, ),
and
A X7) < ql (BEYdx°,x),
2
,

{( X*) < YL (B(F)Yd(X°,X7)
Bi>oa+1,Y€{l,...,q}

(iib) Vt>pa, X', X") =0

As F is a contraction, Proposition 2.2 leads to

) = SELPTY,

J=1 j=1

=

where L is a strictly lower triangular block matrix. As PPT = I (identity
matrix), then,

i(B(F))kf = PikaPT.
j=1 J=1

As k;> «, L is a strictly lower triangular matrix and as the product of «
strictly lower triangular block matrices of dimension « leads to a null
matrix, then for all je {1,...,4q},

v =0.
So
d(X',X*) =0.

In conclusion, the asynchronous discrete model converges to the unique
fixed point X™ at most after p, steps.

Remark 4.1 By taking E = {0, 1}, the discrete system is boolean.
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5. PARTICULAR CASES OF THE ASYNCHRONOUS
DISCRETE MODEL

Componentwise iterations: n; = 1, Vie {1,...,a = n}.

Block parallel iterations (block Jacobi iterations): s}(t) =,Vi,je {1,
...,a} (no delays) and J(1) = {1,...,a}.

Block series iterations (block Gauss-Seidel): s]’:(t) =tVvije{l,...,a}
and J(©) = 1 +tmod a.

Block chaotic iterations: si(¢) =1, Vi,j € {1,...,a}, J@)#0 and Vi€
{1,...,a}, Card ({t,i€ J(1)}) = oo (case studied by [6, 7]). ‘

6. NUMERICAL APPLICATIONS

A research software DSE (Discrete System Evolution) has been developed in
order to simulate different convergence strategies of discrete models with
asynchronous iterations. The discrete models studied are boolean networks,
each component takes only 2 states {0, 1}. DSE is based on 3 functionalities:
the dynamic of the network, the choice of different network parameters and
the graphical representation of results. DSE verifies the contraction hypo-
thesis. The results are presented as follows. As the state x} of each boolean
component / is defined on the binary system E = {0, 1} of Card(E) = 2, the
state x’ of the network with n components can be associated with the
boolean number x} = x|...x}. This number x; can be represented on
the decimal system D ={0,...,9} as follows xf = x{2""1 4 x{2"~2
+---+x!. The curves obtained are represented as follows: the abscissa
shows the time ¢ and the ordinate gives the state of the network on the
decimal system xx.

The dynamic of a boolean network with » = 10 components is described

according to the iteration function f= ( fi,...,f1o) defined as follows

( f1(X) = x2X4x5X6X8X9 + X2X9 + X2X6
fa(x) = Xs
f(x) =1 + x2 4+ x4X5 + X7x3X9
f4EX§ = X7 + X3 + X9
fs(x) = x2 + x4 + Xz + X9

Flx) = fo(x) = xaX4x5x8%9

Fr(x) = xax4 + X5 + X6 + X3 + Xg
fa(x) =0
fo(x) =X

L fio(x) = X1X2%3 + X5 + X6 + Xo
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The matrix B(f) associated with f is then deduced

01011101710
0000000100
1101101110
0100000110
01 01000110
B)=10 101100110
0101110110
0000000000
010000000 0
11101100010

It can be verified without difficulty that B(f) is a contraction matrix as
p (B)=0.

The solution of the function fis the fixed pointx* = (0,1,1,1,1,0,1,0,0, 1)
associated with xz = 0111101001 and represented on the decimal system by
x3 = 489. Three simulations of asynchronous componentwise iterations are
given by varying the type of delay and the type of strategy. The initial state x°
chosen for the 3 simulations is the state with greatest distance to x7, i.e.,
x®=(1,0,0,0,0,1,0,1, 1,0) associated with x3 = 1000010110 and X3 = 534.

The results of the simulations are represented as follows: the abscissa
shows the time ¢ by varying ¢ between 0 and 200, and the ordinate gives the
state of the network on the decimal system xp with values between 0 and
1023 (2'° possible values).

Figure 1 shows the convergence to x* of the boolean network with
random s/(t) € [¢/2,1] and a random strategy J(2).

The next two simulations are examples of non-convergence of the net-
work as one of the two conditions (ii) and (iii) of (1) is not verified.

Figure 2 shows the non-convergence of the boolean network with random
si(2) € [0,1] and a random strategy J(7). Indeed, the condition (ii) lim, .
si(t) = oo of (1) is not satisfied.

Figure 3 shows the non-convergence to x* of the boolean network with
random si(#) € [¢/2,#] and a random strategy J(z) when 7 < 5 but when 7> 5,
the component 6 is definitively lost. The curve is stabilized to xp = 1017
associated with xz = 1111111001 which is the solution of a new system f ;=1
for i # 6 and f fixed by 0 or 1. Indeed, the disregard of the component 6 does
not satisfy the condition (iii) Vi€ {1, ..., a}, Card ({t,i€ J(1)}) = oo of (1).

These different simulations lead to results predicted by the theory.
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FIGURE 1 Convergence of the boolean network with asynchronous componentwise itera-
tions and a random strategy.
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FIGURE 2 Non-convergence of the boolean network with asynchronous componentwise
iterations as the condition (ii) is not verified.
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FIGURE 3 Non-convergence of the boolean network with asynchronous componentwise
iterations as the condition (iii) is not verified.
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