Formalisation of Logical Relations proofs using the Nominal Package

Julien Narboux and Christian Urban

June 13, 2007

Abstract

We present in this paper a formalisation of the chapter Logical Relations and a Case Study in Equivalence Checking by Karl Crary from the book on Advanced Topics in Types and Programming Languages, MIT Press 2005. We use a fully nominal approach to deal with binders. The formalisation has been performed within the Isabelle/HOL proof assistant using the Nominal Package.

Contents

1 Introduction 3
2 Definition of the language 4
2.1 Definition of the terms and types 4
2.2 Size functions 4
3 Capture-avoiding substitutions 5
3.1 Parallel substitution 6
3.2 Substitution 6
3.3 Lemmas about freshness and substitutions 6
4 Typing 9
4.1 Typing contexts 9
4.2 Definition of the typing relation 11
4.3 Inversion lemmas for the typing relation 11
5 Definitional Equivalence 12
6 Type-driven equivalence algorithm 12
6.1 Weak head reduction 12
6.1.1 Inversion lemma for weak head reduction 12
6.2 Weak head normalization 13
6.3 Algorithmic term equivalence and algorithmic path equivalence 14
6.3.1 Inversion lemmas for algorithmic term and path equivalences 15
6.4 Definition of the logical relation 17
6.5 Fundamental theorems 22
6.6 Completeness 24
7 About soundness 24

1 Introduction

For several reasons, proof assistants can be useful for proving properties of programming languages. Indeed, often the proofs consist in inductions involving cases, many of which are trivial. But it hard to guess in advance which case is trivial and even a small error can invalidate a result. Even more the use of a proof assistant can also help the researcher: it is possible to quickly check after a modification of the definitions if the proof is still valid. But in practice, the formalisation of proofs about programming has to address many troubles. The main problem, which is well known in the community is the representation of binders. Informal proofs contains arguments such as 'by renaming of the variables' or 'reasoning modulo alpha conversion'. These arguments are very hard to formalise. Several solutions have been proposed to try to solve this problem. On solution to represent binder is by using De-Bruijn indices. This alleviates such problems about too many details and in some cases leads to very slick proofs. Unfortunately, by using De-Bruijn indices the "symbol-pushing" involves a rather large amount of arithmetic on indices which is not present in informal descriptions. Another method of representing binders is by using higher-order abstract-syntax (HOAS) where the meta-language provides binding-constructs. The disadvantage with HOAS is that one has to encode the language at hand and use the reasoning infrastructure the theorem prover, for example Twelf, provides. In practice this means often that reasoning does not proceed as one would expect from the informal reasoning on paper.

These solution tend to force the user of the system to modify his proofs. We think that this should be the opposite, the system should be modified.

That is why we are currently developing a package for the Isabelle/HOL proof assistant [3]. which provides an infrastructure in the theorem prover Isabelle/HOL for representing binders as named α-equivalence classes $[1,5,4]$.

In this paper, we formalise the chapter about Logical Relation and a Case Study in Equivalence Checking by Karl Crary of the book Advanced Topics in Types and Programming Languages[2]. This example is interesting because logical relations are a fundamental technique for proving properties of programming languages. The purpose of this formalisation is to test and improve the Nominal Package in the context of a 'real life' example. Indeed, this chapter is not an exception, the problem of binders is treated informally, on the first page the reader can find the following sentence: 'As usual, we will identify terms that differ only in the names of bound variables, and our substitution is capture avoiding'.

The formalisation we provide has been realized withing the Isar language [6] within the Isabelle/HOL proof assistant[3]. The definitions and proofs given in this paper have been generated automatically from the formal proofs.

[^0]
2 Definition of the language

2.1 Definition of the terms and types

First we define the type of atom names which will be used for binders. Each atom type is infinitely many atoms and equality is decidable.
atom-decl name
We define the datatype representing types. Although, It does not contain any binder we still use the nominal_datatype command because the Nominal datatype package will prodive permutation functions and useful lemmas.

```
nominal-datatype \(t y=\)
    TBase
    | TUnit
    | Arrow ty ty ( \(\rightarrow-[100,100] 100)\)
```

The datatype of terms contains a binder. The notation <name»trm means that the name is bound inside trm.

```
nominal-datatype trm \(=\)
    Unit
    | Var name
    | Lam «name»trm (Lam [-].- [100,100] 100)
    | App trm trm
    | Const nat
```

types Ctxt $=($ name \times ty $)$ list
types Subst $=($ name \times trm $)$ list

As the datatype of types does not contain any binder, the application of a permutation is the identity function. In the future, this should be automatically derived by the package.

```
lemma perm-ty[simp]:
    fixes \(T:: t y\)
    and pi::name prm
    shows \(p i \cdot T=T\)
    by (induct \(T\) rule: ty.weak-induct) (simp-all)
lemma fresh-ty [simp]:
    fixes \(x\) ::name
    and \(T:: t y\)
    shows \(x \# T\)
    by (simp add: fresh-def supp-def)
```

lemma ty-cases:
fixes $T::$ ty
shows $\left(\exists T_{1} T_{2} . T=T_{1} \rightarrow T_{2}\right) \vee T=$ TUnit $\vee T=$ TBase
by (induct T rule:ty.weak-induct) (auto)

2.2 Size functions

We define size functions for types and terms. As Isabelle allows overloading we can use the same notation for both functions.

These functions are automatically generated for non nominal datatypes. In the future, we need to extend the package to generate size functions automatically for nominal datatypes as well.
The definition of a function using the nominal package generates four groups of proof obligations.

The first group are goal of the form finite (supp ()), these often be solve using the finite_guess tactic. The second group of goals corresponds to the invariant. If the user has not chosen to setup an invariant, then it just true and hence can easily be solved.
instance ty :: size ..
nominal-primrec
size $($ TBase $)=1$
size $($ TUnit $)=1$
size $\left(T_{1} \rightarrow T_{2}\right)=$ size $T_{1}+$ size T_{2}
by (rule TrueI) +
lemma ty-size-greater-zero [simp]:
fixes T ::ty
shows size $T>0$
by (nominal-induct rule:ty.induct) (simp-all)

3 Capture-avoiding substitutions

In this section we define parallel substitution. The usual substitution will be derived as a special case of parallel substitution. But first we define a function to lookup for the term corresponding to a type in an association list. Note that if the term does not appear in the list then we return a variable of that name.

```
fun
    lookup :: Subst \(\Rightarrow\) name \(\Rightarrow\) trm
where
    lookup [] \(x=\operatorname{Var} x\)
|lookup \(((y, T) \# \theta) x=(\) if \(x=y\) then \(T\) else lookup \(\theta x)\)
lemma lookup-eqvt[eqvt]:
    fixes pi::name prm
    shows pi•(lookup \(\theta x)=\) lookup \((p i \cdot \theta)(p i \cdot x)\)
by (induct \(\theta\) ) (auto simp add: perm-bij)
lemma lookup-fresh:
    fixes \(z::\) name
    assumes \(a\) : \(z \# \theta z \# x\)
    shows \(z \#\) lookup \(\theta\) x
using \(a\)
by (induct rule: lookup.induct)
    (auto simp add: fresh-list-cons)
lemma lookup-fresh':
```

assumes a : $z \# \theta$
shows lookup $\theta z=\operatorname{Var} z$
using a
by (induct rule: lookup.induct)
(auto simp add: fresh-list-cons fresh-prod fresh-atm)

3.1 Parallel substitution

consts
psubst :: Subst \Rightarrow trm \Rightarrow trm $(-<->[60,100] 100)$
nominal-primrec

```
    \(\theta<(\operatorname{Var} x)>=(\) lookup \(\theta x)\)
    \(\theta<\left(\operatorname{App} t_{1} t_{2}\right)>=A p p\left(\theta<t_{1}>\right)\left(\theta<t_{2}>\right)\)
    \(x \# \theta \Longrightarrow \theta<(\operatorname{Lam}[x] . t)>=\operatorname{Lam}[x] .(\theta<t>)\)
    \(\theta<(\) Const \(n)>=\) Const \(n\)
    \(\theta<(\) Unit \()>=\) Unit
apply(finite-guess)+
apply(rule TrueI)+
apply(simp add: abs-fresh)+
apply(fresh-guess)+
done
```


3.2 Substitution

The substitution function is defined just as a special case of parallel substitution.

```
abbreviation
    subst \(:: \operatorname{trm} \Rightarrow\) name \(\Rightarrow \operatorname{trm} \Rightarrow \operatorname{trm}(-[-::=-][100,100,100] 100)\)
where
    \(t\left[x::=t^{\prime}\right] \equiv\left(\left[\left(x, t^{\prime}\right)\right]\right)<t>\)
lemma subst [simp]:
    shows \((\operatorname{Var} x)[y::=t\rceil=\left(\right.\) if \(x=y\) then \(t^{\prime}\) else \(\left.(\operatorname{Var} x)\right)\)
    and \(\left(A p p t_{1} t_{2}\right)\left[y::=t^{\prime}\right]=\operatorname{App}\left(t_{1}\left[y::=t^{\prime}\right]\right)\left(t_{2}\left[y::=t^{\prime}\right]\right)\)
    and \(x \#\left(y, t^{\prime}\right) \Longrightarrow(\operatorname{Lam}[x] . t)\left[y::=t^{\prime}\right]=\operatorname{Lam}[x] .\left(t\left[y::=t^{\prime}\right]\right)\)
    and Const \(n\left[y::=t^{\prime}\right]=\) Const \(n\)
    and Unit \(\left[y::=t^{\prime}\right]=\) Unit
    by (simp-all add: fresh-list-cons fresh-list-nil)
lemma subst-eqvt[eqvt]:
    fixes \(p i::\) name prm
    shows \(p i \cdot\left(t\left[x::=t^{\prime}\right]\right)=(p i \cdot t)\left[(p i \cdot x)::=\left(p i \cdot t^{\prime}\right)\right]\)
    by (nominal-induct \(t\) avoiding: \(x t^{\prime}\) rule: trm.induct)
        (perm-simp add: fresh-bij)+
```


3.3 Lemmas about freshness and substitutions

lemma subst-rename:
fixes $c::$ name
assumes $a: c \# t_{1}$
shows $t_{1}\left[a::=t_{2}\right]=\left([(c, a)] \cdot t_{1}\right)\left[c::=t_{2}\right]$
using a
apply (nominal-induct t_{1} avoiding: a $c t_{2}$ rule: trm.induct)
$\operatorname{apply}($ simp add: trm.inject calc-atm fresh-atm abs-fresh perm-nat-def) + done
lemma fresh-psubst:
fixes $z::$ name
assumes a : $z \# t z \# \theta$
shows $z \#(\theta<t>)$
using a
by (nominal-induct t avoiding: z θ t rule: trm.induct)
(auto simp add: abs-fresh lookup-fresh)
lemma fresh-subst ${ }^{\prime \prime}$:
fixes $z::$ name
assumes $z \# t_{2}$
shows $z \# t_{1}\left[z::=t_{2}\right]$
using assms
by (nominal-induct t_{1} avoiding: $t_{2} z$ rule: trm.induct)
(auto simp add: abs-fresh fresh-nat fresh-atm)
lemma fresh-subst':
fixes z ::name
assumes $z \#[y] . t_{1} z \# t_{2}$
shows $z \# t_{1}\left[y::=t_{2}\right]$
using assms
by (nominal-induct t_{1} avoiding: y t_{2} z rule: trm.induct)
(auto simp add: abs-fresh fresh-nat fresh-atm)
lemma fresh-subst:
fixes z ::name
assumes $a: z \# t_{1} z \# t_{2}$
shows $z \# t_{1}\left[y::=t_{2}\right]$
using a
by (auto simp add: fresh-subst' abs-fresh)
lemma fresh-psubst-simp:
assumes $x \# t$
shows $(x, u) \# \theta<t>=\theta<t>$
using assms
proof (nominal-induct t avoiding: x u θ rule: trm.induct)
case (Lam y txu)
have $f s$: $y \# \theta y \# x y \# u$ by fact
moreover have $x \#$ Lam [y].t by fact
ultimately have $x \# t$ by (simp add: abs-fresh fresh-atm)
moreover have $i h: \wedge n T . n \# t \Longrightarrow((n, T) \# \theta)<t>=\theta<t>$ by fact
ultimately have $(x, u) \# \theta<t>=\theta<t>$ by auto
moreover have $(x, u) \# \theta<\operatorname{Lam}[y] . t>=\operatorname{Lam}[y] .((x, u) \# \theta<t>)$ using $f s$ by (simp add: fresh-list-cons fresh-prod)
moreover have $\theta<\operatorname{Lam}[y] . t>=\operatorname{Lam}[y] .(\theta<t>)$ using $f s$ by simp
ultimately show $(x, u) \# \theta<\operatorname{Lam}[y] . t>=\theta<L a m[y] . t>$ by auto
qed (auto simp add: fresh-atm abs-fresh)

```
lemma forget:
    fixes x::name
    assumes a: x#t
    shows t[x::=t] = t
    using a
by (nominal-induct t avoiding: x t' rule: trm.induct)
    (auto simp add: fresh-atm abs-fresh)
lemma subst-fun-eq:
    fixes u::trm
    assumes h:[x].t. 
    shows }\mp@subsup{t}{1}{}[x::=u]=\mp@subsup{t}{2}{}[y::=u
proof -
    {
        assume }x=y\mathrm{ and }\mp@subsup{t}{1}{}=\mp@subsup{t}{2}{
        then have ?thesis using h by simp
    }
    moreover
{
    assume h1:x\not=y and h2:t 
        then have ([(x,y)] • t2)[x::=u]= t2 [y::=u] by (simp add: subst-rename)
        then have ?thesis using h2 by simp
    }
    ultimately show ?thesis using alpha h by blast
qed
lemma psubst-empty[simp]:
    shows []<t> = t
by (nominal-induct t rule: trm.induct)
    (auto simp add: fresh-list-nil)
lemma psubst-subst-psubst:
    assumes h:c#0
    shows 0<t>[c::=s]=(c,s)#0<t>
    using }
by (nominal-induct t avoiding: }0\mathrm{ cs rule: trm.induct)
    (auto simp add: fresh-list-cons fresh-atm forget lookup-fresh lookup-fresh' fresh-psubst)
lemma subst-fresh-simp:
    assumes a: x#0
    shows }0<\operatorname{Var}x>=\operatorname{Var}
using a
by (induct 0 arbitrary: x, auto simp add:fresh-list-cons fresh-prod fresh-atm)
lemma psubst-subst-propagate:
    assumes x#0
    shows }0<t[x::=u]>=0<t>[x::=0<u>
using assms
proof (nominal-induct t avoiding: x u 0 rule: trm.induct)
    case(Var n x u 0)
    { assume }x=
        moreover have x#0 by fact
```

```
    ultimately have \(\theta<\operatorname{Var} n[x::=u]>=\theta<\operatorname{Var} n>[x::=\theta<u>]\) using subst-fresh-simp by auto
    \}
    moreover
    \{ assume \(h: x \neq n\)
        then have \(x \#\) Var \(n\) by (auto simp add: fresh-atm)
        moreover have \(x \# \theta\) by fact
        ultimately have \(x \# \theta<\) Var \(n>\) using fresh-psubst by blast
        then have \(\theta<\) Var \(n>[x::=\theta<u>]=\theta<\) Var \(n>\) using forget by auto
        then have \(\theta<\operatorname{Var} n[x::=u]>=\theta<\operatorname{Var} n>[x::=\theta<u>]\) using \(h\) by auto
    \}
    ultimately show ?case by auto
next
    case (Lam n t x u \(\theta\) )
    have \(f s: n \# x n \# u n \# \theta x \# \theta\) by fact
    have \(i h: \bigwedge\) y s \(\theta . y \# \theta \Longrightarrow((\theta<(t[y::=s])>)=((\theta<t>)[y::=(\theta<s>)]))\) by fact
    have \(\theta<(\operatorname{Lam}[n] . t)[x::=u]>=\theta<\operatorname{Lam}[n] .(t[x::=u])>\) using \(f s\) by auto
    then have \(\theta<(\operatorname{Lam}[n] . t)[x::=u]>=\operatorname{Lam}[n] . \theta<t[x::=u]>\) using \(f s\) by auto
    moreover have \(\theta<t[x::=u]>=\theta<t>[x::=\theta<u>]\) using \(i h f s\) by blast
    ultimately have \(\theta<(\operatorname{Lam}[n] . t)[x::=u]>=\operatorname{Lam}[n] .(\theta<t>[x::=\theta<u>])\) by auto
    moreover have Lam \([n] .(\theta<t>[x::=\theta<u>])=(\operatorname{Lam}[n] . \theta<t>)[x::=\theta<u>]\) using fs fresh-psubst
by auto
    ultimately have \(\theta<(\operatorname{Lam}[n] . t)[x::=u]>=(\operatorname{Lam}[n] . \theta<t>)[x::=\theta<u>]\) using fs by auto
    then show \(\theta<(\operatorname{Lam}[n] . t)[x::=u]>=\theta<\operatorname{Lam}[n] . t>[x::=\theta<u>]\) using \(f_{s}\) by auto
qed (auto)
```


4 Typing

4.1 Typing contexts

This section contains the definition and some properties of a typing context. As the concept of context often appears in the litterature and is general, we should in the future provide these lemmas in a library.

Definition of the Validity of contexts

First we define what valid contexts are. Informally a context is valid is it does not contains twice the same variable.
We use the following two inference rules:

$$
\text { valid }\left[\mathrm{v} _ \text {_NiL } \quad \frac{\text { valid } \Gamma \quad a \# \Gamma}{\text { valid }((a, T) \# \Gamma)} \mathrm{V}\right. \text { _cons }
$$

We need to derive the equivariance lemma for the relation valid. If all the constants which appear in the inductive definition have previously been shown to be equivariant and the lemmas have been tagged using the equivariant attribute then this proof can automated using the nominal_inductive command.
equivariance valid
We obtain the following lemma under the name valid.eqvt:

Now, we generate the inversion lemma for non empty lists. We add the elim attribute to tell the automated tactics to use it.

inductive-cases2

valid-cons-elim-auto $[$ elim]:valid $((x, T) \# \Gamma)$
The generated theorem is the following:

$$
\llbracket v a l i d((x, T) \# \Gamma) ; \llbracket v a l i d \Gamma ; x \# \Gamma \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P
$$

Definition of sub-contexts The definition of sub context is standard. We do not use the subset definition to prevent the need for unfolding the definition. We include validity in the definition to shorten the statements.

```
abbreviation
    sub-context :: Ctxt => Ctxt => bool ( - \subseteq- [55,55] 55)
where
    \Gamma
```

Lemmas about valid contexts Now, we can prove two useful lemmas about valid contexts.
lemma valid-monotonicity[elim]:
assumes $a: \Gamma \subseteq \Gamma^{\prime}$
and $\quad b: x \# \Gamma^{\prime}$
shows $\left(x, T_{1}\right) \# \Gamma \subseteq\left(x, T_{1}\right) \# \Gamma^{\prime}$
using $a b$ by auto
lemma fresh-context:
fixes Γ :: Ctxt
and a :: name
assumes $a \# \Gamma$
shows $\neg(\exists \tau:: t y .(a, \tau) \in$ set $\Gamma)$
using assms
by (induct Γ)
(auto simp add: fresh-prod fresh-list-cons fresh-atm)
lemma type-unicity-in-context:
assumes a : valid Γ
and $\quad b:\left(x, T_{1}\right) \in \operatorname{set} \Gamma$
and $\quad c:\left(x, T_{2}\right) \in \operatorname{set} \Gamma$
shows $T_{1}=T_{2}$
using $a b c$
by (induct Γ)
(auto dest!: fresh-context)

$$
\begin{gathered}
\frac{\text { valid } \Gamma \quad(x, T) \in \operatorname{set} \Gamma}{\Gamma \vdash \operatorname{Var} x: T} \mathrm{~T}_{-} \mathrm{VAR} \quad \frac{\Gamma \vdash e_{1}: T_{1} \rightarrow T_{2} \quad \Gamma \vdash e_{2}: T_{1}}{\Gamma \vdash A p p e_{1} e_{2}: T_{2}} \text { T_APP } \\
\frac{x \# \Gamma \quad\left(x, T_{1}\right) \# \Gamma \vdash t: T_{2}}{\Gamma \vdash \operatorname{Lam}[x] . t: T_{1} \rightarrow T_{2}} \mathrm{~T}_{-} \mathrm{LAM} \\
\frac{\text { valid } \Gamma}{\Gamma \vdash \text { Const } n: \text { TBase }} \mathrm{T} \text { _Const } \frac{\text { valid } \Gamma}{\Gamma \vdash \text { Unit }: \text { TUnit }} \mathrm{T}_{-} \text {UniT }
\end{gathered}
$$

Figure 1: Typing rules

4.2 Definition of the typing relation

Now, we can define the typing judgements for terms. The rules are given in figure 1.

Now, we generate the equivariance lemma and the strong induction principle and we derive the lemma about validity.
equivariance typing
nominal-inductive typing
by (simp-all add: abs-fresh)
lemma typing-implies-valid:
assumes $a: \Gamma \vdash t: T$
shows valid Γ
using a by (induct) (auto)

4.3 Inversion lemmas for the typing relation

We generate some inversion lemmas for the typing judgment and add them as elimination rules for the automatic tactics. During the generation of these lemmas, we need the injectivity properties of the constructor of the nominal datatypes. These are not added by default in the set of simplification rules to prevent unwanted simplifications in the rest of the development. In the future, the inductive_cases will be reworked to allow to use its own set of rules instead of the whole 'simpset'.
declare trm.inject [simp add]
declare ty.inject [simp add]
inductive-cases $2 t$-Lam-elim-auto $[$ elim $]: \Gamma \vdash \operatorname{Lam}[x] . t: T$
inductive-cases $2 t$-Var-elim-auto[elim]: $\Gamma \vdash \operatorname{Var} x: T$
inductive-cases $2 t$-App-elim-auto[elim]: $\Gamma \vdash A p p x y: T$
inductive-cases 2 t-Const-elim-auto $[$ elim $]: \Gamma \vdash$ Const $n: T$
inductive-cases2 t-Unit-elim-auto[elim]: $\Gamma \vdash$ Unit : TUnit
inductive-cases2 t-Unit-elim-auto ${ }^{\prime}[$ elim $]: \Gamma \vdash s:$ TUnit
declare trm.inject [simp del]
declare ty.inject [simp del]

$$
\operatorname{App}\left(\operatorname{Lam}[x] . t_{1}\right) t_{2} \rightsquigarrow t_{1}\left[x::=t_{2}\right] \text { QAR_BETA } \quad \frac{t_{1} \rightsquigarrow t_{1}{ }^{\prime}}{A p p t_{1} t_{2} \rightsquigarrow A p p t_{1}{ }^{\prime} t_{2}} \text { QAR_APP }
$$

5 Definitional Equivalence

$$
\begin{aligned}
& \frac{\Gamma \vdash t: T}{\Gamma \vdash t \equiv t: T} \text { Q_REFL } \quad \frac{\Gamma \vdash t \equiv s: T}{\Gamma \vdash s \equiv t: T} \text { Q_SYMM } \\
& \frac{\Gamma \vdash s \equiv t: T \quad \Gamma \vdash t \equiv u: T}{\Gamma \vdash s \equiv u: T} \text { Q_Trans }^{\Gamma} \\
& \frac{\Gamma \vdash s_{1} \equiv t_{1}: T_{1} \rightarrow T_{2} \quad \Gamma \vdash s_{2} \equiv t_{2}: T_{1}}{\Gamma \vdash \operatorname{App} s_{1} s_{2} \equiv \operatorname{App} t_{1} t_{2}: T_{2}} \text { Q_APP } \\
& \frac{x \# \Gamma \quad\left(x, T_{1}\right) \# \Gamma \vdash s_{2} \equiv t_{2}: T_{2}}{\Gamma \vdash \operatorname{Lam}[x] \cdot s_{2} \equiv \operatorname{Lam}[x] \cdot t_{2}: T_{1} \rightarrow T_{2}} \text { Q_ABS } \\
& \frac{x \#\left(\Gamma, s_{2}, t_{2}\right)\left(x, T_{1}\right) \# \Gamma \vdash s_{1} \equiv t_{1}: T_{2} \quad \Gamma \vdash s_{2} \equiv t_{2}: T_{1}}{\Gamma \vdash \operatorname{App}\left(\operatorname{Lam}[x] \cdot s_{1}\right) s_{2} \equiv t_{1}\left[x::=t_{2}\right]: T_{2}} \text { Q_BETA } \\
& \frac{x \#(\Gamma, s, t) \quad\left(x, T_{1}\right) \# \Gamma \vdash \operatorname{Apps}(\operatorname{Var} x) \equiv \operatorname{Appt}(\operatorname{Var} x): T_{2}}{\Gamma \vdash s \equiv t: T_{1} \rightarrow T_{2}} \text { Q_ExT } \\
& \frac{\Gamma \vdash s: \text { TUnit } \quad \Gamma \vdash t: \text { TUnit }}{\Gamma \vdash s \equiv t: \text { TUnit }} \text { Q_Unit }
\end{aligned}
$$

It is now a tradition, we derive the lemma about validity, and we generate the equivariance lemma and the strong induction principle.
equivariance def-equiv
nominal-inductive def-equiv
by (simp-all add: abs-fresh fresh-subst')
lemma def-equiv-implies-valid:
assumes $a: \Gamma \vdash t \equiv s: T$
shows valid Γ
using a by (induct) (auto elim: typing-implies-valid)

6 Type-driven equivalence algorithm

We follow the original presentation. The algorithm is described using inference rules only.

6.1 Weak head reduction

6.1.1 Inversion lemma for weak head reduction

declare trm.inject [simp add]
declare ty.inject [simp add]
inductive-cases2 whr-Gen[elim]: $t \rightsquigarrow t^{\prime}$

```
inductive-cases2 whr-Lam[elim]: Lam [x].t }\rightsquigarrow\mp@subsup{t}{}{\prime
inductive-cases2 whr-App-Lam[elim]: App (Lam [x].t12) t2 \rightsquigarrowt
inductive-cases2 whr-Var[elim]: Var x}\rightsquigarrow
inductive-cases2 whr-Const[elim]: Const n}\rightsquigarrow
inductive-cases2 whr-App[elim]: App p q\rightsquigarrowt
inductive-cases2 whr-Const-Right[elim]: t\rightsquigarrow Const n
inductive-cases2 whr-Var-Right[elim]: t\rightsquigarrow Var x
inductive-cases2 whr-App-Right[elim]:t }\rightsquigarrowApp p 
declare trm.inject [simp del]
declare ty.inject [simp del]
equivariance whr-def
```


6.2 Weak head normalization

abbreviation

 \(n f::\) trm \(\Rightarrow\) bool (- \(\rightsquigarrow \mid[100] 100)\)
 where
$t \rightsquigarrow \mid \equiv \neg(\exists u . t \rightsquigarrow u)$
$\frac{s \rightsquigarrow t \quad t \Downarrow u}{s \Downarrow u}$ QAN_REDUCE $\quad \frac{t \rightsquigarrow \mid}{t \Downarrow t}$ QAN_NORMAL
declare trm.inject[simp]
inductive-cases2 whn-inv-auto[elim]: $t \Downarrow t^{\prime}$
declare trm.inject[simp del]
lemma whn-eqvt[eqvt]:
fixes pi::name prm
assumes $a: t \Downarrow t^{\prime}$
shows $(p i \cdot t) \Downarrow\left(p i \cdot t^{\prime}\right)$
using a
apply(induct)
apply (rule $Q A N$-Reduce)
apply (rule whr-def.eqvt)
apply(assumption)+
apply(rule QAN-Normal)
apply (auto)
apply (drule-tac pi=rev pi in whr-def.eqvt)
apply (perm-simp)
done
lemma red-unicity :
assumes $a: x \rightsquigarrow a$
and $\quad b: x \rightsquigarrow b$
shows $a=b$

```
    using a b
apply (induct arbitrary: b)
apply (erule whr-App-Lam)
apply (clarify)
apply (rule subst-fun-eq)
apply (simp)
apply (force)
apply (erule whr-App)
apply (blast)+
done
lemma nf-unicity :
    assumes }x\Downarrowa\mathrm{ and }x\Downarrow
    shows }a=
    using assms
proof (induct arbitrary: b)
    case (QAN-Reduce x t a b)
    have h:x\rightsquigarrowtt\Downarrowa by fact
    have ih:\\b.t\Downarrowb\Longrightarrowa=b by fact
    have }x\Downarrowb\mathrm{ by fact
    then obtain t' where }x\rightsquigarrow\mp@subsup{t}{}{\prime}\mathrm{ and }hl:\mp@subsup{t}{}{\prime}\Downarrowb\mathrm{ using }h\mathrm{ by auto
    then have t=\mp@subsup{t}{}{\prime}}\mathrm{ using }h\mathrm{ red-unicity by auto
    then show a=b using ih hl by auto
qed (auto)
```


6.3 Algorithmic term equivalence and algorithmic path equivalence

$$
\begin{aligned}
& \frac{s \Downarrow p \quad t \Downarrow q \quad \Gamma \vdash p \leftrightarrow q: \text { TBase }}{\Gamma \vdash s \Leftrightarrow t: \text { TBase }} \text { QAT_BASE } \\
& \frac{x \#(\Gamma, s, t) \quad\left(x, T_{1}\right) \# \Gamma \vdash \operatorname{Apps}(\operatorname{Var} x) \Leftrightarrow \operatorname{App} t(\operatorname{Var} x): T_{2}}{\Gamma \vdash s \Leftrightarrow t: T_{1} \rightarrow T_{2}} \text { QAT_ARRow } \\
& \frac{\text { valid } \Gamma}{\Gamma \vdash s \Leftrightarrow t: \text { TUnit }} \text { QAT_ONE } \\
& \frac{\text { valid } \Gamma \quad(x, T) \in \operatorname{set} \Gamma}{\Gamma \vdash \operatorname{Var} x \leftrightarrow \operatorname{Var} x: T} \text { QAP_VAR } \\
& \frac{\Gamma \vdash p \leftrightarrow q: T_{1} \rightarrow T_{2} \quad \Gamma \vdash s \Leftrightarrow t: T_{1}}{\Gamma \vdash A p p p s \leftrightarrow A p p q t: T_{2}} \text { QAP_APP } \\
& \frac{\text { valid } \Gamma}{\Gamma \vdash \text { Const } n \leftrightarrow \text { Const } n: \text { TBase }} \text { QAP_ConsT }
\end{aligned}
$$

Again we generate the equivariance lemma and the strong induction principle.
equivariance alg-equiv
nominal-inductive alg-equiv
avoids QAT-Arrow: x
by simp-all

6.3.1 Inversion lemmas for algorithmic term and path equivalences

```
declare trm.inject [simp add]
declare ty.inject [simp add]
inductive-cases2 alg-equiv-Base-inv-auto[elim]: }\Gamma\vdashs\Leftrightarrowt:TBas
inductive-cases2 alg-equiv-Arrow-inv-auto[elim]: }\Gamma\vdashs\Leftrightarrowt:T,T\mp@code{T
inductive-cases2 alg-path-equiv-Base-inv-auto[elim]: }\Gamma\vdashs\leftrightarrowt:TBas
inductive-cases2 alg-path-equiv-Unit-inv-auto[elim]: }\Gamma\vdashs\leftrightarrowt:TUni
inductive-cases2 alg-path-equiv-Arrow-inv-auto[elim]: }\Gamma\vdashs\leftrightarrowt:T,T, 弶
inductive-cases2 alg-path-equiv-Var-left-inv-auto[elim]: }\Gamma\vdashV\operatorname{Var}x\leftrightarrowt:
inductive-cases2 alg-path-equiv-Var-left-inv-auto'[elim]: }\Gamma\vdash\operatorname{Var}x\leftrightarrowt:T'T
inductive-cases2 alg-path-equiv-Var-right-inv-auto[elim]: }\Gamma\vdashs\leftrightarrow\operatorname{Var x :T
inductive-cases2 alg-path-equiv-Var-right-inv-auto'[elim]: }\Gamma\vdashs\leftrightarrow\operatorname{Var x : T'
inductive-cases2 alg-path-equiv-Const-left-inv-auto[elim]: }\Gamma\vdash\mathrm{ Const n ↔t:T
inductive-cases2 alg-path-equiv-Const-right-inv-auto[elim]: }\Gamma\vdashs\leftrightarrow\mathrm{ Const n :T
inductive-cases2 alg-path-equiv-App-left-inv-auto[elim]: }\Gamma\vdashApp ps\leftrightarrowt:
inductive-cases2 alg-path-equiv-App-right-inv-auto[elim]: }\Gamma\vdashs\leftrightarrowAppqt:
inductive-cases2 alg-path-equiv-Lam-left-inv-auto[elim]: }\Gamma\vdashLam[x].s\leftrightarrowt:
inductive-cases2 alg-path-equiv-Lam-right-inv-auto[elim]: }\Gamma\vdasht\leftrightarrow\operatorname{Lam[x].s :T
declare trm.inject [simp del]
declare ty.inject [simp del]
lemma Q-Arrow-strong-inversion:
    assumes fs: x#\Gamma x#tx#u
    and h:\Gamma\vdasht\Leftrightarrowu:T
    shows (x, T 1)#\Gamma\vdashAppt (Var x)\LeftrightarrowAppu(Var x): T
proof -
    obtain y where fs2: y# (\Gamma,t,u) and (y,T1)#\Gamma\vdashAppt (Var y)\LeftrightarrowApp u (Var y): T T 
        using h by auto
```



```
        using alg-equiv.eqvt[simplified] by blast
    then show ?thesis using fs fs2 by (perm-simp)
qed
```

For the algorithmic_transitivity lemma we need a unicity property. But one has to be cautious, because this unicity property is true only for algorithmic path. Indeed the following lemma is false:

$$
\llbracket \Gamma \vdash s \Leftrightarrow t: T ; \Gamma \vdash s \Leftrightarrow u: T^{\prime} \rrbracket \Longrightarrow T=T^{\prime}
$$

Here is the counter example :
$\Gamma \vdash$ Const $n \Leftrightarrow$ Const $n:$ Tbase and $\Gamma \vdash$ Const $n \Leftrightarrow$ Const $n:$ TUnit

```
lemma algorithmic-path-type-unicity:
    shows \(\Gamma \vdash s \leftrightarrow t: T \Longrightarrow \Gamma \vdash s \leftrightarrow u: T^{\prime} \Longrightarrow T=T^{\prime}\)
proof (induct arbitrary: u \(T^{\prime}\)
    rule: alg-equiv-alg-path-equiv.inducts(2) [of - - - \%abcd.True])
    case (QAP-Var \(\left.\Gamma x T u T^{\prime}\right)\)
    have \(\Gamma \vdash \operatorname{Var} x \leftrightarrow u: T^{\prime}\) by fact
    then have \(u=\operatorname{Var} x\) and \(\left(x, T^{\prime}\right) \in\) set \(\Gamma\) by auto
    moreover have valid \(\Gamma(x, T) \in\) set \(\Gamma\) by fact
    ultimately show \(T=T^{\prime}\) using type-unicity-in-context by auto
next
    case ( \(Q A P-A p p \Gamma p q T_{1} T_{2}\) stu \(\left.T_{2}{ }^{\prime}\right)\)
    have \(i h: \bigwedge u T . \Gamma \vdash p \leftrightarrow u: T \Longrightarrow T_{1} \rightarrow T_{2}=T\) by fact
    have \(\Gamma \vdash\) App ps \(s u: T_{2}{ }^{\prime}\) by fact
    then obtain \(r t T_{1}{ }^{\prime}\) where \(u=A p p r t \Gamma \vdash p \leftrightarrow r: T_{1}{ }^{\prime} \rightarrow T_{2}{ }^{\prime}\) by auto
    then have \(T_{1} \rightarrow T_{2}=T_{1}{ }^{\prime} \rightarrow T_{2}{ }^{\prime}\) by auto
    then show \(T_{2}=T_{2}{ }^{\prime}\) using ty.inject by auto
qed (auto)
lemma alg-path-equiv-implies-valid:
    shows \(\Gamma \vdash s \Leftrightarrow t: T \Longrightarrow \operatorname{valid} \Gamma\)
    and \(\quad \Gamma \vdash s \leftrightarrow t: T \Longrightarrow\) valid \(\Gamma\)
by (induct rule : alg-equiv-alg-path-equiv.inducts, auto)
lemma algorithmic-symmetry:
    shows \(\Gamma \vdash s \Leftrightarrow t: T \Longrightarrow \Gamma \vdash t \Leftrightarrow s: T\)
    and \(\quad \Gamma \vdash s \leftrightarrow t: T \Longrightarrow \Gamma \vdash t \leftrightarrow s: T\)
by (induct rule: alg-equiv-alg-path-equiv.inducts)
    (auto simp add: fresh-prod)
lemma algorithmic-transitivity:
    shows \(\Gamma \vdash s \Leftrightarrow t: T \Longrightarrow \Gamma \vdash t \Leftrightarrow u: T \Longrightarrow \Gamma \vdash s \Leftrightarrow u: T\)
    and \(\quad \Gamma \vdash s \leftrightarrow t: T \Longrightarrow \Gamma \vdash t \leftrightarrow u: T \Longrightarrow \Gamma \vdash s \leftrightarrow u: T\)
proof (nominal-induct \(\Gamma\) st \(T\) and \(\Gamma\) st \(T\) avoiding: \(u\) rule: alg-equiv-alg-path-equiv.strong-inducts)
    case (QAT-Base sptq \(\overline{\text { c }} u\) )
    have \(\Gamma \vdash t \Leftrightarrow u\) : TBase by fact
    then obtain \(r^{\prime} q^{\prime}\) where \(b 1: t \Downarrow q^{\prime}\) and \(b 2: u \Downarrow r^{\prime}\) and \(b 3: \Gamma \vdash q^{\prime} \leftrightarrow r^{\prime}:\) TBase by auto
    have \(i h: \Gamma \vdash q \leftrightarrow r^{\prime}:\) TBase \(\Longrightarrow \Gamma \vdash p \leftrightarrow r^{\prime}:\) TBase by fact
    have \(t \Downarrow q\) by fact
    with b1 have eq: \(q=q^{\prime}\) by (simp add: nf-unicity)
    with \(i h b 3\) have \(\Gamma \vdash p \leftrightarrow r^{\prime}:\) TBase by simp
    moreover
    have \(s \Downarrow p\) by fact
    ultimately show \(\Gamma \vdash s \Leftrightarrow u\) : TBase using b2 by auto
next
    case (QAT-Arrow \(x\) Г st \(\left.T_{1} T_{2} u\right)\)
    have \(i h:\left(x, T_{1}\right) \# \Gamma \vdash \operatorname{App} t(\operatorname{Var} x) \Leftrightarrow \operatorname{App} u(\operatorname{Var} x): T_{2}\)
                \(\Longrightarrow\left(x, T_{1}\right) \# \Gamma \vdash A p p s(\operatorname{Var} x) \Leftrightarrow A p p u(\operatorname{Var} x): T_{2}\) by fact
    have \(f s\) : \(x \# \Gamma x \# s x \# t x \# u\) by fact
    have \(\Gamma \vdash t \Leftrightarrow u: T_{1} \rightarrow T_{2}\) by fact
    then have \(\left(x, T_{1}\right) \# \Gamma \vdash \operatorname{App} t(\operatorname{Var} x) \Leftrightarrow \operatorname{App} u(\operatorname{Var} x): T_{2}\) using \(f s\)
        by (simp add: Q-Arrow-strong-inversion)
    with ih have \(\left(x, T_{1}\right) \# \Gamma \vdash \operatorname{App} s(\operatorname{Var} x) \Leftrightarrow \operatorname{App} u(\operatorname{Var} x): T_{2}\) by simp
    then show \(\Gamma \vdash s \Leftrightarrow u: T_{1} \rightarrow T_{2}\) using \(f s\) by (auto simp add: fresh-prod)
```

```
next
    case (QAP-App \Gammapq T T T T stu)
    have }\Gamma\vdashAppqt\leftrightarrowu:\mp@subsup{T}{2}{}\mathrm{ by fact
    then obtain r T\mp@subsup{1}{}{\prime}}v=\mathrm{ where ha: }\Gamma\vdashq\leftrightarrowr:\mp@subsup{T}{1}{\prime}->\mp@subsup{T}{2}{}\mathrm{ and hb: }\Gamma\vdasht\Leftrightarrowv:\mp@subsup{T}{1}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and eq:u=App
rv
        by auto
    have ih1: }\Gamma\vdashq\leftrightarrowr:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\Longrightarrow\Gamma\vdashp\leftrightarrowr:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
    have ih2:\Gamma\vdasht\Leftrightarrowv:T\mp@subsup{T}{1}{}\Longrightarrow\Gamma\vdashs\Leftrightarrowv:T}\mp@subsup{T}{1}{}\mathrm{ by fact
    have }\Gamma\vdashp\leftrightarrowq:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
    then have }\Gamma\vdashq\leftrightarrowp:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by (simp add: algorithmic-symmetry)
    with ha have T}\mp@subsup{T}{1}{\prime}->\mp@subsup{T}{2}{\prime}=\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using algorithmic-path-type-unicity by simp
    then have }\mp@subsup{T}{1}{\prime}\mp@subsup{}{}{\prime}=\mp@subsup{T}{1}{}\mathrm{ by (simp add: ty.inject)
    then have }\Gamma\vdashs\Leftrightarrowv:\mp@subsup{T}{1}{}\Gamma\vdashp\leftrightarrowr:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using ih1 ih2 ha hb by auto
    then show }\Gamma\vdashAppps\leftrightarrowu:\mp@subsup{T}{2}{}\mathrm{ using eq by auto
qed (auto)
lemma algorithmic-weak-head-closure:
    shows }\Gamma\vdashs\Leftrightarrowt:T\Longrightarrow\mp@subsup{s}{}{\prime}\rightsquigarrows\Longrightarrow\mp@subsup{t}{}{\prime}\rightsquigarrowt\Longrightarrow\Gamma\vdash\mp@subsup{s}{}{\prime}\Leftrightarrow\mp@subsup{t}{}{\prime}:
apply (nominal-induct \Gamma st T avoiding: s}\mp@subsup{s}{}{\prime}\mp@subsup{t}{}{\prime
        rule: alg-equiv-alg-path-equiv.strong-inducts(1)[of--- %abbcle. True])
apply(auto intro!: QAT-Arrow)
done
lemma algorithmic-monotonicity:
    shows }\Gamma\vdashs\Leftrightarrowt:T\Longrightarrow\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\Longrightarrow\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\Longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdashs\Leftrightarrowt:
    and }\Gamma\vdashs\leftrightarrowt:T\Longrightarrow\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\Longrightarrow\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\Longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdashs\leftrightarrowt:
proof (nominal-induct \Gamma stT and \Gamma st T avoiding: \Gamma'rule: alg-equiv-alg-path-equiv.strong-inducts)
    case (QAT-Arrow x \Gamma st T T T T T 杵)
    have fs:x#\Gamma x#s x#t x# ''by fact
    have h2:\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ by fact}
    have ih:\\Gamma
    have valid \Gamma' by fact
    then have valid (( }x,\mp@subsup{T}{1}{})#\mp@subsup{\Gamma}{}{\prime})\mathrm{ using fs by auto
    moreover
    have sub: (x,T, ) #\Gamma\subseteq (x,T, ) # ' ' using h2 by auto
    ultimately have (x, T1)# #
    then show }\mp@subsup{\Gamma}{}{\prime}\vdashs\Leftrightarrowt:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using fs by (auto simp add: fresh-prod)
qed (auto)
lemma path-equiv-implies-nf:
    assumes }\Gamma\vdashs\leftrightarrowt:
    shows s\rightsquigarrow| and t\rightsquigarrow|
using assms
by (induct rule: alg-equiv-alg-path-equiv.inducts(2)) (simp, auto)
```


6.4 Definition of the logical relation

We define the logical equivalence as a function. Note that here we can not use an inductive definition because of the negative occurence in the arrow case.
function log-equiv $::(C t x t \Rightarrow t r m \Rightarrow t r m \Rightarrow t y \Rightarrow$ bool $)(-\vdash-i s-:-[60,60,60,60] 60)$

```
where
    \Gamma \vdash s ~ i s ~ t : ~ T U n i t ~ = ~ T r u e ~
    |}\vdashs\mathrm{ is }t:\mathrm{ TBase = }\vdash\vdashs\Leftrightarrowt:TBas
    |}\vdashs\mathrm{ is }t:(\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{})
        (\forall\mp@subsup{\Gamma}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{t}{}{\prime}.\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\longrightarrow\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }\mp@subsup{t}{}{\prime}:\mp@subsup{T}{1}{}\longrightarrow(\mp@subsup{\Gamma}{}{\prime}\vdash(Apps s') is (App t t'):T}\mp@subsup{T}{2}{})
apply (auto simp add: ty.inject)
apply (subgoal-tac (\exists T1 T T . b=T T }->\mathrm{ 珢) }\vee\mp@code{b=TUnit \vee b=TBase )
apply (force)
apply (rule ty-cases)
done
termination
apply(relation measure ( }\lambda(-,-,-,T). size T)
apply(auto)
done
Monotonicity of the logical equivalence relation.
```

```
lemma logical-monotonicity :
```

lemma logical-monotonicity :
assumes a1: \Gamma\vdashs is t:T
and a2:\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}
and a3: valid }\mp@subsup{\Gamma}{}{\prime
shows }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ s is t:T
using a1 a2 a3
proof (induct arbitrary: \Gamma' rule: log-equiv.induct)
case (2 \Gamma st [')
then show }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ is }t\mathrm{ :TBase using algorithmic-monotonicity by auto
next
case (3 \Gamma st T T T T [')
have \Gamma\vdashs is t:}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{
and }\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime
and valid \Gamma' by fact
then show }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ s is }t:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by simp
qed (auto)
lemma main-lemma:
shows }\Gamma\vdashs\mathrm{ is }t:T\Longrightarrow\mathrm{ valid }\Gamma\Longrightarrow\Gamma\vdashs\Leftrightarrowt:
and }\Gamma\vdashp\leftrightarrowq:T\Longrightarrow\Gamma\vdashp\mathrm{ is q:T
proof (nominal-induct T arbitrary: \Gamma st pq rule: ty.induct)
case (Arrow T T T T)
{
case(1 \Gamma st)
have ih1:
 st. \llbracket\Gamma\vdashs is t: T T ; valid \Gamma\rrbracket\Longrightarrow\Gamma\vdashs\Leftrightarrowt:T T by fact
have ih2:
Gamma st.\Gamma\vdashs↔t:T}\mp@subsup{T}{1}{}\Longrightarrow\Gamma\vdashs\mathrm{ is }t:\mp@subsup{T}{1}{}\mathrm{ by fact
have h:\Gamma\vdashs is t:T}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
obtain x::name where fs:x\#(\Gamma,s,t) by (erule exists-fresh[OF fs-name1])
have valid \Gamma by fact
then have v: valid ((x,\mp@subsup{T}{1}{})\#\Gamma) using fs by auto
then have (x,T,T)\#\Gamma\vdashV\operatorname{Var}x\leftrightarrow\operatorname{Var}x:T\mp@subsup{T}{1}{}\mathrm{ by auto}
then have (x,T\mp@subsup{T}{1}{})\#\Gamma\vdashV\mathrm{ Var x is Var x : T}\mp@subsup{T}{1}{}\mathrm{ using ih2 by auto}
then have (x,T1)\#\Gamma\vdashApps(Var x) is App t (Var x): T2 using }hv\mathrm{ by auto
then have (x,T1)\#\Gamma\vdashApps(Var x)\LeftrightarrowAppt(Var x):T, T2 using ih1v by auto
then show }\Gamma\vdashs\Leftrightarrowt:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using fs by (auto simp add: fresh-prod)
next

```
```

 case (2 \Gammapq)
 have h:\Gamma\vdashp\leftrightarrowq:T}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
 have ih1:\\Gamma st. }\\vdashs\leftrightarrowt:\mp@subsup{T}{2}{}\Longrightarrow\Gamma\vdashs\mathrm{ is }t:\mp@subsup{T}{2}{}\mathrm{ by fact
 have ih2:\\Gamma st. \llbracket\Gamma\vdashs is t:T}\mp@subsup{T}{1}{\prime}\mathrm{ valid }\Gamma\rrbracket\Longrightarrow\Gamma\vdashs\Leftrightarrowt:T,T\mp@code{by fact
 {
 fix }\mp@subsup{\Gamma}{}{\prime}s
 assume \Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and }hl:\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ is }t:\mp@subsup{T}{1}{}\mathrm{ and }hk:valid \Gamma'
 then have }\mp@subsup{\Gamma}{}{\prime}\vdashp\leftrightarrowq:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using }h\mathrm{ algorithmic-monotonicity by auto
 moreover have }\mp@subsup{\Gamma}{}{\prime}\vdashs\Leftrightarrowt:\mp@subsup{T}{1}{}\mathrm{ using ih2 hl hk by auto
 ultimately have }\mp@subsup{\Gamma}{}{\prime}\vdash
 then have \Gamma'\vdashAppps is App qt:T,T using ih1 by auto
 }
 then show }\Gamma\vdashp\mathrm{ is }q:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by simp
 }
 next
case TBase
{ case 2
have h:\Gamma\vdashs\leftrightarrowt:TBase by fact
then have s\rightsquigarrow| and tw| using path-equiv-implies-nf by auto
then have }s\Downarrows\mathrm{ and }t\Downarrowt\mathrm{ by auto
then have }\Gamma\vdashs\Leftrightarrowt:TBase using h by aut
then show }\Gamma\vdashs\mathrm{ is }t\mathrm{ : TBase by auto
}
qed (auto elim: alg-path-equiv-implies-valid)
corollary corollary-main:
assumes }a:\Gamma\vdashs\leftrightarrowt:
shows }\Gamma\vdashs\Leftrightarrowt:
using a main-lemma alg-path-equiv-implies-valid by blast
lemma logical-symmetry:
assumes a: }\Gamma\vdashs\mathrm{ is }t:
shows }\Gamma\vdasht\mathrm{ is s:T
using a
by (nominal-induct arbitrary: \Gamma s t rule: ty.induct)
(auto simp add: algorithmic-symmetry)
lemma logical-transitivity:
assumes }\Gamma\vdashs\mathrm{ is }t:T\Gamma\vdasht\mathrm{ is }u:
shows }\Gamma\vdashs\mathrm{ is u:T
using assms
proof (nominal-induct arbitrary: \Gamma stu rule:ty.induct)
case TBase
then show }\Gamma\vdashs\mathrm{ s is u:TBase by (auto elim: algorithmic-transitivity)
next
case (Arrow T T T T \Gamma \Gamma stu)
have h1:\Gamma\vdashs is t:T}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
have h2:\Gamma\vdasht is u:T}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
have ih1:
Gamma s tu. \llbracket\Gamma\vdashs is t: T
have ih2:
Gamma stu.\llbracket\Gamma\vdashs is t: T
{
fix }\mp@subsup{\Gamma}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{u}{}{\prime
assume hsub:\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and }hl:\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }\mp@subsup{u}{}{\prime}:\mp@subsup{T}{1}{}\mathrm{ and }hk:valid \mp@subsup{\Gamma}{}{\prime}

```
```

then have }\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{u}{}{\prime}\mathrm{ is s'}\mp@subsup{s}{}{\prime}:\mp@subsup{T}{1}{}\mathrm{ using logical-symmetry by blast
then have }\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{u}{}{\prime}\mathrm{ is u}\mp@subsup{u}{}{\prime}:T\mp@subsup{T}{1}{}\mathrm{ using ih1 hl by blast
then have \Gamma'\vdashAppt u' is Appu u': T T ~ using h2 hsub hk by auto
moreover have \Gamma'\vdash
ultimately have }\mp@subsup{\Gamma}{}{\prime}\vdashApps\mp@subsup{s}{}{\prime}\mathrm{ is Appu u':T}\mp@subsup{T}{2}{}\mathrm{ using ih2 by blast
}
then show }\Gamma\vdashs\mathrm{ is }u:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by auto
qed (auto)

```

To simplify the formal proof, here we derive two lemmas which are weaker than the lemma in the paper version. We omit the reflexive and transitive closure of the relation \(s^{\prime} \rightsquigarrow s\) in the assumptions.
```

lemma logical-weak-head-closure:
assumes a: }\Gamma\vdashs\mathrm{ is }t:
and b: s'}\rightsquigarrow
and c: t'}\rightsquigarrow~
shows }\Gamma\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }\mp@subsup{t}{}{\prime}:
using a b c algorithmic-weak-head-closure
by (nominal-induct arbitrary: \Gamma st s't'rule: ty.induct)
(auto, blast)
lemma logical-weak-head-closure':
assumes }\Gamma\vdashs\mathrm{ is }t:T\mathrm{ and }\mp@subsup{s}{}{\prime}\rightsquigarrow
shows }\Gamma\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }t:
using assms
proof (nominal-induct arbitrary: \Gamma st s' rule: ty.induct)
case (TBase \Gamma sts')
then show ?case by force
next
case (TUnit \Gamma st s
then show ?case by auto
next

```

```

 have h1:s' }\rightsquigarrows\mathrm{ by fact
    ```

```

 have h2:\Gamma\vdashs is t:T}\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by fact
 then
 have hb:\forall\mp@subsup{\Gamma}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{t}{}{\prime}.\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\longrightarrow\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }\mp@subsup{t}{}{\prime}:\mp@subsup{T}{1}{}\longrightarrow(\mp@subsup{\Gamma}{}{\prime}\vdash(App s s') is (App t t'):T T ()
 by auto
 {
 fix }\mp@subsup{\Gamma}{}{\prime}\mp@subsup{s}{2}{}\mp@subsup{t}{2}{
 assume }\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and }\mp@subsup{\Gamma}{}{\prime}\vdash\mp@subsup{s}{2}{}\mathrm{ is }\mp@subsup{t}{2}{}:\mp@subsup{T}{1}{}\mathrm{ and valid }\mp@subsup{\Gamma}{}{\prime
 then have \Gamma}\mp@subsup{\Gamma}{}{\prime}\vdash(\begin{array}{l}{Apps}
 moreover have (App s' s2)}\rightsquigarrow(Appss\mp@subsup{s}{2}{})\mathrm{ using h1 by auto
 ultimately have \Gamma'\vdashApp s' ss is App t t 2: T
 }
 then show }\Gamma\vdash\mp@subsup{s}{}{\prime}\mathrm{ is }t:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ by auto
 qed
abbreviation

```

```

where

```
```

\Gamma'\vdash0 is 的 over }\Gamma\equiv\forallxT.(x,T)\in\mathrm{ set }\Gamma\longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdash0<\operatorname{Var}x>\mathrm{ is }\mp@subsup{0}{}{\prime}<\operatorname{Var}x>:

```

Now, we can derive that the logical equivalence is almost reflexive.
```

lemma logical-pseudo-reflexivity:
assumes }\mp@subsup{\Gamma}{}{\prime}\vdasht\mathrm{ is s over }
shows }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ is s over }
proof -
have }\mp@subsup{\Gamma}{}{\prime}\vdasht\mathrm{ is s over }\Gamma\mathrm{ by fact
moreover then have }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ s is t over }\Gamma\mathrm{ using logical-symmetry by blast
ultimately show }\mp@subsup{\Gamma}{}{\prime}\vdashs\mathrm{ is s over }\Gamma\mathrm{ using logical-transitivity by blast
qed

```
lemma logical-subst-monotonicity :
    assumes \(a\) : \(\Gamma^{\prime} \vdash s\) is \(t\) over \(\Gamma\)
    and \(\quad b: \Gamma^{\prime} \subseteq \Gamma^{\prime \prime}\)
    and \(c\) : valid \(\Gamma^{\prime \prime}\)
    shows \(\Gamma^{\prime \prime} \vdash s\) is \(t\) over \(\Gamma\)
using \(a b c\) logical-monotonicity by blast
lemma equiv-subst-ext :
    assumes \(h 1: \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma\)
    and \(\quad h 2: \Gamma^{\prime} \vdash s\) is \(t: T\)
    and \(\quad f s: x \# \Gamma\)
    shows \(\Gamma^{\prime} \vdash(x, s) \# \theta\) is \((x, t) \# \theta^{\prime}\) over \((x, T) \# \Gamma\)
using assms
proof -
    \{
        fix \(y U\)
        assume \((y, U) \in \operatorname{set}((x, T) \# \Gamma)\)
        moreover
        \{
            assume \((y, U) \in \operatorname{set}[(x, T)]\)
            then have \(\Gamma^{\prime} \vdash(x, s) \# \theta<\operatorname{Var} y>\) is \((x, t) \# \theta^{\prime}<\operatorname{Var} y>: U\) by auto
        \}
        moreover
        \{
            assume \(h l:(y, U) \in\) set \(\Gamma\)
            then have \(\neg y \# \Gamma\) by \((\) induct \(\Gamma\) ) (auto simp add: fresh-list-cons fresh-atm fresh-prod)
            then have hf: \(x \#\) Var \(y\) using \(f s\) by (auto simp add: fresh-atm)
        then have \((x, s) \# \theta<\operatorname{Var} y>=\theta<\operatorname{Var} y>(x, t) \# \theta^{\prime}<\operatorname{Var} y>=\theta^{\prime}<\operatorname{Var} y>\) using fresh-psubst-simp
by blast+
            moreover have \(\Gamma^{\prime} \vdash \theta<\operatorname{Var} y>\) is \(\theta^{\prime}<\operatorname{Var} y>: U\) using \(h 1 \mathrm{hl}\) by auto
            ultimately have \(\Gamma^{\prime} \vdash(x, s) \# \theta<\operatorname{Var} y>\) is \((x, t) \# \theta^{\prime}<\operatorname{Var} y>: U\) by auto
        \}
        ultimately have \(\Gamma^{\prime} \vdash(x, s) \# \theta<\operatorname{Var} y>\) is \((x, t) \# \theta^{\prime}<\operatorname{Var} y>: U\) by auto
    \}
    then show \(\Gamma^{\prime} \vdash(x, s) \# \theta\) is \((x, t) \# \theta^{\prime}\) over \((x, T) \# \Gamma\) by auto
qed

\section*{6．5 Fundamental theorems}
```

theorem fundamental-theorem-1:
assumes h1:\Gamma\vdasht:T
and h2: }\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }
and h3: valid \Gamma'
shows \Gamma'\vdash0<t> is 的<t> :T
using h1 h2 h3
proof (nominal-induct \Gammat T avoiding: }\mp@subsup{\Gamma}{}{\prime}0\mp@subsup{0}{}{\prime}\mathrm{ rule: typing.strong-induct)
case (t-Lam x \Gamma T T 権 T
have fs:x\#0 x\#\mp@subsup{0}{}{\prime}x\#\Gamma by fact
have }h:\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }\Gamma\mathrm{ by fact

```

```

 {
 fix }\mp@subsup{\Gamma}{}{\prime\prime}\mp@subsup{s}{}{\prime}\mp@subsup{t}{}{\prime
 assume }\mp@subsup{\Gamma}{}{\prime}\subseteq\mp@subsup{\Gamma}{}{\prime\prime}\mathrm{ and }hl:\mp@subsup{\Gamma}{}{\prime\prime}-\mp@subsup{s}{}{\prime}\mathrm{ is }\mp@subsup{t}{}{\prime}:\mp@subsup{T}{1}{}\mathrm{ and v: valid }\mp@subsup{\Gamma}{}{\prime\prime
 then have }\mp@subsup{\Gamma}{}{\prime\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }\Gamma\mathrm{ using logical-subst-monotonicity }h\mathrm{ by blast
 then have }\mp@subsup{\Gamma}{}{\prime\prime}\vdash(x,\mp@subsup{s}{}{\prime})#0\mathrm{ is (}x,\mp@subsup{t}{}{\prime})#\mp@subsup{0}{}{\prime}\mathrm{ over (}x,\mp@subsup{T}{1}{})#\Gamma\mathrm{ using equiv-subst-ext hl fs by blast
 then have }\mp@subsup{\Gamma}{}{\prime\prime}\vdash(x,\mp@subsup{s}{}{\prime})#0<\mp@subsup{t}{2}{}> is (x,\mp@subsup{t}{}{\prime})#\mp@subsup{0}{}{\prime}<\mp@subsup{t}{2}{}>: T T2 using ih v by aut
 then have }\mp@subsup{\Gamma}{}{\prime}\vdash0<\mp@subsup{t}{2}{}>[x::=\mp@subsup{s}{}{\prime}]\mathrm{ is }\mp@subsup{0}{}{\prime}<\mp@subsup{t}{2}{}>[x::=\mp@subsup{t}{}{\prime}]:\mp@subsup{T}{2}{}\mathrm{ using psubst-subst-psubst fs by simp
 moreover have App (Lam [x].0<\mp@subsup{t}{2}{}>) s'\rightsquigarrow0<t2> > x::=s向 by auto
 moreover have App (Lam [x].\mp@subsup{0}{}{\prime}<\mp@subsup{t}{2}{}>) t'` }\rightsquigarrow\mp@subsup{0}{}{\prime}<\mp@subsup{t}{2}{}>[x::=\mp@subsup{t}{}{\prime}]\mathrm{ by auto
 ultimately have }\mp@subsup{\Gamma}{}{\prime\prime}-\operatorname{App}(\operatorname{Lam}[x].0<\mp@subsup{t}{2}{}>) s' is App (Lam [x].\mp@subsup{0}{}{\prime}<\mp@subsup{t}{2}{}>) t': T T 2
 using logical-weak-head-closure by auto
 }
 then show }\mp@subsup{\Gamma}{}{\prime}\vdash0<\operatorname{Lam}[x].\mp@subsup{t}{2}{}>\mathrm{ is }\mp@subsup{0}{}{\prime}<\operatorname{Lam}[x].\mp@subsup{t}{2}{}>:\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}\mathrm{ using fs by simp
 qed (auto)
theorem fundamental-theorem-2:
assumes h1: \Gamma\vdashs\equivt:T
and h2: }\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }
and h3: valid \Gamma'
shows }\mp@subsup{\Gamma}{}{\prime}\vdash0<s>\mathrm{ is }\mp@subsup{0}{}{\prime}<t>:
using h1 h2 h3
proof (nominal-induct \Gamma s t T avoiding: \Gamma' 0 回 rule:def-equiv.strong-induct)
case (Q-Refl \Gamma tT \Gamma'0 忮)
have }\Gamma\vdasht:
and valid \Gamma' by fact
moreover
have }\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }\Gamma\mathrm{ by fact
ultimately show }\mp@subsup{\Gamma}{}{\prime}\vdash0<t>\mathrm{ is }\mp@subsup{0}{}{\prime}<t> :T using fundamental-theorem-1 by blas
next
case(Q-Symm \GammatsT \Gamma
have }\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is 㫙 over }
and valid \Gamma' by fact
moreover

```

```

 ultimately show }\mp@subsup{\Gamma}{}{\prime}\vdash0<s>\mathrm{ is }\mp@subsup{0}{}{\prime}<t> :T using logical-symmetry by blas
 next
case(Q-Trans \Gamma stTu \Gamma'0 0')
have ih1: \bigwedge }\mp@subsup{\Gamma}{}{\prime}0\mp@subsup{0}{}{\prime}.\llbracket\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is 忮 over }\Gamma;\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\rrbracket\Longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdash0<s> is \mp@subsup{0}{}{\prime}<t>:T by fac
have ih2: \bigwedge }\Lambda\mp@subsup{\Gamma}{}{\prime}0\mp@subsup{0}{}{\prime}.\llbracket\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is }\mp@subsup{0}{}{\prime}\mathrm{ over }\Gamma;\mathrm{ valid }\mp@subsup{\Gamma}{}{\prime}\rrbracket\Longrightarrow\mp@subsup{\Gamma}{}{\prime}\vdash0<t> is \mp@subsup{0}{}{\prime}<u>:T T by fac
have h: }\mp@subsup{\Gamma}{}{\prime}\vdash0\mathrm{ is 的 over }

```
and \(v\) : valid \(\Gamma^{\prime}\) by fact
then have \(\Gamma^{\prime} \vdash \theta^{\prime}\) is \(\theta^{\prime}\) over \(\Gamma\) using logical-pseudo-reflexivity by auto
then have \(\Gamma^{\prime} \vdash \theta^{\prime}<t>\) is \(\theta^{\prime}<u>: T\) using ih2 \(v\) by auto
moreover have \(\Gamma^{\prime} \vdash \theta<s>\) is \(\theta^{\prime}<t>\) : \(T\) using ih1 \(h v\) by auto
ultimately show \(\Gamma^{\prime} \vdash \theta<s>\) is \(\theta^{\prime}<u>\) : \(T\) using logical-transitivity by blast
next
case ( \(\left.Q-A b s x \Gamma T_{1} s_{2} t_{2} T_{2} \Gamma^{\prime} \theta \theta^{\prime}\right)\)
have \(f s: x \# \Gamma\) by fact
have \(f s 2\) : \(x \# \theta \quad x \# \theta^{\prime}\) by fact
have h2: \(\Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma\)
and h3: valid \(\Gamma^{\prime}\) by fact
have \(i h: \bigwedge \Gamma^{\prime} \theta \theta^{\prime} . \llbracket \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\); valid \(\Gamma^{\wedge} \rrbracket \Longrightarrow \Gamma^{\prime} \vdash \theta<s_{2}>\) is \(\theta^{\prime}<t_{2}>: T_{2}\) by fact \{
fix \(\Gamma^{\prime \prime} s^{\prime} t^{\prime}\)
assume \(\Gamma^{\prime} \subseteq \Gamma^{\prime \prime}\) and \(h l: \Gamma^{\prime \prime} s^{\prime}\) is \(t^{\prime}: T_{1}\) and \(h k\) : valid \(\Gamma^{\prime \prime}\)
then have \(\Gamma^{\prime \prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma\) using h2 logical-subst-monotonicity by blast
then have \(\Gamma^{\prime \prime} \vdash\left(x, s^{\prime}\right) \# \theta\) is \(\left(x, t^{\prime}\right) \# \theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\) using equiv-subst-ext hl fs by blast
then have \(\Gamma^{\prime \prime} \vdash\left(x, s^{\prime}\right) \# \theta<s_{2}>\) is \(\left(x, t^{\prime}\right) \# \theta^{\prime}<t_{2}>: T_{2}\) using ih \(h k\) by blast
then have \(\Gamma^{\prime} \vdash \theta<s_{2}>\left[x::=s^{\prime}\right]\) is \(\theta^{\prime}<t_{2}>\left[x::=t^{\prime}\right]: T_{2}\) using \(f_{s 2}\) psubst-subst-psubst by auto
moreover have App (Lam \(\left.[x] . \theta<s_{2}>\right) s^{\prime} \rightsquigarrow \theta<s_{2}>\left[x::=s^{\prime}\right]\)
and App \(\left(\operatorname{Lam}[x] . \theta^{\prime}<t_{2}>\right) t^{\prime} \rightsquigarrow \theta^{\prime}<t_{2}>\left[x::=t^{\prime}\right]\) by auto
ultimately have \(\Gamma^{\prime \prime} \vdash \operatorname{App}\left(\operatorname{Lam}[x] . \theta<s_{2}>\right) s^{\prime}\) is App \(\left(\operatorname{Lam}[x] . \theta^{\prime}<t_{2}>\right) t^{\prime}: T_{2}\)
using logical-weak-head-closure by auto
\}
moreover have valid \(\Gamma^{\prime}\) using h2 by auto
ultimately have \(\Gamma^{\prime} \vdash \operatorname{Lam}[x] . \theta<s_{2}>\) is \(\operatorname{Lam}[x] \cdot \theta^{\prime}<t_{2}>: T_{1} \rightarrow T_{2}\) by auto
then show \(\Gamma^{\prime} \vdash \theta<\operatorname{Lam}[x] . s_{2}>\) is \(\theta^{\prime}<\operatorname{Lam}[x] . t_{2}>: T_{1} \rightarrow T_{2}\) using \(f s 2\) by auto
next
case \(\left(Q-A p p \Gamma s_{1} t_{1} T_{1} T_{2} s_{2} t_{2} \Gamma^{\prime} \theta \theta^{\prime}\right)\)
then show \(\Gamma^{\prime} \vdash \theta<A p p s_{1} s_{2}>\) is \(\theta^{\prime}<A p p t_{1} t_{2}>: T_{2}\) by auto
next
case \(\left(Q\right.\)-Beta \(x \Gamma s_{2} t_{2} T_{1}\) s12 t12 \(\left.T_{2} \Gamma^{\prime} \theta \theta^{\prime}\right)\)
have \(h: \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma\)
and \(h^{\prime}\) : valid \(\Gamma^{\prime}\) by fact
have \(f s: x \# \Gamma\) by fact
have \(f s 2\) : \(x \# \theta x \# \theta^{\prime}\) by fact
have ih1: \(\bigwedge \Gamma^{\prime} \theta \theta^{\prime}\). \(\llbracket \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma ;\) valid \(\Gamma^{\rrbracket} \Longrightarrow \Gamma^{\prime} \vdash \theta<s_{2}>\) is \(\theta^{\prime}<t_{2}>: T_{1}\) by fact
have ih2: \(\bigwedge \Gamma^{\prime} \theta \theta^{\prime} . \llbracket \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\); valid \(\Gamma^{\prime} \rrbracket \Longrightarrow \Gamma^{\prime} \vdash \theta<s 12>\) is \(\theta^{\prime}<t 12>: T_{2}\) by
fact
have \(\Gamma^{\prime} \vdash \theta<s_{2}>\) is \(\theta^{\prime}<t_{2}>: T_{1}\) using ih1 \(h^{\prime} h\) by auto
then have \(\Gamma^{\prime} \vdash\left(x, \theta<s_{2}>\right) \# \theta\) is \(\left(x, \theta^{\prime}<t_{2}>\right) \# \theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\) using equiv-subst-ext \(h f s\) by blast
then have \(\Gamma^{\prime} \vdash\left(x, \theta<s_{2}>\right) \# \theta<s 12>\) is \(\left(x, \theta^{\prime}<t_{2}>\right) \# \theta^{\prime}<t 12>: T_{2}\) using ih2 \(h^{\prime}\) by auto
then have \(\Gamma^{\prime} \vdash \theta<s 12>\left[x::=\theta<s_{2}>\right]\) is \(\theta^{\prime}<t 12>\left[x::=\theta^{\prime}<t_{2}>\right]: T_{2}\) using fs2 psubst-subst-psubst by auto
then have \(\Gamma^{\prime} \vdash \theta<s 12>\left[x::=\theta<s_{2}>\right]\) is \(\theta^{\prime}<t 12\left[x::=t_{2}\right]>: T_{2}\) using fs2 psubst-subst-propagate by auto
moreover have App \((\operatorname{Lam}[x] . \theta<s 12>)\left(\theta<s_{2}>\right) \rightsquigarrow \theta<s 12>\left[x::=\theta<s_{2}>\right]\) by auto
ultimately have \(\Gamma^{\prime} \vdash \operatorname{App}(\operatorname{Lam}[x] . \theta<s 12>)\left(\theta<s_{2}>\right)\) is \(\theta^{\prime}<t 12\left[x::=t_{2}\right]>: T_{2}\)
using logical-weak-head-closure' by auto
then show \(\Gamma^{\prime} \vdash \theta<\operatorname{App}(\operatorname{Lam}[x] . s 12) s_{2}>\) is \(\theta^{\prime}<t 12\left[x::=t_{2}\right]>: T_{2}\) using \(f s 2\) by simp
next
case ( \(Q\)-Ext \(x \Gamma\) st \(\left.T_{1} T_{2} \Gamma^{\prime} \theta \theta^{\prime}\right)\)
have \(h 2: \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\Gamma\)
and \(h 2^{\prime}\) : valid \(\Gamma^{\prime}\) by fact
have \(f s: x \# \Gamma x \# s x \# t\) by fact
have ih: \(\wedge \Gamma^{\prime} \theta \theta^{\prime}\). \(\llbracket \Gamma^{\prime} \vdash \theta\) is \(\theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\); valid \(\Gamma^{\prime} \rrbracket\)
\[
\Longrightarrow \Gamma^{\prime} \vdash \theta<\operatorname{Apps}(\operatorname{Var} x)>\text { is } \theta^{\prime}<\operatorname{App} t(\operatorname{Var} x)>: T_{2} \text { by fact }
\]
\{
fix \(\Gamma^{\prime \prime} s^{\prime} t^{\prime}\)
assume \(h s u b: \Gamma^{\prime} \subseteq \Gamma^{\prime \prime}\) and \(h l: \Gamma^{\prime \prime} \vdash s^{\prime}\) is \(t^{\prime}: T_{1}\) and \(h k\) : valid \(\Gamma^{\prime \prime}\)
then have \(\Gamma^{\prime \prime} \vdash \bar{\theta}\) is \(\theta^{\prime}\) over \(\Gamma\) using h2 logical-subst-monotonicity by blast
then have \(\Gamma^{\prime \prime} \vdash\left(x, s^{\prime}\right) \# \theta\) is \(\left(x, t^{\prime}\right) \# \theta^{\prime}\) over \(\left(x, T_{1}\right) \# \Gamma\) using equiv-subst-ext hl fs by blast
then have \(\Gamma^{\prime \prime} \vdash\left(x, s^{\prime}\right) \# \theta<\operatorname{App} s(\operatorname{Var} x)>\) is \(\left(x, t^{\prime}\right) \# \theta^{\prime}<\operatorname{App} t(\operatorname{Var} x)>: T_{2}\) using ih \(h k\) by blast
then
have \(\Gamma^{\prime \prime} \vdash \operatorname{App}\left(\left(\left(x, s^{\prime}\right) \# \theta\right)<s>\right)\left(\left(\left(x, s^{\prime}\right) \# \theta\right)<(\right.\) Var \(\left.x)>\right)\) is App \(\left(\left(x, t^{\prime}\right) \# \theta^{\prime}<t>\right)\left(\left(x, t^{\prime}\right) \# \theta^{\prime}<(\right.\) Var \(x)>): T_{2}\)
by auto
then have \(\Gamma^{\prime \prime} \vdash A p p\left(\left(x, s^{\prime}\right) \# \theta<s>\right) s^{\prime}\) is \(A p p\left(\left(x, t^{\prime}\right) \# \theta^{\prime}<t>\right) t^{\prime}: T_{2}\) by auto
then have \(\Gamma^{\prime \prime} \vdash A p p(\theta<s>) s^{\prime}\) is App \(\left(\theta^{\prime}<t>\right) t^{\prime}: T_{2}\) using fs fresh-psubst-simp by auto
\}
moreover have valid \(\Gamma^{\prime}\) using \(h 2\) by auto
ultimately show \(\Gamma^{\prime} \vdash \theta<s>\) is \(\theta^{\prime}<t>: T_{1} \rightarrow T_{2}\) by auto
next
case ( \(Q\)-Unit \(\Gamma\) st \(\Gamma^{\prime} \theta \theta^{\prime}\) )
then show \(\Gamma^{\prime} \vdash \theta<s>\) is \(\theta^{\prime}<t>\) : TUnit by auto
qed

\subsection*{6.6 Completeness}
theorem completeness:
assumes asm: \(\Gamma \vdash s \equiv t: T\)
shows \(\Gamma \vdash s \Leftrightarrow t: T\)
proof -
have val: valid \(\Gamma\) using def-equiv-implies-valid asm by simp
moreover
\{
fix \(x T\)
assume \((x, T) \in\) set \(\Gamma\) valid \(\Gamma\)
then have \(\Gamma \vdash \operatorname{Var} x\) is Var \(x: T\) using main-lemma(2) by blast
\}
ultimately have \(\Gamma \vdash[]\) is [] over \(\Gamma\) by auto
then have \(\Gamma \vdash[]<s>\) is []<t>:T using fundamental-theorem-2 val asm by blast
then have \(\Gamma \vdash s\) is \(t: T\) by simp
then show \(\Gamma \vdash s \Leftrightarrow t: T\) using main-lemma(1) val by simp
qed

\section*{7 About soundness}

We leave soundness as an exercise - like in the book :-)
If \(\Gamma \vdash s \Leftrightarrow t: T\) and \(\Gamma \vdash t: T\) and \(\Gamma \vdash s: T\) then \(\Gamma \vdash s \equiv t: T\).
\(\llbracket \Gamma \vdash s \leftrightarrow t: T ; \Gamma \vdash t: T ; \Gamma \vdash s: T \rrbracket \Longrightarrow \Gamma \vdash s \equiv t: T\)
end

\section*{References}
[1] S. Berghofer and C. Urban. The Nominal Datatypes Package user manual. Technische Universität München, 2006.
[2] K. Crary. Logical Relations and a Case Study in Equivalence Checking. In B. C. Pierce, editor, Advanced Topics in Types and Programming Languages, pages 223-244. MIT Press, 2005.
[3] L. C. Paulson. The Isabelle reference manual, 2006.
[4] C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL. In Proc. of the 3rd International Joint Conference on Automated Reasoning (IJCAR), volume 4130 of LNAI, pages 498-512, 2006.
[5] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the 20th International Conference on Automated Deduction (CADE), volume 3632 of \(L N C S\), pages 38-53, 2005.
[6] M. Wenzel. Isabelle/Isar - a versatile environment for human-readable formal proof documents. PhD thesis, Institut für Informatik, Technische Universität München, 2002.```


[^0]:    theory Crary
    imports ../Nominal

