
Formalisation of Logical Relations proofs using the Nominal

Package

Julien Narboux and Christian Urban

June 13, 2007

Abstract

We present in this paper a formalisation of the chapter Logical Relations and a Case
Study in Equivalence Checking by Karl Crary from the book on Advanced Topics in
Types and Programming Languages, MIT Press 2005. We use a fully nominal approach to
deal with binders. The formalisation has been performed within the Isabelle/HOL proof
assistant using the Nominal Package.

1

Contents

1 Introduction 3

2 Definition of the language 4
2.1 Definition of the terms and types . 4
2.2 Size functions . 4

3 Capture-avoiding substitutions 5
3.1 Parallel substitution . 6
3.2 Substitution . 6
3.3 Lemmas about freshness and substitutions . 6

4 Typing 9
4.1 Typing contexts . 9
4.2 Definition of the typing relation . 11
4.3 Inversion lemmas for the typing relation . 11

5 Definitional Equivalence 12

6 Type-driven equivalence algorithm 12
6.1 Weak head reduction . 12

6.1.1 Inversion lemma for weak head reduction 12
6.2 Weak head normalization . 13
6.3 Algorithmic term equivalence and algorithmic path equivalence 14

6.3.1 Inversion lemmas for algorithmic term and path equivalences 15
6.4 Definition of the logical relation . 17
6.5 Fundamental theorems . 22
6.6 Completeness . 24

7 About soundness 24

2

1 Introduction

For several reasons, proof assistants can be useful for proving properties of programming
languages. Indeed, often the proofs consist in inductions involving cases, many of which are
trivial. But it hard to guess in advance which case is trivial and even a small error can
invalidate a result. Even more the use of a proof assistant can also help the researcher: it is
possible to quickly check after a modification of the definitions if the proof is still valid. But in
practice, the formalisation of proofs about programming has to address many troubles. The
main problem, which is well known in the community is the representation of binders. Informal
proofs contains arguments such as ’by renaming of the variables’ or ’reasoning modulo alpha
conversion’. These arguments are very hard to formalise. Several solutions have been proposed
to try to solve this problem. On solution to represent binder is by using De-Bruijn indices.
This alleviates such problems about too many details and in some cases leads to very slick
proofs. Unfortunately, by using De-Bruijn indices the ”symbol-pushing” involves a rather
large amount of arithmetic on indices which is not present in informal descriptions. Another
method of representing binders is by using higher-order abstract-syntax (HOAS) where the
meta-language provides binding-constructs. The disadvantage with HOAS is that one has to
encode the language at hand and use the reasoning infrastructure the theorem prover, for
example Twelf, provides. In practice this means often that reasoning does not proceed as one
would expect from the informal reasoning on paper.

These solution tend to force the user of the system to modify his proofs. We think that
this should be the opposite, the system should be modified.

That is why we are currently developing a package for the Isabelle/HOL proof assistant [3].
which provides an infrastructure in the theorem prover Isabelle/HOL for representing binders
as named α-equivalence classes [1, 5, 4].

In this paper, we formalise the chapter about Logical Relation and a Case Study in
Equivalence Checking by Karl Crary of the book Advanced Topics in Types and Program-
ming Languages[2]. This example is interesting because logical relations are a fundamental
technique for proving properties of programming languages. The purpose of this formalisation
is to test and improve the Nominal Package in the context of a ’real life’ example. Indeed,
this chapter is not an exception, the problem of binders is treated informally, on the first page
the reader can find the following sentence: ’As usual, we will identify terms that differ only
in the names of bound variables, and our substitution is capture avoiding’.

The formalisation we provide has been realized withing the Isar language [6] within the
Isabelle/HOL proof assistant[3]. The definitions and proofs given in this paper have been
generated automatically from the formal proofs.

theory Crary
imports ../Nominal

3

2 Definition of the language

2.1 Definition of the terms and types

First we define the type of atom names which will be used for binders. Each atom type is
infinitely many atoms and equality is decidable.
atom-decl name

We define the datatype representing types. Although, It does not contain any binder we still
use the nominal datatype command because the Nominal datatype package will prodive
permutation functions and useful lemmas.
nominal-datatype ty =

TBase
| TUnit
| Arrow ty ty (-→- [100 ,100] 100)

The datatype of terms contains a binder. The notation �name� trm means that the name
is bound inside trm.
nominal-datatype trm =

Unit
| Var name
| Lam �name�trm (Lam [-].- [100 ,100] 100)
| App trm trm
| Const nat

types Ctxt = (name×ty) list
types Subst = (name×trm) list

As the datatype of types does not contain any binder, the application of a permutation is the
identity function. In the future, this should be automatically derived by the package.
lemma perm-ty [simp]:
fixes T ::ty
and pi ::name prm
shows pi ·T = T
by (induct T rule: ty .weak-induct) (simp-all)

lemma fresh-ty [simp]:
fixes x ::name
and T ::ty
shows x#T
by (simp add : fresh-def supp-def)

lemma ty-cases:
fixes T ::ty
shows (∃ T 1 T 2. T=T 1→T 2) ∨ T=TUnit ∨ T=TBase

by (induct T rule:ty .weak-induct) (auto)

2.2 Size functions

We define size functions for types and terms. As Isabelle allows overloading we can use the
same notation for both functions.

4

These functions are automatically generated for non nominal datatypes. In the future, we
need to extend the package to generate size functions automatically for nominal datatypes as
well.
The definition of a function using the nominal package generates four groups of proof obliga-
tions.
The first group are goal of the form finite(supp ()), these often be solve using the finite guess
tactic. The second group of goals corresponds to the invariant. If the user has not chosen to
setup an invariant, then it just true and hence can easily be solved.

instance ty :: size ..

nominal-primrec
size (TBase) = 1
size (TUnit) = 1
size (T 1→T 2) = size T 1 + size T 2

by (rule TrueI)+

lemma ty-size-greater-zero[simp]:
fixes T ::ty
shows size T > 0

by (nominal-induct rule:ty .induct) (simp-all)

3 Capture-avoiding substitutions

In this section we define parallel substitution. The usual substitution will be derived as a
special case of parallel substitution. But first we define a function to lookup for the term
corresponding to a type in an association list. Note that if the term does not appear in the
list then we return a variable of that name.

fun
lookup :: Subst ⇒ name ⇒ trm

where
lookup [] x = Var x
| lookup ((y ,T)#θ) x = (if x=y then T else lookup θ x)

lemma lookup-eqvt [eqvt]:
fixes pi ::name prm
shows pi ·(lookup θ x) = lookup (pi ·θ) (pi ·x)

by (induct θ) (auto simp add : perm-bij)

lemma lookup-fresh:
fixes z ::name
assumes a: z#θ z#x
shows z# lookup θ x

using a
by (induct rule: lookup.induct)

(auto simp add : fresh-list-cons)

lemma lookup-fresh ′:

5

assumes a: z#θ
shows lookup θ z = Var z

using a
by (induct rule: lookup.induct)

(auto simp add : fresh-list-cons fresh-prod fresh-atm)

3.1 Parallel substitution

consts
psubst :: Subst ⇒ trm ⇒ trm (-<-> [60 ,100] 100)

nominal-primrec
θ<(Var x)> = (lookup θ x)
θ<(App t1 t2)> = App (θ<t1>) (θ<t2>)
x#θ =⇒ θ<(Lam [x].t)> = Lam [x].(θ<t>)
θ<(Const n)> = Const n
θ<(Unit)> = Unit

apply(finite-guess)+
apply(rule TrueI)+
apply(simp add : abs-fresh)+
apply(fresh-guess)+
done

3.2 Substitution

The substitution function is defined just as a special case of parallel substitution.

abbreviation
subst :: trm ⇒ name ⇒ trm ⇒ trm (-[-::=-] [100 ,100 ,100] 100)
where

t [x ::=t ′] ≡ ([(x ,t ′)])<t>

lemma subst [simp]:
shows (Var x)[y ::=t ′] = (if x=y then t ′ else (Var x))
and (App t1 t2)[y ::=t ′] = App (t1[y ::=t ′]) (t2[y ::=t ′])
and x#(y ,t ′) =⇒ (Lam [x].t)[y ::=t ′] = Lam [x].(t [y ::=t ′])
and Const n[y ::=t ′] = Const n
and Unit [y ::=t ′] = Unit
by (simp-all add : fresh-list-cons fresh-list-nil)

lemma subst-eqvt [eqvt]:
fixes pi ::name prm
shows pi ·(t [x ::=t ′]) = (pi ·t)[(pi ·x)::=(pi ·t ′)]
by (nominal-induct t avoiding : x t ′ rule: trm.induct)

(perm-simp add : fresh-bij)+

3.3 Lemmas about freshness and substitutions

lemma subst-rename:
fixes c::name
assumes a: c#t1

6

shows t1[a::=t2] = ([(c,a)]·t1)[c::=t2]
using a
apply(nominal-induct t1 avoiding : a c t2 rule: trm.induct)
apply(simp add : trm.inject calc-atm fresh-atm abs-fresh perm-nat-def)+
done

lemma fresh-psubst :
fixes z ::name
assumes a: z#t z#θ
shows z#(θ<t>)

using a
by (nominal-induct t avoiding : z θ t rule: trm.induct)

(auto simp add : abs-fresh lookup-fresh)

lemma fresh-subst ′′:
fixes z ::name
assumes z#t2

shows z#t1[z ::=t2]
using assms
by (nominal-induct t1 avoiding : t2 z rule: trm.induct)

(auto simp add : abs-fresh fresh-nat fresh-atm)

lemma fresh-subst ′:
fixes z ::name
assumes z#[y].t1 z#t2

shows z#t1[y ::=t2]
using assms
by (nominal-induct t1 avoiding : y t2 z rule: trm.induct)

(auto simp add : abs-fresh fresh-nat fresh-atm)

lemma fresh-subst :
fixes z ::name
assumes a: z#t1 z#t2

shows z#t1[y ::=t2]
using a
by (auto simp add : fresh-subst ′ abs-fresh)

lemma fresh-psubst-simp:
assumes x#t
shows (x ,u)#θ<t> = θ<t>

using assms
proof (nominal-induct t avoiding : x u θ rule: trm.induct)
case (Lam y t x u)
have fs: y#θ y#x y#u by fact
moreover have x# Lam [y].t by fact
ultimately have x#t by (simp add : abs-fresh fresh-atm)
moreover have ih:

∧
n T . n#t =⇒ ((n,T)#θ)<t> = θ<t> by fact

ultimately have (x ,u)#θ<t> = θ<t> by auto
moreover have (x ,u)#θ<Lam [y].t> = Lam [y]. ((x ,u)#θ<t>) using fs
by (simp add : fresh-list-cons fresh-prod)

moreover have θ<Lam [y].t> = Lam [y]. (θ<t>) using fs by simp
ultimately show (x ,u)#θ<Lam [y].t> = θ<Lam [y].t> by auto

qed (auto simp add : fresh-atm abs-fresh)

7

lemma forget :
fixes x ::name
assumes a: x#t
shows t [x ::=t ′] = t
using a

by (nominal-induct t avoiding : x t ′ rule: trm.induct)
(auto simp add : fresh-atm abs-fresh)

lemma subst-fun-eq :
fixes u::trm
assumes h:[x].t1 = [y].t2

shows t1[x ::=u] = t2[y ::=u]
proof −

{
assume x=y and t1=t2

then have ?thesis using h by simp
}
moreover
{
assume h1 :x 6= y and h2 :t1=[(x ,y)] · t2 and h3 :x # t2

then have ([(x ,y)] · t2)[x ::=u] = t2[y ::=u] by (simp add : subst-rename)
then have ?thesis using h2 by simp

}
ultimately show ?thesis using alpha h by blast

qed

lemma psubst-empty [simp]:
shows []<t> = t

by (nominal-induct t rule: trm.induct)
(auto simp add : fresh-list-nil)

lemma psubst-subst-psubst :
assumes h:c#θ
shows θ<t>[c::=s] = (c,s)#θ<t>
using h

by (nominal-induct t avoiding : θ c s rule: trm.induct)
(auto simp add : fresh-list-cons fresh-atm forget lookup-fresh lookup-fresh ′ fresh-psubst)

lemma subst-fresh-simp:
assumes a: x#θ
shows θ<Var x> = Var x

using a
by (induct θ arbitrary : x , auto simp add :fresh-list-cons fresh-prod fresh-atm)

lemma psubst-subst-propagate:
assumes x#θ
shows θ<t [x ::=u]> = θ<t>[x ::=θ<u>]

using assms
proof (nominal-induct t avoiding : x u θ rule: trm.induct)
case (Var n x u θ)
{ assume x=n
moreover have x#θ by fact

8

ultimately have θ<Var n[x ::=u]> = θ<Var n>[x ::=θ<u>] using subst-fresh-simp by auto
}
moreover
{ assume h:x 6=n
then have x#Var n by (auto simp add : fresh-atm)
moreover have x#θ by fact
ultimately have x#θ<Var n> using fresh-psubst by blast
then have θ<Var n>[x ::=θ<u>] = θ<Var n> using forget by auto
then have θ<Var n[x ::=u]> = θ<Var n>[x ::=θ<u>] using h by auto

}
ultimately show ?case by auto

next
case (Lam n t x u θ)
have fs:n#x n#u n#θ x#θ by fact
have ih:

∧
y s θ. y#θ =⇒ ((θ<(t [y ::=s])>) = ((θ<t>)[y ::=(θ<s>)])) by fact

have θ <(Lam [n].t)[x ::=u]> = θ<Lam [n]. (t [x ::=u])> using fs by auto
then have θ <(Lam [n].t)[x ::=u]> = Lam [n]. θ<t [x ::=u]> using fs by auto
moreover have θ<t [x ::=u]> = θ<t>[x ::=θ<u>] using ih fs by blast
ultimately have θ <(Lam [n].t)[x ::=u]> = Lam [n].(θ<t>[x ::=θ<u>]) by auto
moreover have Lam [n].(θ<t>[x ::=θ<u>]) = (Lam [n].θ<t>)[x ::=θ<u>] using fs fresh-psubst

by auto
ultimately have θ<(Lam [n].t)[x ::=u]> = (Lam [n].θ<t>)[x ::=θ<u>] using fs by auto
then show θ<(Lam [n].t)[x ::=u]> = θ<Lam [n].t>[x ::=θ<u>] using fs by auto

qed (auto)

4 Typing

4.1 Typing contexts

This section contains the definition and some properties of a typing context. As the concept
of context often appears in the litterature and is general, we should in the future provide
these lemmas in a library.

Definition of the Validity of contexts

First we define what valid contexts are. Informally a context is valid is it does not contains
twice the same variable.
We use the following two inference rules:

valid []v nil
valid Γ a # Γ
valid ((a, T) # Γ)

v cons

We need to derive the equivariance lemma for the relation valid. If all the constants which
appear in the inductive definition have previously been shown to be equivariant and the
lemmas have been tagged using the equivariant attribute then this proof can automated
using the nominal inductive command.

equivariance valid

We obtain the following lemma under the name valid.eqvt:

9

If valid x then valid (pi · x).

Now, we generate the inversion lemma for non empty lists. We add the elim attribute to tell
the automated tactics to use it.

inductive-cases2
valid-cons-elim-auto[elim]:valid ((x ,T)#Γ)

The generated theorem is the following:

[[valid ((x , T) # Γ); [[valid Γ; x # Γ]] =⇒ P]] =⇒ P

Definition of sub-contexts The definition of sub context is standard. We do not use the
subset definition to prevent the need for unfolding the definition. We include validity in the
definition to shorten the statements.

abbreviation
sub-context :: Ctxt ⇒ Ctxt ⇒ bool (- ⊆ - [55 ,55] 55)

where
Γ1 ⊆ Γ2 ≡ ∀ a T . (a,T)∈set Γ1 −→ (a,T)∈set Γ2

Lemmas about valid contexts Now, we can prove two useful lemmas about valid con-
texts.

lemma valid-monotonicity [elim]:
assumes a: Γ ⊆ Γ ′

and b: x#Γ ′

shows (x ,T 1)#Γ ⊆ (x ,T 1)#Γ ′

using a b by auto

lemma fresh-context :
fixes Γ :: Ctxt
and a :: name
assumes a#Γ
shows ¬(∃ τ ::ty . (a,τ)∈set Γ)

using assms
by (induct Γ)

(auto simp add : fresh-prod fresh-list-cons fresh-atm)

lemma type-unicity-in-context :
assumes a: valid Γ
and b: (x ,T 1) ∈ set Γ
and c: (x ,T 2) ∈ set Γ
shows T 1=T 2

using a b c
by (induct Γ)

(auto dest !: fresh-context)

10

valid Γ (x , T) ∈ set Γ
Γ ` Var x : T

t Var
Γ ` e1 : T 1→T 2 Γ ` e2 : T 1

Γ ` App e1 e2 : T 2

t App

x # Γ (x , T 1) # Γ ` t : T 2

Γ ` Lam [x].t : T 1→T 2

t Lam

valid Γ
Γ ` Const n : TBase

t Const
valid Γ

Γ ` Unit : TUnit
t Unit

Figure 1: Typing rules

4.2 Definition of the typing relation

Now, we can define the typing judgements for terms. The rules are given in figure 1.

Now,we generate the equivariance lemma and the strong induction principle and we derive
the lemma about validity.

equivariance typing

nominal-inductive typing
by (simp-all add : abs-fresh)

lemma typing-implies-valid :
assumes a: Γ ` t : T
shows valid Γ
using a by (induct) (auto)

4.3 Inversion lemmas for the typing relation

We generate some inversion lemmas for the typing judgment and add them as elimination
rules for the automatic tactics. During the generation of these lemmas, we need the injectivity
properties of the constructor of the nominal datatypes. These are not added by default in the
set of simplification rules to prevent unwanted simplifications in the rest of the development.
In the future, the inductive cases will be reworked to allow to use its own set of rules
instead of the whole ’simpset’.

declare trm.inject [simp add]
declare ty .inject [simp add]

inductive-cases2 t-Lam-elim-auto[elim]: Γ ` Lam [x].t : T
inductive-cases2 t-Var-elim-auto[elim]: Γ ` Var x : T
inductive-cases2 t-App-elim-auto[elim]: Γ ` App x y : T
inductive-cases2 t-Const-elim-auto[elim]: Γ ` Const n : T
inductive-cases2 t-Unit-elim-auto[elim]: Γ ` Unit : TUnit
inductive-cases2 t-Unit-elim-auto ′[elim]: Γ ` s : TUnit

declare trm.inject [simp del]
declare ty .inject [simp del]

11

App (Lam [x].t1) t2 t1[x ::=t2]QAR Beta
t1 t1

′

App t1 t2 App t1
′ t2

QAR App

5 Definitional Equivalence

Γ ` t : T
Γ ` t ≡ t : T

Q Refl
Γ ` t ≡ s : T
Γ ` s ≡ t : T

Q Symm

Γ ` s ≡ t : T Γ ` t ≡ u : T
Γ ` s ≡ u : T

Q Trans

Γ ` s1 ≡ t1 : T 1→T 2 Γ ` s2 ≡ t2 : T 1

Γ ` App s1 s2 ≡ App t1 t2 : T 2

Q App

x # Γ (x , T 1) # Γ ` s2 ≡ t2 : T 2

Γ ` Lam [x].s2 ≡ Lam [x].t2 : T 1→T 2

Q Abs

x # (Γ, s2, t2) (x , T 1) # Γ ` s1 ≡ t1 : T 2 Γ ` s2 ≡ t2 : T 1

Γ ` App (Lam [x].s1) s2 ≡ t1[x ::=t2] : T 2

Q Beta

x # (Γ, s, t) (x , T 1) # Γ ` App s (Var x) ≡ App t (Var x) : T 2

Γ ` s ≡ t : T 1→T 2

Q Ext

Γ ` s : TUnit Γ ` t : TUnit
Γ ` s ≡ t : TUnit

Q Unit

It is now a tradition, we derive the lemma about validity, and we generate the equivariance
lemma and the strong induction principle.

equivariance def-equiv

nominal-inductive def-equiv
by (simp-all add : abs-fresh fresh-subst ′′)

lemma def-equiv-implies-valid :
assumes a: Γ ` t ≡ s : T
shows valid Γ

using a by (induct) (auto elim: typing-implies-valid)

6 Type-driven equivalence algorithm

We follow the original presentation. The algorithm is described using inference rules only.

6.1 Weak head reduction

6.1.1 Inversion lemma for weak head reduction

declare trm.inject [simp add]
declare ty .inject [simp add]

inductive-cases2 whr-Gen[elim]: t t ′

12

inductive-cases2 whr-Lam[elim]: Lam [x].t t ′

inductive-cases2 whr-App-Lam[elim]: App (Lam [x].t12) t2 t
inductive-cases2 whr-Var [elim]: Var x t
inductive-cases2 whr-Const [elim]: Const n t
inductive-cases2 whr-App[elim]: App p q t
inductive-cases2 whr-Const-Right [elim]: t Const n
inductive-cases2 whr-Var-Right [elim]: t Var x
inductive-cases2 whr-App-Right [elim]: t App p q

declare trm.inject [simp del]
declare ty .inject [simp del]

equivariance whr-def

6.2 Weak head normalization

abbreviation
nf :: trm ⇒ bool (- | [100] 100)
where

t | ≡ ¬(∃ u. t u)

s t t ⇓ u
s ⇓ u

QAN Reduce
t |
t ⇓ t

QAN Normal

declare trm.inject [simp]

inductive-cases2 whn-inv-auto[elim]: t ⇓ t ′

declare trm.inject [simp del]

lemma whn-eqvt [eqvt]:
fixes pi ::name prm
assumes a: t ⇓ t ′

shows (pi ·t) ⇓ (pi ·t ′)
using a
apply(induct)
apply(rule QAN-Reduce)
apply(rule whr-def .eqvt)
apply(assumption)+
apply(rule QAN-Normal)
apply(auto)
apply(drule-tac pi=rev pi in whr-def .eqvt)
apply(perm-simp)
done

lemma red-unicity :
assumes a: x a
and b: x b
shows a=b

13

using a b
apply (induct arbitrary : b)
apply (erule whr-App-Lam)
apply (clarify)
apply (rule subst-fun-eq)
apply (simp)
apply (force)
apply (erule whr-App)
apply (blast)+
done

lemma nf-unicity :
assumes x ⇓ a and x ⇓ b
shows a=b
using assms

proof (induct arbitrary : b)
case (QAN-Reduce x t a b)
have h:x t t ⇓ a by fact
have ih:

∧
b. t ⇓ b =⇒ a = b by fact

have x ⇓ b by fact
then obtain t ′ where x t ′ and hl :t ′ ⇓ b using h by auto
then have t=t ′ using h red-unicity by auto
then show a=b using ih hl by auto

qed (auto)

6.3 Algorithmic term equivalence and algorithmic path equivalence

s ⇓ p t ⇓ q Γ ` p ↔ q : TBase
Γ ` s ⇔ t : TBase

QAT Base

x # (Γ, s, t) (x , T 1) # Γ ` App s (Var x) ⇔ App t (Var x) : T 2

Γ ` s ⇔ t : T 1→T 2
QAT Arrow

valid Γ
Γ ` s ⇔ t : TUnit

QAT One

valid Γ (x , T) ∈ set Γ
Γ ` Var x ↔ Var x : T

QAP Var

Γ ` p ↔ q : T 1→T 2 Γ ` s ⇔ t : T 1

Γ ` App p s ↔ App q t : T 2
QAP App

valid Γ
Γ ` Const n ↔ Const n : TBase

QAP Const

Again we generate the equivariance lemma and the strong induction principle.

equivariance alg-equiv

nominal-inductive alg-equiv
avoids QAT-Arrow : x
by simp-all

14

thm alg-equiv-alg-path-equiv .strong-induct

6.3.1 Inversion lemmas for algorithmic term and path equivalences

declare trm.inject [simp add]
declare ty .inject [simp add]

inductive-cases2 alg-equiv-Base-inv-auto[elim]: Γ ` s⇔t : TBase
inductive-cases2 alg-equiv-Arrow-inv-auto[elim]: Γ ` s⇔t : T 1 → T 2

inductive-cases2 alg-path-equiv-Base-inv-auto[elim]: Γ ` s↔t : TBase
inductive-cases2 alg-path-equiv-Unit-inv-auto[elim]: Γ ` s↔t : TUnit
inductive-cases2 alg-path-equiv-Arrow-inv-auto[elim]: Γ ` s↔t : T 1 → T 2

inductive-cases2 alg-path-equiv-Var-left-inv-auto[elim]: Γ ` Var x ↔ t : T
inductive-cases2 alg-path-equiv-Var-left-inv-auto ′[elim]: Γ ` Var x ↔ t : T ′

inductive-cases2 alg-path-equiv-Var-right-inv-auto[elim]: Γ ` s ↔ Var x : T
inductive-cases2 alg-path-equiv-Var-right-inv-auto ′[elim]: Γ ` s ↔ Var x : T ′

inductive-cases2 alg-path-equiv-Const-left-inv-auto[elim]: Γ ` Const n ↔ t : T
inductive-cases2 alg-path-equiv-Const-right-inv-auto[elim]: Γ ` s ↔ Const n : T
inductive-cases2 alg-path-equiv-App-left-inv-auto[elim]: Γ ` App p s ↔ t : T
inductive-cases2 alg-path-equiv-App-right-inv-auto[elim]: Γ ` s ↔ App q t : T
inductive-cases2 alg-path-equiv-Lam-left-inv-auto[elim]: Γ ` Lam[x].s ↔ t : T
inductive-cases2 alg-path-equiv-Lam-right-inv-auto[elim]: Γ ` t ↔ Lam[x].s : T

declare trm.inject [simp del]
declare ty .inject [simp del]

lemma Q-Arrow-strong-inversion:
assumes fs: x#Γ x#t x#u
and h: Γ ` t ⇔ u : T 1→T 2

shows (x ,T 1)#Γ ` App t (Var x) ⇔ App u (Var x) : T 2

proof −
obtain y where fs2 : y#(Γ,t ,u) and (y ,T 1)#Γ ` App t (Var y) ⇔ App u (Var y) : T 2

using h by auto
then have ([(x ,y)]·((y ,T 1)#Γ)) ` [(x ,y)]· App t (Var y) ⇔ [(x ,y)]· App u (Var y) : T 2

using alg-equiv .eqvt [simplified] by blast
then show ?thesis using fs fs2 by (perm-simp)

qed

For the algorithmic transitivity lemma we need a unicity property. But one has to be
cautious, because this unicity property is true only for algorithmic path. Indeed the following
lemma is false:

[[Γ ` s ⇔ t : T ; Γ ` s ⇔ u : T ′]] =⇒ T = T ′

Here is the counter example :

Γ ` Const n ⇔ Const n : Tbase and Γ ` Const n ⇔ Const n : TUnit

15

lemma algorithmic-path-type-unicity :
shows Γ ` s ↔ t : T =⇒ Γ ` s ↔ u : T ′ =⇒ T = T ′

proof (induct arbitrary : u T ′

rule: alg-equiv-alg-path-equiv .inducts(2) [of - - - - - %a b c d . True])
case (QAP-Var Γ x T u T ′)
have Γ ` Var x ↔ u : T ′ by fact
then have u=Var x and (x ,T ′) ∈ set Γ by auto
moreover have valid Γ (x ,T) ∈ set Γ by fact
ultimately show T=T ′ using type-unicity-in-context by auto

next
case (QAP-App Γ p q T 1 T 2 s t u T 2

′)
have ih:

∧
u T . Γ ` p ↔ u : T =⇒ T 1→T 2 = T by fact

have Γ ` App p s ↔ u : T 2
′ by fact

then obtain r t T 1
′ where u = App r t Γ ` p ↔ r : T 1

′ → T 2
′ by auto

then have T 1→T 2 = T 1
′ → T 2

′ by auto
then show T 2=T 2

′ using ty .inject by auto
qed (auto)

lemma alg-path-equiv-implies-valid :
shows Γ ` s ⇔ t : T =⇒ valid Γ
and Γ ` s ↔ t : T =⇒ valid Γ

by (induct rule : alg-equiv-alg-path-equiv .inducts, auto)

lemma algorithmic-symmetry :
shows Γ ` s ⇔ t : T =⇒ Γ ` t ⇔ s : T
and Γ ` s ↔ t : T =⇒ Γ ` t ↔ s : T

by (induct rule: alg-equiv-alg-path-equiv .inducts)
(auto simp add : fresh-prod)

lemma algorithmic-transitivity :
shows Γ ` s ⇔ t : T =⇒ Γ ` t ⇔ u : T =⇒ Γ ` s ⇔ u : T
and Γ ` s ↔ t : T =⇒ Γ ` t ↔ u : T =⇒ Γ ` s ↔ u : T

proof (nominal-induct Γ s t T and Γ s t T avoiding : u rule: alg-equiv-alg-path-equiv .strong-inducts)
case (QAT-Base s p t q Γ u)
have Γ ` t ⇔ u : TBase by fact
then obtain r ′ q ′ where b1 : t ⇓ q ′ and b2 : u ⇓ r ′ and b3 : Γ ` q ′ ↔ r ′ : TBase by auto
have ih: Γ ` q ↔ r ′ : TBase =⇒ Γ ` p ↔ r ′ : TBase by fact
have t ⇓ q by fact
with b1 have eq : q=q ′ by (simp add : nf-unicity)
with ih b3 have Γ ` p ↔ r ′ : TBase by simp
moreover
have s ⇓ p by fact
ultimately show Γ ` s ⇔ u : TBase using b2 by auto

next
case (QAT-Arrow x Γ s t T 1 T 2 u)
have ih:(x ,T 1)#Γ ` App t (Var x) ⇔ App u (Var x) : T 2

=⇒ (x ,T 1)#Γ ` App s (Var x) ⇔ App u (Var x) : T 2 by fact
have fs: x#Γ x#s x#t x#u by fact
have Γ ` t ⇔ u : T 1→T 2 by fact
then have (x ,T 1)#Γ ` App t (Var x) ⇔ App u (Var x) : T 2 using fs
by (simp add : Q-Arrow-strong-inversion)

with ih have (x ,T 1)#Γ ` App s (Var x) ⇔ App u (Var x) : T 2 by simp
then show Γ ` s ⇔ u : T 1→T 2 using fs by (auto simp add : fresh-prod)

16

next
case (QAP-App Γ p q T 1 T 2 s t u)
have Γ ` App q t ↔ u : T 2 by fact
then obtain r T 1

′ v where ha: Γ ` q ↔ r : T 1
′→T 2 and hb: Γ ` t ⇔ v : T 1

′ and eq : u = App
r v

by auto
have ih1 : Γ ` q ↔ r : T 1→T 2 =⇒ Γ ` p ↔ r : T 1→T 2 by fact
have ih2 :Γ ` t ⇔ v : T 1 =⇒ Γ ` s ⇔ v : T 1 by fact
have Γ ` p ↔ q : T 1→T 2 by fact
then have Γ ` q ↔ p : T 1→T 2 by (simp add : algorithmic-symmetry)
with ha have T 1

′→T 2 = T 1→T 2 using algorithmic-path-type-unicity by simp
then have T 1

′ = T 1 by (simp add : ty .inject)
then have Γ ` s ⇔ v : T 1 Γ ` p ↔ r : T 1→T 2 using ih1 ih2 ha hb by auto
then show Γ ` App p s ↔ u : T 2 using eq by auto

qed (auto)

lemma algorithmic-weak-head-closure:
shows Γ ` s ⇔ t : T =⇒ s ′ s =⇒ t ′ t =⇒ Γ ` s ′ ⇔ t ′ : T

apply (nominal-induct Γ s t T avoiding : s ′ t ′

rule: alg-equiv-alg-path-equiv .strong-inducts(1) [of - - - - %a b c d e. True])
apply(auto intro!: QAT-Arrow)
done

lemma algorithmic-monotonicity :
shows Γ ` s ⇔ t : T =⇒ Γ ⊆ Γ ′ =⇒ valid Γ ′ =⇒ Γ ′ ` s ⇔ t : T
and Γ ` s ↔ t : T =⇒ Γ ⊆ Γ ′ =⇒ valid Γ ′ =⇒ Γ ′ ` s ↔ t : T

proof (nominal-induct Γ s t T and Γ s t T avoiding : Γ ′ rule: alg-equiv-alg-path-equiv .strong-inducts)
case (QAT-Arrow x Γ s t T 1 T 2 Γ ′)
have fs:x#Γ x#s x#t x#Γ ′by fact
have h2 :Γ ⊆ Γ ′ by fact
have ih:

∧
Γ ′. [[(x ,T 1)#Γ ⊆ Γ ′; valid Γ ′]] =⇒ Γ ′ ` App s (Var x) ⇔ App t (Var x) : T 2 by fact

have valid Γ ′ by fact
then have valid ((x ,T 1)#Γ ′) using fs by auto
moreover
have sub: (x ,T 1)#Γ ⊆ (x ,T 1)#Γ ′ using h2 by auto
ultimately have (x ,T 1)#Γ ′ ` App s (Var x) ⇔ App t (Var x) : T 2 using ih by simp
then show Γ ′ ` s ⇔ t : T 1→T 2 using fs by (auto simp add : fresh-prod)

qed (auto)

lemma path-equiv-implies-nf :
assumes Γ ` s ↔ t : T
shows s | and t |

using assms
by (induct rule: alg-equiv-alg-path-equiv .inducts(2)) (simp, auto)

6.4 Definition of the logical relation

We define the logical equivalence as a function. Note that here we can not use an inductive
definition because of the negative occurence in the arrow case.

function log-equiv :: (Ctxt ⇒ trm ⇒ trm ⇒ ty ⇒ bool) (- ` - is - : - [60 ,60 ,60 ,60] 60)

17

where
Γ ` s is t : TUnit = True
| Γ ` s is t : TBase = Γ ` s ⇔ t : TBase
| Γ ` s is t : (T 1 → T 2) =

(∀Γ ′ s ′ t ′. Γ⊆Γ ′ −→ valid Γ ′ −→ Γ ′ ` s ′ is t ′ : T 1 −→ (Γ ′ ` (App s s ′) is (App t t ′) : T 2))
apply (auto simp add : ty .inject)
apply (subgoal-tac (∃T 1 T 2. b=T 1 → T 2) ∨ b=TUnit ∨ b=TBase)
apply (force)
apply (rule ty-cases)
done

termination
apply(relation measure (λ(-,-,-,T). size T))
apply(auto)
done

Monotonicity of the logical equivalence relation.

lemma logical-monotonicity :
assumes a1 : Γ ` s is t : T
and a2 : Γ ⊆ Γ ′

and a3 : valid Γ ′

shows Γ ′ ` s is t : T
using a1 a2 a3
proof (induct arbitrary : Γ ′ rule: log-equiv .induct)
case (2 Γ s t Γ ′)
then show Γ ′ ` s is t : TBase using algorithmic-monotonicity by auto

next
case (3 Γ s t T 1 T 2 Γ ′)
have Γ ` s is t : T 1→T 2

and Γ ⊆ Γ ′

and valid Γ ′ by fact
then show Γ ′ ` s is t : T 1→T 2 by simp

qed (auto)

lemma main-lemma:
shows Γ ` s is t : T =⇒ valid Γ =⇒ Γ ` s ⇔ t : T
and Γ ` p ↔ q : T =⇒ Γ ` p is q : T

proof (nominal-induct T arbitrary : Γ s t p q rule: ty .induct)
case (Arrow T 1 T 2)
{
case (1 Γ s t)
have ih1 :

∧
Γ s t . [[Γ ` s is t : T 2; valid Γ]] =⇒ Γ ` s ⇔ t : T 2 by fact

have ih2 :
∧

Γ s t . Γ ` s ↔ t : T 1 =⇒ Γ ` s is t : T 1 by fact
have h:Γ ` s is t : T 1→T 2 by fact
obtain x ::name where fs:x#(Γ,s,t) by (erule exists-fresh[OF fs-name1])
have valid Γ by fact
then have v : valid ((x ,T 1)#Γ) using fs by auto
then have (x ,T 1)#Γ ` Var x ↔ Var x : T 1 by auto
then have (x ,T 1)#Γ ` Var x is Var x : T 1 using ih2 by auto
then have (x ,T 1)#Γ ` App s (Var x) is App t (Var x) : T 2 using h v by auto
then have (x ,T 1)#Γ ` App s (Var x) ⇔ App t (Var x) : T 2 using ih1 v by auto
then show Γ ` s ⇔ t : T 1→T 2 using fs by (auto simp add : fresh-prod)

next

18

case (2 Γ p q)
have h: Γ ` p ↔ q : T 1→T 2 by fact
have ih1 :

∧
Γ s t . Γ ` s ↔ t : T 2 =⇒ Γ ` s is t : T 2 by fact

have ih2 :
∧

Γ s t . [[Γ ` s is t : T 1; valid Γ]] =⇒ Γ ` s ⇔ t : T 1 by fact
{
fix Γ ′ s t
assume Γ ⊆ Γ ′ and hl :Γ ′ ` s is t : T 1 and hk : valid Γ ′

then have Γ ′ ` p ↔ q : T 1 → T 2 using h algorithmic-monotonicity by auto
moreover have Γ ′ ` s ⇔ t : T 1 using ih2 hl hk by auto
ultimately have Γ ′ ` App p s ↔ App q t : T 2 by auto
then have Γ ′ ` App p s is App q t : T 2 using ih1 by auto

}
then show Γ ` p is q : T 1→T 2 by simp

}
next
case TBase
{ case 2
have h:Γ ` s ↔ t : TBase by fact
then have s | and t | using path-equiv-implies-nf by auto
then have s ⇓ s and t ⇓ t by auto
then have Γ ` s ⇔ t : TBase using h by auto
then show Γ ` s is t : TBase by auto

}
qed (auto elim: alg-path-equiv-implies-valid)

corollary corollary-main:
assumes a: Γ ` s ↔ t : T
shows Γ ` s ⇔ t : T

using a main-lemma alg-path-equiv-implies-valid by blast

lemma logical-symmetry :
assumes a: Γ ` s is t : T
shows Γ ` t is s : T

using a
by (nominal-induct arbitrary : Γ s t rule: ty .induct)

(auto simp add : algorithmic-symmetry)

lemma logical-transitivity :
assumes Γ ` s is t : T Γ ` t is u : T
shows Γ ` s is u : T

using assms
proof (nominal-induct arbitrary : Γ s t u rule:ty .induct)
case TBase
then show Γ ` s is u : TBase by (auto elim: algorithmic-transitivity)

next
case (Arrow T 1 T 2 Γ s t u)
have h1 :Γ ` s is t : T 1 → T 2 by fact
have h2 :Γ ` t is u : T 1 → T 2 by fact
have ih1 :

∧
Γ s t u. [[Γ ` s is t : T 1; Γ ` t is u : T 1]] =⇒ Γ ` s is u : T 1 by fact

have ih2 :
∧

Γ s t u. [[Γ ` s is t : T 2; Γ ` t is u : T 2]] =⇒ Γ ` s is u : T 2 by fact
{
fix Γ ′ s ′ u ′

assume hsub:Γ ⊆ Γ ′ and hl :Γ ′ ` s ′ is u ′ : T 1 and hk : valid Γ ′

19

then have Γ ′ ` u ′ is s ′ : T 1 using logical-symmetry by blast
then have Γ ′ ` u ′ is u ′ : T 1 using ih1 hl by blast
then have Γ ′ ` App t u ′ is App u u ′ : T 2 using h2 hsub hk by auto
moreover have Γ ′ ` App s s ′ is App t u ′ : T 2 using h1 hsub hl hk by auto
ultimately have Γ ′ ` App s s ′ is App u u ′ : T 2 using ih2 by blast

}
then show Γ ` s is u : T 1 → T 2 by auto

qed (auto)

To simplify the formal proof, here we derive two lemmas which are weaker than the lemma
in the paper version. We omit the reflexive and transitive closure of the relation s ′ s in
the assumptions.

lemma logical-weak-head-closure:
assumes a: Γ ` s is t : T
and b: s ′ s
and c: t ′ t
shows Γ ` s ′ is t ′ : T

using a b c algorithmic-weak-head-closure
by (nominal-induct arbitrary : Γ s t s ′ t ′ rule: ty .induct)

(auto, blast)

lemma logical-weak-head-closure ′:
assumes Γ ` s is t : T and s ′ s
shows Γ ` s ′ is t : T

using assms
proof (nominal-induct arbitrary : Γ s t s ′ rule: ty .induct)
case (TBase Γ s t s ′)
then show ?case by force

next
case (TUnit Γ s t s ′)
then show ?case by auto

next
case (Arrow T 1 T 2 Γ s t s ′)
have h1 :s ′ s by fact
have ih:

∧
Γ s t s ′. [[Γ ` s is t : T 2; s ′ s]] =⇒ Γ ` s ′ is t : T 2 by fact

have h2 :Γ ` s is t : T 1→T 2 by fact
then
have hb:∀Γ ′ s ′ t ′. Γ⊆Γ ′ −→ valid Γ ′ −→ Γ ′ ` s ′ is t ′ : T 1 −→ (Γ ′ ` (App s s ′) is (App t t ′) : T 2)

by auto
{
fix Γ ′ s2 t2

assume Γ ⊆ Γ ′ and Γ ′ ` s2 is t2 : T 1 and valid Γ ′

then have Γ ′ ` (App s s2) is (App t t2) : T 2 using hb by auto
moreover have (App s ′ s2) (App s s2) using h1 by auto
ultimately have Γ ′ ` App s ′ s2 is App t t2 : T 2 using ih by auto

}
then show Γ ` s ′ is t : T 1→T 2 by auto

qed

abbreviation
log-equiv-for-psubsts :: Ctxt ⇒ Subst ⇒ Subst ⇒ Ctxt ⇒ bool (- ` - is - over - [60 ,60] 60)
where

20

Γ ′ ` θ is θ ′ over Γ ≡ ∀ x T . (x ,T) ∈ set Γ −→ Γ ′ ` θ<Var x> is θ ′<Var x> : T

Now, we can derive that the logical equivalence is almost reflexive.

lemma logical-pseudo-reflexivity :
assumes Γ ′ ` t is s over Γ
shows Γ ′ ` s is s over Γ

proof −
have Γ ′ ` t is s over Γ by fact
moreover then have Γ ′ ` s is t over Γ using logical-symmetry by blast
ultimately show Γ ′ ` s is s over Γ using logical-transitivity by blast

qed

lemma logical-subst-monotonicity :
assumes a: Γ ′ ` s is t over Γ
and b: Γ ′ ⊆ Γ ′′

and c: valid Γ ′′

shows Γ ′′ ` s is t over Γ
using a b c logical-monotonicity by blast

lemma equiv-subst-ext :
assumes h1 : Γ ′ ` θ is θ ′ over Γ
and h2 : Γ ′ ` s is t : T
and fs: x#Γ
shows Γ ′ ` (x ,s)#θ is (x ,t)#θ ′ over (x ,T)#Γ

using assms
proof −

{
fix y U
assume (y ,U) ∈ set ((x ,T)#Γ)
moreover
{
assume (y ,U) ∈ set [(x ,T)]
then have Γ ′ ` (x ,s)#θ<Var y> is (x ,t)#θ ′<Var y> : U by auto

}
moreover
{
assume hl :(y ,U) ∈ set Γ
then have ¬ y#Γ by (induct Γ) (auto simp add : fresh-list-cons fresh-atm fresh-prod)
then have hf :x# Var y using fs by (auto simp add : fresh-atm)

then have (x ,s)#θ<Var y> = θ<Var y> (x ,t)#θ ′<Var y> = θ ′<Var y> using fresh-psubst-simp
by blast+

moreover have Γ ′ ` θ<Var y> is θ ′<Var y> : U using h1 hl by auto
ultimately have Γ ′ ` (x ,s)#θ<Var y> is (x ,t)#θ ′<Var y> : U by auto

}
ultimately have Γ ′ ` (x ,s)#θ<Var y> is (x ,t)#θ ′<Var y> : U by auto

}
then show Γ ′ ` (x ,s)#θ is (x ,t)#θ ′ over (x ,T)#Γ by auto

qed

21

6.5 Fundamental theorems

theorem fundamental-theorem-1 :
assumes h1 : Γ ` t : T
and h2 : Γ ′ ` θ is θ ′ over Γ
and h3 : valid Γ ′

shows Γ ′ ` θ<t> is θ ′<t> : T
using h1 h2 h3
proof (nominal-induct Γ t T avoiding : Γ ′ θ θ ′ rule: typing .strong-induct)
case (t-Lam x Γ T 1 t2 T 2 Γ ′ θ θ ′)
have fs:x#θ x#θ ′ x#Γ by fact
have h:Γ ′ ` θ is θ ′ over Γ by fact
have ih:

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over (x ,T 1)#Γ; valid Γ ′]] =⇒ Γ ′ ` θ<t2> is θ ′<t2> : T 2 by fact

{
fix Γ ′′ s ′ t ′

assume Γ ′ ⊆ Γ ′′ and hl :Γ ′′̀ s ′ is t ′ : T 1 and v : valid Γ ′′

then have Γ ′′ ` θ is θ ′ over Γ using logical-subst-monotonicity h by blast
then have Γ ′′ ` (x ,s ′)#θ is (x ,t ′)#θ ′ over (x ,T 1)#Γ using equiv-subst-ext hl fs by blast
then have Γ ′′ ` (x ,s ′)#θ<t2> is (x ,t ′)#θ ′<t2> : T 2 using ih v by auto
then have Γ ′′̀ θ<t2>[x ::=s ′] is θ ′<t2>[x ::=t ′] : T 2 using psubst-subst-psubst fs by simp
moreover have App (Lam [x].θ<t2>) s ′ θ<t2>[x ::=s ′] by auto
moreover have App (Lam [x].θ ′<t2>) t ′ θ ′<t2>[x ::=t ′] by auto
ultimately have Γ ′′̀ App (Lam [x].θ<t2>) s ′ is App (Lam [x].θ ′<t2>) t ′ : T 2

using logical-weak-head-closure by auto
}
then show Γ ′ ` θ<Lam [x].t2> is θ ′<Lam [x].t2> : T 1→T 2 using fs by simp

qed (auto)

theorem fundamental-theorem-2 :
assumes h1 : Γ ` s ≡ t : T
and h2 : Γ ′ ` θ is θ ′ over Γ
and h3 : valid Γ ′

shows Γ ′ ` θ<s> is θ ′<t> : T
using h1 h2 h3
proof (nominal-induct Γ s t T avoiding : Γ ′ θ θ ′ rule: def-equiv .strong-induct)
case (Q-Refl Γ t T Γ ′ θ θ ′)
have Γ ` t : T
and valid Γ ′ by fact
moreover
have Γ ′ ` θ is θ ′ over Γ by fact
ultimately show Γ ′ ` θ<t> is θ ′<t> : T using fundamental-theorem-1 by blast

next
case (Q-Symm Γ t s T Γ ′ θ θ ′)
have Γ ′ ` θ is θ ′ over Γ
and valid Γ ′ by fact
moreover
have ih:

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over Γ; valid Γ ′]] =⇒ Γ ′ ` θ<t> is θ ′<s> : T by fact

ultimately show Γ ′ ` θ<s> is θ ′<t> : T using logical-symmetry by blast
next
case (Q-Trans Γ s t T u Γ ′ θ θ ′)
have ih1 :

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over Γ; valid Γ ′]] =⇒ Γ ′ ` θ<s> is θ ′<t> : T by fact

have ih2 :
∧

Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over Γ; valid Γ ′]] =⇒ Γ ′ ` θ<t> is θ ′<u> : T by fact
have h: Γ ′ ` θ is θ ′ over Γ

22

and v : valid Γ ′ by fact
then have Γ ′ ` θ ′ is θ ′ over Γ using logical-pseudo-reflexivity by auto
then have Γ ′ ` θ ′<t> is θ ′<u> : T using ih2 v by auto
moreover have Γ ′ ` θ<s> is θ ′<t> : T using ih1 h v by auto
ultimately show Γ ′ ` θ<s> is θ ′<u> : T using logical-transitivity by blast

next
case (Q-Abs x Γ T 1 s2 t2 T 2 Γ ′ θ θ ′)
have fs:x#Γ by fact
have fs2 : x#θ x#θ ′ by fact
have h2 : Γ ′ ` θ is θ ′ over Γ
and h3 : valid Γ ′ by fact
have ih:

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over (x ,T 1)#Γ; valid Γ ′]] =⇒ Γ ′ ` θ<s2> is θ ′<t2> : T 2 by fact

{
fix Γ ′′ s ′ t ′

assume Γ ′ ⊆ Γ ′′ and hl :Γ ′′̀ s ′ is t ′ : T 1 and hk : valid Γ ′′

then have Γ ′′ ` θ is θ ′ over Γ using h2 logical-subst-monotonicity by blast
then have Γ ′′ ` (x ,s ′)#θ is (x ,t ′)#θ ′ over (x ,T 1)#Γ using equiv-subst-ext hl fs by blast
then have Γ ′′ ` (x ,s ′)#θ<s2> is (x ,t ′)#θ ′<t2> : T 2 using ih hk by blast
then have Γ ′′̀ θ<s2>[x ::=s ′] is θ ′<t2>[x ::=t ′] : T 2 using fs2 psubst-subst-psubst by auto
moreover have App (Lam [x]. θ<s2>) s ′ θ<s2>[x ::=s ′]

and App (Lam [x].θ ′<t2>) t ′ θ ′<t2>[x ::=t ′] by auto
ultimately have Γ ′′ ` App (Lam [x]. θ<s2>) s ′ is App (Lam [x].θ ′<t2>) t ′ : T 2

using logical-weak-head-closure by auto
}
moreover have valid Γ ′ using h2 by auto
ultimately have Γ ′ ` Lam [x].θ<s2> is Lam [x].θ ′<t2> : T 1→T 2 by auto
then show Γ ′ ` θ<Lam [x].s2> is θ ′<Lam [x].t2> : T 1→T 2 using fs2 by auto

next
case (Q-App Γ s1 t1 T 1 T 2 s2 t2 Γ ′ θ θ ′)
then show Γ ′ ` θ<App s1 s2> is θ ′<App t1 t2> : T 2 by auto

next
case (Q-Beta x Γ s2 t2 T 1 s12 t12 T 2 Γ ′ θ θ ′)
have h: Γ ′ ` θ is θ ′ over Γ
and h ′: valid Γ ′ by fact
have fs: x#Γ by fact
have fs2 : x#θ x#θ ′ by fact
have ih1 :

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over Γ; valid Γ ′]] =⇒ Γ ′ ` θ<s2> is θ ′<t2> : T 1 by fact

have ih2 :
∧

Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over (x ,T 1)#Γ; valid Γ ′]] =⇒ Γ ′ ` θ<s12> is θ ′<t12> : T 2 by
fact
have Γ ′ ` θ<s2> is θ ′<t2> : T 1 using ih1 h ′ h by auto
then have Γ ′ ` (x ,θ<s2>)#θ is (x ,θ ′<t2>)#θ ′ over (x ,T 1)#Γ using equiv-subst-ext h fs by blast
then have Γ ′ ` (x ,θ<s2>)#θ<s12> is (x ,θ ′<t2>)#θ ′<t12> : T 2 using ih2 h ′ by auto
then have Γ ′ ` θ<s12>[x ::=θ<s2>] is θ ′<t12>[x ::=θ ′<t2>] : T 2 using fs2 psubst-subst-psubst

by auto
then have Γ ′ ` θ<s12>[x ::=θ<s2>] is θ ′<t12 [x ::=t2]> : T 2 using fs2 psubst-subst-propagate by

auto
moreover have App (Lam [x].θ<s12>) (θ<s2>) θ<s12>[x ::=θ<s2>] by auto
ultimately have Γ ′ ` App (Lam [x].θ<s12>) (θ<s2>) is θ ′<t12 [x ::=t2]> : T 2

using logical-weak-head-closure ′ by auto
then show Γ ′ ` θ<App (Lam [x].s12) s2> is θ ′<t12 [x ::=t2]> : T 2 using fs2 by simp

next
case (Q-Ext x Γ s t T 1 T 2 Γ ′ θ θ ′)
have h2 : Γ ′ ` θ is θ ′ over Γ

23

and h2 ′: valid Γ ′ by fact
have fs:x#Γ x#s x#t by fact
have ih:

∧
Γ ′ θ θ ′. [[Γ ′ ` θ is θ ′ over (x ,T 1)#Γ; valid Γ ′]]

=⇒ Γ ′ ` θ<App s (Var x)> is θ ′<App t (Var x)> : T 2 by fact
{
fix Γ ′′ s ′ t ′

assume hsub: Γ ′ ⊆ Γ ′′ and hl : Γ ′′̀ s ′ is t ′ : T 1 and hk : valid Γ ′′

then have Γ ′′ ` θ is θ ′ over Γ using h2 logical-subst-monotonicity by blast
then have Γ ′′ ` (x ,s ′)#θ is (x ,t ′)#θ ′ over (x ,T 1)#Γ using equiv-subst-ext hl fs by blast
then have Γ ′′ ` (x ,s ′)#θ<App s (Var x)> is (x ,t ′)#θ ′<App t (Var x)> : T 2 using ih hk by

blast
then
have Γ ′′ ` App (((x ,s ′)#θ)<s>) (((x ,s ′)#θ)<(Var x)>) is App ((x ,t ′)#θ ′<t>) ((x ,t ′)#θ ′<(Var

x)>) : T 2

by auto
then have Γ ′′ ` App ((x ,s ′)#θ<s>) s ′ is App ((x ,t ′)#θ ′<t>) t ′ : T 2 by auto
then have Γ ′′ ` App (θ<s>) s ′ is App (θ ′<t>) t ′ : T 2 using fs fresh-psubst-simp by auto

}
moreover have valid Γ ′ using h2 by auto
ultimately show Γ ′ ` θ<s> is θ ′<t> : T 1→T 2 by auto

next
case (Q-Unit Γ s t Γ ′ θ θ ′)
then show Γ ′ ` θ<s> is θ ′<t> : TUnit by auto

qed

6.6 Completeness

theorem completeness:
assumes asm: Γ ` s ≡ t : T
shows Γ ` s ⇔ t : T

proof −
have val : valid Γ using def-equiv-implies-valid asm by simp
moreover
{
fix x T
assume (x ,T) ∈ set Γ valid Γ
then have Γ ` Var x is Var x : T using main-lemma(2) by blast

}
ultimately have Γ ` [] is [] over Γ by auto
then have Γ ` []<s> is []<t> : T using fundamental-theorem-2 val asm by blast
then have Γ ` s is t : T by simp
then show Γ ` s ⇔ t : T using main-lemma(1) val by simp

qed

7 About soundness

We leave soundness as an exercise - like in the book :-)
If Γ ` s ⇔ t : T and Γ ` t : T and Γ ` s : T then Γ ` s ≡ t : T .
[[Γ ` s ↔ t : T ; Γ ` t : T ; Γ ` s : T]] =⇒ Γ ` s ≡ t : T

24

end

25

References

[1] S. Berghofer and C. Urban. The Nominal Datatypes Package user manual. Technische
Universität München, 2006.

[2] K. Crary. Logical Relations and a Case Study in Equivalence Checking. In B. C. Pierce,
editor, Advanced Topics in Types and Programming Languages, pages 223–244. MIT Press,
2005.

[3] L. C. Paulson. The Isabelle reference manual, 2006.

[4] C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes Implemented
in Isabelle/HOL. In Proc. of the 3rd International Joint Conference on Automated Rea-
soning (IJCAR), volume 4130 of LNAI, pages 498–512, 2006.

[5] C. Urban and C. Tasson. Nominal Techniques in Isabelle/HOL. In Proc. of the 20th
International Conference on Automated Deduction (CADE), volume 3632 of LNCS, pages
38–53, 2005.

[6] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable formal proof
documents. PhD thesis, Institut für Informatik, Technische Universität München, 2002.

26

	Introduction
	Definition of the language
	Definition of the terms and types
	Size functions

	Capture-avoiding substitutions
	Parallel substitution
	Substitution
	Lemmas about freshness and substitutions

	Typing
	Typing contexts
	Definition of the typing relation
	Inversion lemmas for the typing relation

	Definitional Equivalence
	Type-driven equivalence algorithm
	Weak head reduction
	Inversion lemma for weak head reduction

	Weak head normalization
	Algorithmic term equivalence and algorithmic path equivalence
	Inversion lemmas for algorithmic term and path equivalences

	Definition of the logical relation
	Fundamental theorems
	Completeness

	About soundness

