Extension des modèles stochastiques de substitution de nucléotides : approche Kronecker

#### Équipe de Bioinformatique théorique, Fouille de données et Optimisation stochastique Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection

2012







#### 1 Modèles d'évolution stochastiques classiques

2 Modèle d'évolution analytique avec Kronecker

### Icgiciel de recherche : Stochastic Evolution of Genetic Motifs

4 Références bibliographiques

## Plan

## 1 Modèles d'évolution stochastiques classiques

2 Modèle d'évolution analytique avec Kronecker

## Iogiciel de recherche : Stochastic Evolution of Genetic Motifs

④ Références bibliographiques

A (2) A (3) A (3) A

# Notion de motif

- Alphabet génétique :  $\mathcal{A} = \{A,C,G,T\}$
- $\mathcal{A}^n$  : ensemble des motifs de longueur n sur  $\mathcal{A}$
- 4<sup>n</sup> motifs de longueur n
- *i*, motif de longueur *n* : dans  $\mathcal{A}^n$

#### Exemple : dinucléotides

Motifs de  $\mathcal{A}^2$ 

| motif | AA | AC | AG | <br>TT | $i = \Lambda C \Leftrightarrow i = 3$        |
|-------|----|----|----|--------|----------------------------------------------|
| ordre | 1  | 2  | 3  | <br>16 | $\rightarrow$ 1 = AG $\Leftrightarrow$ 1 = 5 |

| Modèle   | Modèle       |
|----------|--------------|
| physique | stochastique |

| Séquence init. | Probabilités d'occurrence initiales à $t=0$ |
|----------------|---------------------------------------------|
| AA,AA,AA,AA,AA | $P_{AA}(0) = 1, P_{AC}(0), \ldots$          |

| Modèle   | Modèle       |
|----------|--------------|
| physique | stochastique |

| Séquence init. | Probabilités d'occurrence initiales à $t=0$ |
|----------------|---------------------------------------------|
| AA,AA,AA,AA,AA | $P_{AA}(0) = 1, P_{AC}(0), \ldots$          |

| Évolution               | Probabilités d'occurrence à $t=1,2,\dots$     |
|-------------------------|-----------------------------------------------|
| AA,AA,A <b>C</b> ,AA,AA | $P_{AA}(1) < 1, P_{AC}(1) > 0, P_{AG}(1) = 0$ |
|                         |                                               |
|                         |                                               |

| Modèle   | Modèle       |
|----------|--------------|
| physique | stochastique |

| Séquence init. | Probabilités d'occurrence initiales à $t=0$ |
|----------------|---------------------------------------------|
| AA,AA,AA,AA,AA | $P_{AA}(0) = 1, P_{AC}(0), \ldots$          |

| Évolution                                                   | Probabilités d'occurrence à $t=1,2,\dots$                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| AA,AA,A <b>C</b> ,AA,AA<br>AA, <b>G</b> A,A <b>C</b> ,AA,AA | $\begin{aligned} P_{AA}(1) < 1, P_{AC}(1) > 0, P_{AG}(1) = 0\\ P_{AA}(2) < 1, P_{AC}(2) > 0, P_{GA}(2) > 0, P_{AG}(2) = 0 \end{aligned}$ |

| Modèle   | Modèle       |
|----------|--------------|
| physique | stochastique |

| Séquence init. | Probabilités d'occurrence initiales à $t=0$ |
|----------------|---------------------------------------------|
| AA,AA,AA,AA,AA | $P_{AA}(0) = 1, P_{AC}(0), \ldots$          |

| Évolution                                                                                                | Probabilités d'occurrence à $t=1,2,\dots$                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA,AA,A <b>C</b> ,AA,AA<br>AA, <b>G</b> A,A <b>C</b> ,AA,AA<br>AA, <b>G</b> A,A <b>C</b> ,AA, <b>T</b> A | $\begin{aligned} & P_{AA}(1) < 1, P_{AC}(1) > 0, P_{AG}(1) = 0 \\ & P_{AA}(2) < 1, P_{AC}(2) > 0, P_{GA}(2) > 0, P_{AG}(2) = 0 \\ & P_{AA}(3) < 1, P_{AC}(3) > 0, P_{GA}(3) > 0, P_{TA}(3) > 0, P_{AG}(3) = 0 \end{aligned}$ |

| Modèle   | Modèle       |
|----------|--------------|
| physique | stochastique |

| Séquence init. | Probabilités d'occurrence initiales à $t=0$ |
|----------------|---------------------------------------------|
| AA,AA,AA,AA,AA | $P_{AA}(0) = 1, P_{AC}(0), \ldots$          |

| Évolution                                                                           | Probabilités d'occurrence à $t=1,2,\dots$                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA,AA,AC,AA,AA<br>AA,GA,AC,AA,AA<br>AA,GA,AC,AA,TA<br>AA, <mark>A</mark> A,AC,AA,TA | $\begin{array}{l} P_{AA}(1) < 1, P_{AC}(1) > 0, P_{AG}(1) = 0 \\ P_{AA}(2) < 1, P_{AC}(2) > 0, P_{GA}(2) > 0, P_{AG}(2) = 0 \\ P_{AA}(3) < 1, P_{AC}(3) > 0, P_{GA}(3) > 0, P_{TA}(3) > 0, P_{AG}(3) = 0 \\ P_{AA}(4) < 1, P_{AC}(4) > 0, P_{GA}(4) = 0, P_{TA}(4) > 0, P_{AG}(4) = 0 \end{array}$ |

< ロト (周) (日) (日)

# Équation différentielle d'évolution

#### Notations

- i, j: deux motifs de taille n
- $P_{\Delta t}(j 
  ightarrow i)$  : probabilité que j mute en i pendant  $\Delta t$ 
  - $P_i(t)$ : probabilité d'occurrence de *i* au temps *t*

 $\Delta t$  suffisamment petit pour avoir au plus une substitution pendant cet intervalle de temps

#### Probabilité d'occurrence du motif i au temps $t + \Delta t$

$$P_i(t + \Delta t) = \sum_j P_j(t) \times P_{\Delta t}(j \to i)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

## Équation différentielle d'évolution

#### Dérivation

$$P_i'(t) = \lim_{\Delta t o 0} rac{P_i(t+\Delta t) - P_i(t)}{\Delta t}$$

$$P_i'(t) = \sum_j P_j(t) \times P(j \to i) - P_i(t)$$

P(j 
ightarrow i) : probabilité de substitution instantanée d'un motif j en un motif i

3

#### Modèles d'évolution stochastiques classiques

Modélisation stochastique

## Équation différentielle d'évolution

$$P_i'(t) = \sum_j P_j(t) \times P(j \to i) - P_i(t)$$

 $P_n(t) = [P_i(t)]_{i=1}^{4^n}$ : vecteur colonne des probabilités d'occurrence des  $4^n$  motifs de taille *n* 

#### ↓ Notation matricielle

$$P'_n(t) = M_n \cdot P_n(t) - P_n(t) = \underbrace{(M_n - I_n)}_{A_n} \cdot P_n(t)$$

 $M_n$ : matrice de substitution  $(4^n, 4^n)$  telle que  $m_{i,j} = P(j \to i)$  $l_n$ : matrice identité  $(4^n, 4^n)$ 

#### Modèles d'évolution stochastiques classiques

Modélisation stochastique

## Équation différentielle d'évolution

$$P_i'(t) = \sum_j P_j(t) \times P(j \to i) - P_i(t)$$

 $P_n(t) = [P_i(t)]_{i=1}^{4^n}$ : vecteur colonne des probabilités d'occurrence des  $4^n$  motifs de taille *n* 

#### $\Downarrow$ Notation matricielle

$$P'_n(t) = M_n \cdot P_n(t) - P_n(t) = \underbrace{(M_n - I_n)}_{A_n} \cdot P_n(t)$$

 $M_n$ : matrice de substitution  $(4^n, 4^n)$  telle que  $m_{i,j} = P(j \rightarrow i)$  $I_n$ : matrice identité  $(4^n, 4^n)$ 

 $A_n$ : matrice des taux de substitution instantanée  $(4^n, 4^n)$ 

### Matrice des taux de substitution instantanée

#### Structure de la matrice $A_1$ (nucléotides)

$$\begin{array}{ccccc}
 A & C & G & T \\
 & & a_{1,2} & a_{1,3} & a_{1,4} \\
 & & a_{2,1} & * & a_{2,3} & a_{2,4} \\
 & & a_{3,1} & a_{3,2} & * & a_{3,4} \\
 & & a_{4,1} & a_{4,2} & a_{4,3} & * 
 \end{array}$$

- Éléments diagonaux :  $a_{i,i} = -\sum_{j=1}^{4} a_{j,i}$
- Ainsi les colonnes somment à 0

伺い イヨト イヨト

### Matrice des taux de substitution instantanée

#### Structure de la matrice $A_1$ (nucléotides)

• Éléments diagonaux : 
$$a_{i,i} = -\sum_{j=1}^4 a_{j,i}$$

Ainsi les colonnes somment à 0

• • = • • = •

## Modèles de substitution de nucléotides utilisés

#### Modèle de substitution 1P : Jukes et Cantor, 1969

$$\left(\begin{array}{cccc} * & \alpha & \alpha & \alpha \\ \alpha & * & \alpha & \alpha \\ \alpha & \alpha & * & \alpha \\ \alpha & \alpha & \alpha & * \end{array}\right)$$

Toutes les substitutions ont un taux identique  $\alpha$ 

#### Modèle de substitution **2P** : Kimura, 1980

| 1 | *        | $\beta$  | $\alpha$ | $\beta$  |   |
|---|----------|----------|----------|----------|---|
|   | $\beta$  | *        | $\beta$  | $\alpha$ |   |
|   | $\alpha$ | $\beta$  | *        | $\beta$  |   |
|   | $\beta$  | $\alpha$ | $\beta$  | *        | Ϊ |

Distinction entre les transitions  $\alpha$  et les transversions  $\beta$ 

## Modèles de substitution de nucléotides utilisés

#### Modèle de substitution **3P** : Kimura, 1981

$$\begin{pmatrix} * & \gamma & \alpha & \beta \\ \gamma & * & \beta & \alpha \\ \alpha & \beta & * & \gamma \\ \beta & \alpha & \gamma & * \end{pmatrix}$$

Distinction entre :

- ullet les transitions lpha
- les transversions de type l  $\beta$  (A $\leftrightarrow$ T et C $\leftrightarrow$ G)
- les transversions de type II  $\gamma$  (A $\leftrightarrow$ C et G $\leftrightarrow$ T)

#### Notation des modèles de substitution

1P, 2P, 3P : Modèles de substitution de nucléotides1PS, 2PS, 3PS : Modèles de substitution de motifs

イボト イラト イラト

# Résolution analytique de l'équation différentielle d'évolution

#### Rappel : Équation différentielle d'évolution

$$P_n'(t) = A_n \cdot P_n(t)$$

Quand la matrice des taux de substitution instantanée  $A_n$  est diagonalisable :

$$A_n = Q_n \cdot D_n \cdot Q_n^{-1}$$

 $D_n$ : matrice diagonale  $(4^n, 4^n)$  des valeurs propres  $Q_n$ : matrice  $(4^n, 4^n)$  des vecteurs propres  $Q_n^{-1}$ : matrice inverse de  $Q_n$ 

# Résolution analytique de l'équation différentielle d'évolution

$$P'_n(t) = Q_n \cdot D_n \cdot Q_n^{-1} \cdot P_n(t)$$

 $\Downarrow$  Solution classique (Lange, 2005)

$$P_n(t) = Q_n \cdot e^{D_n \times t} \cdot Q_n^{-1} \cdot P_n(0)$$

- $e^{D_n \times t}$ : matrice diagonale des exponentielles des valeurs propres de  $A_n \times t$
- $P_n(0)$  : vecteur des probabilités d'occurrence initiales des  $4^n$  motifs de taille n

#### Inversion du sens d'évolution

#### Sens d'évolution direct

$$P_n(t) = Q_n \cdot e^{D_n \times t} \cdot Q_n^{-1} \cdot P_n(0)$$

 $P_n(0)$ : Probabilités d'occurrence actuelles des motifs  $P_n(t)$ : Probabilités d'occurrence futures des motifs

#### $\Downarrow$ Inversion

#### Sens d'évolution inverse

$$\tilde{P}_n(t) = Q_n \cdot e^{-D_n \times t} \cdot Q_n^{-1} \cdot \tilde{P}_n(0)$$

 $\tilde{P}_n(t)$  : Probabilités d'occurrence passées des motifs  $\tilde{P}_n(0)$  : Probabilités d'occurrence actuelles des motifs

Modélisation stochastique

< ロト (周) (日) (日)

## Comment déterminer les valeurs et vecteurs propres de $A_n$ ?

#### Problème

Taille des matrices de substitution  $A_n$ 

#### Exemple

Matrice de substitution  $A_5$ :  $4^{10} = 1048576$  termes

A (2) A (3) A (3) A

## Approche classique pour le modèle analytique 3PS

#### Propriétés de la matrice de substitution $A_n$ de type 3PS

- Décomposable en blocs
- Décomposition particulière

#### Approche utilisée par Frey et Michel (2006), Michel (2007)

Pour l'extension des modèles 2P et 3P aux dinucléotides et trinucléotides :

BMF : Factorisation par Matrices Blocs (Tian et Styan, 2001)

# Exemple : matrice des taux de substitution instantanée $A_3$

| T <mark>6 T</mark><br>T T A<br>T T C<br>T T G<br>T T<br>T T |  |
|-------------------------------------------------------------|--|
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
| E                                                           |  |
| xte                                                         |  |
| insi                                                        |  |
| on                                                          |  |
|                                                             |  |
| es                                                          |  |
| m                                                           |  |
| o di                                                        |  |
| èle                                                         |  |
| ss                                                          |  |
| to                                                          |  |
| ch                                                          |  |
| ast                                                         |  |
| tia                                                         |  |
| ue                                                          |  |
| s                                                           |  |
| de                                                          |  |
| st                                                          |  |
| ibs                                                         |  |
| sti                                                         |  |
| tut                                                         |  |
| io                                                          |  |
| i<br>n o                                                    |  |
| le                                                          |  |
| nu                                                          |  |
| clé                                                         |  |
| ot                                                          |  |
| ide                                                         |  |
| s :                                                         |  |
| a                                                           |  |
|                                                             |  |
| de<br>roo                                                   |  |
| :<br>he                                                     |  |
| K                                                           |  |
| e 1<br>roi                                                  |  |
| ne                                                          |  |
| cke                                                         |  |
| er<br>er                                                    |  |
| •                                                           |  |
|                                                             |  |
| 1<br>7<br>1                                                 |  |
|                                                             |  |
| 1                                                           |  |
| 6/3                                                         |  |
| 34                                                          |  |

# Exemple : matrice des taux de substitution instantanée $A_3$

| B <sub>0</sub> | $B_1$          | B <sub>2</sub> . | B <sub>3</sub> . |
|----------------|----------------|------------------|------------------|
| $B_1$          | B <sub>0</sub> | B <sub>3</sub>   | В <sub>2</sub>   |
| $B_2$          | B <sub>3</sub> | $B_0$            | $B_1$            |
| B <sub>3</sub> | B <sub>2</sub> | B <sub>1</sub>   | $B_0$            |

# Factorisation de la matrice de substitution $A_n$ par BMF

#### BMF : Factorisation par Matrices Blocs (Tian et Styan, 2001)

| Structure en blocs | de la m | atrice                                                     | de s                       | ubsti                                                                | itution A <sub>n</sub>                                 |
|--------------------|---------|------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|--------------------------------------------------------|
|                    | $A_n =$ | $ \begin{pmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix} $ | $B_1 \\ B_0 \\ B_3 \\ B_2$ | B <sub>2</sub><br>B <sub>3</sub><br>B <sub>0</sub><br>B <sub>1</sub> | $ \begin{array}{c} B_3\\ B_2\\ B_1\\ B_0 \end{array} $ |

# Factorisation de la matrice de substitution $A_n$ par BMF

$$A_{n} = F_{n-1} \cdot \begin{pmatrix} C_{0} & 0 & 0 & 0 \\ 0 & C_{1} & 0 & 0 \\ 0 & 0 & C_{2} & 0 \\ 0 & 0 & 0 & C_{3} \end{pmatrix} \cdot F_{n-1}$$

avec :

• 
$$C_0 = B_0 + B_1 + B_2 + B_3$$
  
•  $C_1 = B_0 + B_1 - B_2 - B_3$   
•  $C_2 = B_0 - B_1 + B_2 - B_3$   
•  $C_3 = B_0 - B_1 - B_2 + B_3$ 

et

• 
$$F_{n-1} = \frac{1}{2} \cdot \begin{pmatrix} I_{n-1} & I_{n-1} & I_{n-1} & I_{n-1} \\ I_{n-1} & I_{n-1} & -I_{n-1} & -I_{n-1} \\ I_{n-1} & -I_{n-1} & I_{n-1} & -I_{n-1} \\ I_{n-1} & -I_{n-1} & -I_{n-1} & I_{n-1} \end{pmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### Bilan de l'approche classique avec BMF

#### Avantage de la technique BMF

• Calcul des valeurs propres relativement simple

#### Inconvénients de la technique BMF

- Ne donne pas les vecteurs propres
- Spécifique au modèle 3PS

## Plan

## 🕕 Modèles d'évolution stochastiques classiques

#### 2 Modèle d'évolution analytique avec Kronecker

### Iogiciel de recherche : Stochastic Evolution of Genetic Motifs

### ④ Références bibliographiques

# Approche Kronecker

Avec deux matrices carrées X(m,m) et Y(n,n)

Produit de Kronecker

$$X \otimes Y = \begin{pmatrix} x_{1,1} \times Y & x_{1,2} \times Y & \dots & x_{1,m} \times Y \\ x_{2,1} \times Y & x_{2,2} \times Y & \dots & x_{2,m} \times Y \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} \times Y & x_{m,2} \times Y & \dots & x_{m,m} \times Y \end{pmatrix}$$

#### Somme de Kronecker

$$X \oplus Y = X \otimes I_n + I_m \otimes Y$$

avec  $I_n$  et  $I_m$  deux matrices identité de tailles respectives (n, n) et (m, m)

(D) (A) (A) (A)

### Construction récursive de $A_n$ de type 3PS avec Kronecker

Construcion récursive pour k de n à 1 :

$$A_{k} = \begin{pmatrix} A_{k-1} & c_{n-k+1}I_{k-1} & a_{n-k+1}I_{k-1} & b_{n-k+1}I_{k-1} \\ c_{n-k+1}I_{k-1} & A_{k-1} & b_{n-k+1}I_{k-1} & a_{n-k+1}I_{k-1} \\ a_{n-k+1}I_{k-1} & b_{n-k+1}I_{k-1} & A_{k-1} & c_{n-k+1}I_{k-1} \\ b_{n-k+1}I_{k-1} & a_{n-k+1}I_{k-1} & c_{n-k+1}I_{k-1} & A_{k-1} \end{pmatrix}$$

$$A_{k} = \begin{pmatrix} 0 & c_{n-k+1}l_{k-1} & a_{n-k+1}l_{k-1} & b_{n-k+1}l_{k-1} \\ c_{n-k+1}l_{k-1} & 0 & b_{n-k+1}l_{k-1} & a_{n-k+1}l_{k-1} \\ a_{n-k+1}l_{k-1} & b_{n-k+1}l_{k-1} & 0 & c_{n-k+1}l_{k-1} \\ b_{n-k+1}l_{k-1} & a_{n-k+1}l_{k-1} & c_{n-k+1}l_{k-1} & 0 \end{pmatrix} \oplus A_{k-1}$$

- E - N

#### Construction récursive de $A_n$ de type 3PS avec Kronecker

$$A_n = \oplus_{k=1}^n N_k$$

Avec  $N_k$  la matrice de substitution de nucléotides de type 3P associée au site k :

$$N_k = egin{pmatrix} s_k & c_k & a_k & b_k \ c_k & s_k & b_k & a_k \ a_k & b_k & s_k & c_k \ b_k & a_k & c_k & s_k \end{pmatrix} s_k = -(a_k + b_k + c_k)$$

Extension des modèles stochastiques de substitution de nucléotides : approche Kronecker

< ロト (周) (日) (日)

# Calcul des valeurs et vecteurs propres de la matrice $A_n$ (3PS)

Diagonalisation : matrice de substitution de nucléotides  $N_k$  (3P)

$$N_k = R \cdot S_k \cdot R^{-1}$$

avec  $S_k$  la matrice diagonale (4,4) des valeurs propres de  $N_k$  :

$$S_k = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & -2(a_k+b_k) & 0 & 0 \ 0 & 0 & -2(a_k+c_k) & 0 \ 0 & 0 & 0 & -2(b_k+c_k) \end{pmatrix}$$

et R la matrice (4,4) des vecteurs propres de  $N_k$  :

$${{\it R}}=egin{pmatrix} 1&1&1&1\ 1&1&-1&-1\ 1&-1&-1&1\ 1&-1&1&-1\ \end{pmatrix}$$

# Calcul des valeurs et vecteurs propres de la matrice $A_n$ (3PS)

#### Valeurs propres

 $D_n$  matrice diagonale des valeurs propres de  $A_n$  :

$$D_n = \oplus_{k=1}^n S_k$$

#### Vecteurs propres

 $Q_n$  matrice des vecteurs propres de  $A_n$  :

$$Q_{n}=\otimes_{k=1}^{n}R$$
, et  $Q_{n}^{-1}=\otimes_{k=1}^{n}R^{-1}$ 

∜

#### Matrice des taux de substitution instantanée

$$A_n = \otimes_{k=1}^n R \cdot \oplus_{k=1}^n S_k \cdot \otimes_{k=1}^n R^{-1}$$

# Solutions analytiques avec l'approche Kronecker

Probabilités d'occurrence analytiques des motifs de taille n

$$P_n(t) = \otimes_{k=1}^n (R \cdot e^{S_k t} \cdot R^{-1}) \cdot P_n(0)$$

- R : matrice (4,4) des vecteurs propres de  $N_k$
- $e^{S_k t}$ : matrice diagonale (4,4) des exponentielles des valeurs propres de  $N_k$

$$R^{-1}$$
 : matrice inverse (4,4) de  $R$ 

 $P_n(0)$  : vecteur des probabilités d'occurrence initiales des  $4^n$  motifs de taille n

・ 同 ト ・ ヨ ト ・ ヨ ト

Modèle d'évolution analytique avec Kronecker

### Bilan de l'approche Kronecker

#### Avantages de l'approche Kronecker

- Calcul rapide des valeurs propres
- Calcul rapide des vecteurs propres
- Valable pour des matrices de substitution A<sub>n</sub> différentes du type 3PS

# Solution pour un motif $i_1$ donné de taille *n* avec 3PS

- Calculs longs pour les motifs de grande taille
- Cas où l'on ne s'intéresse qu'à l'évolution de certains motifs

$$P_{i_{1}}(t) = \frac{1}{4^{n}} \sum_{i_{2}=1}^{4^{n}} e^{\sum_{k=1}^{n} L_{k}[\delta(i_{2},k)]t} \times \sum_{i_{3}=1}^{4^{n}} \left( \prod_{k=1}^{n} \left( R\left[\delta(i_{1},k),\delta(i_{2},k)\right] \times R\left[\delta(i_{2},k),\delta(i_{3},k)\right] \right) \times P_{i_{3}}(0) \right)$$

Avec :

- $L_k = \{0, -2(a_k + b_k), -2(a_k + c_k), -2(b_k + c_k)\}$
- *R*, matrice (4,4) des vecteurs propres de la matrice de substitution de nucléotides (3P)

• 
$$\delta(i_1,k) = \lfloor \frac{i_1-1}{4^{n-k}} \rfloor [4] + 1$$

27/34

# Solution pour un motif $i_1$ donné de taille n avec 3PS

- Calculs longs pour les motifs de grande taille
- Cas où l'on ne s'intéresse qu'à l'évolution de certains motifs

$$P_{i_{1}}(t) = \frac{1}{4^{n}} \sum_{i_{2}=1}^{4^{n}} e^{\sum_{k=1}^{n} L_{k}[\delta(i_{2},k)]t} \times \sum_{i_{3}=1}^{4^{n}} \left( \prod_{k=1}^{n} \left( R\left[\delta(i_{1},k),\delta(i_{2},k)\right] \times R\left[\delta(i_{2},k),\delta(i_{3},k)\right] \right) \times P_{i_{3}}(0) \right)$$

#### Avec :

- $L_k = \{0, -2(a_k + b_k), -2(a_k + c_k), -2(b_k + c_k)\}$
- *R*, matrice (4,4) des vecteurs propres de la matrice de substitution de nucléotides (3P)

• 
$$\delta(i_1,k) = \lfloor \frac{i_1-1}{4^{n-k}} \rfloor [4] + 1$$

# Solution pour un motif $i_1$ donné de taille *n* avec 3PS

- Calculs longs pour les motifs de grande taille
- Cas où l'on ne s'intéresse qu'à l'évolution de certains motifs

$$P_{i_{1}}(t) = \frac{1}{4^{n}} \sum_{i_{2}=1}^{4^{n}} e^{\sum_{k=1}^{n} L_{k}[\delta(i_{2},k)]t} \times \sum_{i_{3}=1}^{4^{n}} \left( \prod_{k=1}^{n} \left( R\left[\delta(i_{1},k),\delta(i_{2},k)\right] \times R\left[\delta(i_{2},k),\delta(i_{3},k)\right] \right) \times P_{i_{3}}(0) \right)$$

Avec :

- $L_k = \{0, -2(a_k + b_k), -2(a_k + c_k), -2(b_k + c_k)\}$
- *R*, matrice (4,4) des vecteurs propres de la matrice de substitution de nucléotides (3P)

• 
$$\delta(i_1,k) = \lfloor \frac{i_1-1}{4^{n-k}} \rfloor [4] + 1$$

27/34

## Exemple : solution analytique pour le dinucléotide AG

$$\begin{split} P_{AG}(t) &= P_3(t) = \frac{1}{16} e^0 (P_1(0) + P_2(0) + P_3(0) + P_4(0) + P_5(0) + P_6(0) + P_7(0) + P_8(0) + \\ P_9(0) + P_{10}(0) + P_{11}(0) + P_{12}(0) + P_{13}(0) + P_{14}(0) + P_{15}(0) + P_{16}(0)) \\ &+ e^{-2(a_2+b_2)t} (-P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) - P_6(0) + P_7(0) + P_8(0) \\ &- P_9(0) - P_{10}(0) + P_{11}(0) + P_{12}(0) - P_{13}(0) - P_{14}(0) + P_{15}(0) + P_{16}(0)) \\ &+ e^{-2(a_2+c_2)t} (-P_1(0) + P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &- P_9(0) + P_{10}(0) + P_{11}(0) - P_{12}(0) - P_{13}(0) + P_{14}(0) + P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) + P_5(0) - P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) - P_{10}(0) + P_{11}(0) - P_{12}(0) + P_{13}(0) - P_{14}(0) - P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(a_1+b_1)t} (P_1(0) + P_2(0) + P_3(0) + P_4(0) + P_5(0) - P_6(0) + P_7(0) + P_8(0) \\ &- P_9(0) - P_{10}(0) - P_{11}(0) - P_{12}(0) + P_{3}(0) + P_4(0) - P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(a_1+b_1+a_2+b_2)t} (-P_1(0) + P_{2}(0) + P_{3}(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_{0}(0) + P_{10}(0) - P_{11}(0) + P_{12}(0) + P_{3}(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_{0}(0) - P_{10}(0) - P_{11}(0) + P_{2}(0) + P_{3}(0) - P_4(0) - P_{15}(0) + P_{16}(0)) \\ &+ e^{-2(a_1+b_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_{0}(0) - P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{3}(0) - P_4(0) - P_{5}(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_{0}(0) - P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{13}(0) - P_{4}(0) + P_{5}(0) - P_{6}(0) + P_7(0) - P_8(0) \\ &+ C^{2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ C^{2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ C^{2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) - P_7(0) + P_8(0) \\ &+ C^{2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_{12}(0) - P_{13}(0) + P_{14}(0) - P_{15}(0) + P_{16}(0))] \\ + \dots \end{aligned}$$

## Exemple : solution analytique pour le dinucléotide AG

$$\begin{split} P_{AG}(t) &= P_3(t) = \frac{1}{16} e^0 (P_1(0) + P_2(0) + P_3(0) + P_4(0) + P_5(0) + P_6(0) + P_7(0) + P_8(0) + \\ P_9(0) + P_{10}(0) + P_{11}(0) + P_{12}(0) + P_{13}(0) + P_{14}(0) + P_{15}(0) + P_{16}(0)) \\ &+ e^{-2(a_2+b_2)t} (-P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) - P_6(0) + P_7(0) + P_8(0) \\ &- P_9(0) - P_{10}(0) + P_{11}(0) + P_{12}(0) - P_{13}(0) - P_{14}(0) + P_{15}(0) + P_{16}(0)) \\ &+ e^{-2(a_2+c_2)t} (-P_1(0) + P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &- P_9(0) + P_{10}(0) + P_{11}(0) - P_{12}(0) - P_{13}(0) + P_{14}(0) + P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) + P_5(0) - P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) - P_{10}(0) + P_{11}(0) - P_{12}(0) + P_{13}(0) - P_{14}(0) - P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(a_1+b_1)t} (P_1(0) + P_2(0) + P_3(0) + P_4(0) + P_5(0) - P_6(0) + P_7(0) + P_8(0) \\ &- P_9(0) - P_{10}(0) - P_{11}(0) - P_{12}(0) + P_{3}(0) - P_{14}(0) - P_{15}(0) - P_{16}(0)) \\ &+ e^{-2(a_1+b_1+a_2+b_2)t} (-P_1(0) - P_{2}(0) + P_{3}(0) - P_{4}(0) - P_{5}(0) + P_6(0) + P_7(0) + P_8(0) \\ &+ P_9(0) + P_{10}(0) - P_{11}(0) + P_{12}(0) + P_{3}(0) - P_4(0) - P_5(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) - P_{10}(0) - P_{11}(0) + P_{2}(0) + P_{3}(0) - P_4(0) - P_{5}(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) - P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{3}(0) - P_4(0) - P_{5}(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) + P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{3}(0) - P_4(0) - P_{5}(0) + P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) + P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{3}(0) - P_4(0) + P_5(0) - P_6(0) + P_7(0) - P_8(0) \\ &+ P_9(0) + P_{10}(0) - P_{11}(0) + P_{12}(0) - P_{3}(0) - P_4(0) + P_{5}(0) - P_6(0) + P_7(0) - P_8(0) \\ &+ \dots \\ &+ e^{-2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) - P_7(0) + P_8(0) \\ &+ \dots \\ &+ e^{-2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_2(0) + P_3(0) - P_4(0) - P_5(0) + P_6(0) - P_7(0) + P_8(0) \\ &+ \dots \\ &+ e^{-2(b_1+c_1+b_2+c_2)t} (P_1(0) - P_{2}(0) + P_{3}(0) - P_4(0) - P_5(0) + P_6(0) - P_7(0) + P_8(0) \\ &+ P_9(0$$

## Plan

### 🕕 Modèles d'évolution stochastiques classiques

2 Modèle d'évolution analytique avec Kronecker

### Icogiciel de recherche : Stochastic Evolution of Genetic Motifs

4 Références bibliographiques

# Stochastic Evolution of Genetic Motifs

- Calcul des probabilités d'occurrence analytiques de motifs génétiques
- Courbes d'évolution
- Motifs de taille 1 à 5
- Sens d'évolution direct (présent-futur) et inverse (présent-passé)
- Solutions analytiques formelles et numériques
- Modèles d'évolution disponibles : 1PS, 2PS et 3PS

| п | nom                      | taille solutions analytiques formelles |
|---|--------------------------|----------------------------------------|
| 1 | nucléotides              | $4^{2 	imes 1} = 16$                   |
| 2 | <i>di</i> nucléotides    | $4^{2 \times 2} = 256$                 |
| 3 | <i>tri</i> nucléotides   | $4^{2 	imes 3} = 4096$                 |
| 4 | <i>tetra</i> nucléotides | $4^{2 \times 4} = 65536$               |
| 5 | <i>penta</i> nucléotides | $4^{2 	imes 5} = 1048576$              |

Logiciel de recherche : Stochastic Evolution of Genetic Motifs

# Page d'accueil



#### **Stochastic Evolution of Genetic Motifs**

#### Emmanuel Benard and Christian J. Michel

Theoretical Bioinformatics, LSIIT/CNRS UMR7005 - University of Strasbourg

1. Choose the motif size:

Nucleotides (1)

#### 2. Upload the initial occurrence probabilities file:

-

Enter a XLS file containing the 4 initial occurrence probabilities of motifs of size 1:

Parcourir...

Example of a valid XLS file containing 4 initial occurrence probabilities of Nucleotides available here



Extension des modèles stochastiques de substitution de nucléotides : approche Kronecker

3

### Fonctionnalités

#### Stochastic Evolution of Trinucleotides

#### Emmanuel Benard and Christian J. Michel

Theoretical Bioinformatics, LSIT/CNRS UMR7005 - University of Strasbourg

Upload new initial occurrence probabilities?

Uploaded file informations:



#### 1. Evolutionary time direction:

Inverse (present -> past) -

#### 2. Number of substitution parameters per motif site:

3 parameters: 1 transition rate (A⇔G = C⇔T), 1 transversion I rate (A⇔T = C⇔G), 1 transversion II rate (A⇔C = G⇔T).

```
2 parameters: 1 transition rate (A \leftrightarrow G = C \leftrightarrow T), 1 transversion rate (A \leftrightarrow T = A \leftrightarrow C = C \leftrightarrow G = G \leftrightarrow T).

u[x]=a[x], v[x]/2=b[x]=c[x]
```

```
1 parameter: 1 substitution rate (A \leftrightarrow C = A \leftrightarrow G = A \leftrightarrow T = C \leftrightarrow G = C \leftrightarrow T = G \leftrightarrow T).

p[x]/3=a[x]=b[x]=c[x]
```

3 parameters 
More about mutation matrices and substitution parameters

(3)

### Fonctionnalités

#### 3. Substitution parameters:

#### Enter values for the substitution parameters.

Non numerical or rational values will be replaced by the name of the corresponding parameter.

All the substitution parameters must have a numerical value to get plots. All the substitution parameters and their sum must be  $\ge 0$  and < 1.

| Site 0 | a[0]: a0 | b[0]: <b>b0</b> | c[0]: <b>c0</b> |
|--------|----------|-----------------|-----------------|
| Site 1 | a[1]: a1 | b[1]: b1        | c[1]: <b>c1</b> |
| Site 2 | a[2]: a2 | b[2]: b2        | c[2]: c2        |

Substitution parameters statut:

Parameters sum = "a0" + "a1" + "a2" + "b0" + "b1" + "b2" + "c0" + "c1" + "c2"

#### 4. Choice of the probabilities to study and plot:

Choose up to 4 analytical solutions.

By default, only the analytical solution of the motif AAA is displayed and plotted.

| motif AAA | • | <br>- | <br>- | <br>• |
|-----------|---|-------|-------|-------|

#### 4b. Choice of the analytical solutions output format:

The analytical solutions can be displayed in 4 formats: Standard, C, Fortran and TeX. By default, the analytical solutions are displayed in Standard format.

Standard -

SUBMIT

3

ト < 国 > < 国 >

## Sorties

#### Results

#### Analytical solutions (Standard format):

2

・ロト ・四ト ・ヨト ・ヨト

## Sorties



Extension des modèles stochastiques de substitution de nucléotides : approche Kronecker

イロト イポト イヨト イヨト 三日

## SEGM

#### http://lsiit-bioinfo.u-strasbg.fr:8080/webMathematica/SEGM/SEGM.html

Extension des modèles stochastiques de substitution de nucléotides : approche Kronecker

Э

・ロト ・ 同ト ・ ヨト ・ ヨト

## Plan

### 🕕 Modèles d'évolution stochastiques classiques

2 Modèle d'évolution analytique avec Kronecker

## Iogiciel de recherche : Stochastic Evolution of Genetic Motifs

4 Références bibliographiques

- E. Benard, C.J. Michel. Computation of direct and inverse mutations with the SEGM web server (Stochastic Evolution of Genetic Motifs) : an application to splice sites of human genome introns. Computational Biology and Chemistry, Vol. 33, p. 245-252, 2009.
- E. Benard, C.J. Michel. A generalization of substitution evolution models of nucleotides to genetic motifs. Journal of Theoretical Biology, Vol. 288, p. 73-83, 2011.
- C.J. Michel. Evolution probabilities and phylogenetic distance of dinucleotides. Journal of Theoretical Biology, Vol. 249, p. 271-277, 2007.
- C.J. Michel. *Codon phylogenetic distance*. Journal of Computational Biology and Chemistry, Vol. 31, p. 36-43, 2007.
- C.J. Michel. An analytical model of gene evolution with 9 mutation parameters : an application to the amino acids coded by the common circular code. Bulletin of Mathematical Biology, Vol. 69, p. 677-698, 2007.
- G. Frey, C.J. Michel. An analytical model of gene evolution with 6 mutation parameters : an application to archaeal circular codes. Journal of Computational Biology and Chemistry, Vol. 30, p. 1-11, 2006.