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Analysis of Gene Evolution: the software AGE

Didier G.Arqués, Christian J.Michell3 and Karine Orieux?

Abstract

The software AGE (Analysis of Gene Evolution) has been
developed both to study a genetic reality, i.e. the identification
of statistical properties in genes (e.g. periodicities), and to
simulate this observed genetic reality, by models of molecular
evolution. AGE has two types of models: (i) models of sequence
creation from oligonucleotides: concatenation model in series
of an oligonucleotide, independent (or Markov) mixing model
of oligonucleotides according to given probabilities (or a
Markov matrix); (ii) models of sequence evolution from created
sequences: insertion/deletion process of (mono,di,tri)nucleot-
ides, base mutation process. The siudy of a reality and the
development of simulation models are based on several new
algorithms: approximated simulation and exact calculus to
compute various autocorrelation functions, Fourier transforma-
tion of autocorrelation curves, recognition of a curve form, etc.
AGE is implemented on IBM or compatible microcomputers and
can be used by biologists withour any computer knowledge to
identify statistical properties in their newly determined DNA
sequence and to explain them by models of molecular evolution.

Introduction
Context

The determination of nucleotides, their storage in gene databases
and their analysis via mathematics, statistics and computer
science, have allowed the development of theories of molecular
evolution of genes (e.g. Eigen and Schuster, 1978; Kimura,
1987). In particular, the recent development of computer
sciences, i.e. in terms of algorithms, calculus power and data
structures, represents at the moment the only way to analyse
several millions of nucleotides. In this context, we have recently
developed a new model of DNA sequence evolution showing
that the actual genes may derive from a mixing of only a few
types of primitive oligonucleotides (Arqués and Michel, 1990b).
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The algorithms associated with this model have been gathered
and generalized in a software package implemented on IBM
or compatible microcomputers, and called AGE (Analysis of
Gene Evolution). We also give here the algorithm of exact
calculus of an autocorrelation function in its general form; a
particular case of this new algorithm was used, but not
described, in Arqués and Michel (1990b, p. 756).

In order to understand the functionalities of AGE, we briefly
recall the approach that forms the basis of this new model
(described in detail in Arques and Michel, 1990b). The approach
consists of two successive steps: firstly, the study of a genetic
reality, i.e. the identification of statistical properties in genes
(e.g. periodicities, maximal and minimal values, etc); and
secondly, the simulation of this observed genetic reality. Indeed,
as the combination of nucleotides is high, a simulation model,
i.e. a model correlated with the reality, can only be found after
an initial study of a genetic reality. We also have shown that
such simulation models exist by using primitive oligonucleot-
ides. Thus, these simulation models are molecular evolution
models. Finally, we have identified a particular class of
functions, called autocorrelation functions, allowing both the
identification of statistical properties in genes and the develop-
ment of molecular evolution models in order to simulate them.
An autocorrelation function gives the occurrence frequency of
a motif (series of nucleotides) i bases after another motif
(eventually the same) in a gene population (or in one gene).
A definition, for a particular case, is given in the algorithm
section.

Study of a genetic reality

The phylogenetic tree of genes, commonly accepted to be
overall divergent, shows two aspects. (i) The diversity or the
specificity with the actual genes (i.e. the leafs of the phylogenetic
tree), which can be studied by applying a function at the gene
level. (ii) The common base in a few primitive genes (i.e. the
root of the phylogenetic tree). In Arqués and Michel (1990b),
we were interested in the common properties in genes
(i.e. common in all leaves of the phylogenetic tree, and
therefore deriving from its root) and we have shown that they
can be identified by applying an autocorrelation function at the
gene population level (i.e. a set of several hundreds of genes
allows the application of the law of large numbers; see Arques
and Michel, 1990b, p. 752, section 2.3.3 for the details). More
precisely, by applying the autocorrelation function using the
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trinucleotide YRY (see section ‘ Autocorrelation function YRY)
in ~20 gene populations, three statistical properties common
in genes have been identified: the YRY(N)sYRY preferential
occurrence (R = purine = A or G, Y = pyrimidine = C or
T, N = R or Y; Arques and Michel, 1987b, 1990a), the
periodicity modulo 3 (P3) (Fickett, 1982; Arques and Michel,
1987a, 1990a) and the periodicity modulo 2 (P2) (Arqués and
Michel, 1987c, 1990a).

Simulation of this observed genetic reality

In Arqués and Michel (1990b) we proved that these three
common statistical properties, and also features specific to a
subset of gene populations, can be surprisingly retrieved with
a unique simulation model based on the independent (not
Markov) mixing of the three primitive oligonucleotides
YRYYRY, YRYRYR and YRY(N)s, i.e. based on a random
mixing only depending on the proportion of these three
oligonucleotides. On the other hand, these three common
statistical properties can also be simulated with a similar
(reasons not given here) model that randomly inserts and deletes
(mono,di,tri)nucleotides (a process similar to the one called
in biology ‘RNA editing’) in sequences composed of a primitive
oligonucleotide concatenated in series (Arqués and Michel,
1991).

Aims of the software AGE

AGE can study a genetic reality by computing any autocorrela-
tion function in the alphabet {R,Y} (i.e. not only related to the
trinucleotide YRY) in a gene population or in a sequence. The
associated curve is called the real curve. This functionality
should allow the identification of new statistical properties in
genes: common statistical properties by applying autocorrela-
tion functions in gene populations, and specific statistical
properties by applying autocorrelation functions in a sequence
already known or newly determined.
AGE has two types of molecular evolution models.

Models of sequence creation. The sequences are created from
primitive oligonucleotides: concatenation model in series of a

primitive oligonucleotide, e.g. the sequence (YRY(N)p)* =~

YRY(N);YRY(N); . . . is created by the concatenation in
series of the primitive oligonucleotide YRY(N);; independent
(or Markov) mixing model of primitive oligonucleotides (up
to 10) according to given probabilities (or a Markov matrix)—
this option allows the creation of complex sequences.

Models of sequence evolution. The sequences created can be
subjected to an evolutionary process in steps: process of random
insertions and/or deletions of (mono,di,tri)nucleotides; process
of base mutation by random transformation of bases, R
(respectively Y) giving Y (respectively R).

AGE analyses all of these models by computing any auto-
correlation function on the alphabet {R,Y} for any model. The
associated curve is called the simulated curve. A model

simulates (i.e. is correlated with) the reality if its associated
simulated curve has the same statistical properties compared
to the real curve by applying the same autocorrelation function.
These two functionalities should allow the identification of other
primitive oligonucleotides, the study of gene dating, base
mutations, etc. Furthermore, the simulation models also reveal
properties hidden in the reality (return of the model to the
reality; see Arques and Michel, 1990b, p. 766).

Computer analysis work for the develoment of the software
AGE

The computer analysis work for the development of AGE has
mainly dealt with four points.

(i) Definition of the functionalities (see previous section). In
order to facilitate the use of AGE as a research tool, additional
functionalities have been included such as Fourier transforma-
tion of an autocorrelation curve, algorithm of curve form
recognition, etc.

(ii) Definition of data structures, in particular those related
to the files: storage of autocorrelation curves in order to avoid
new computations, direct access of an autocorrelation curve to
get a fast visualization, storage of A, C, G and T of DNA
sequences in 2 bits to compress the files, etc. (see section ‘Data
structures’ below).

(i) Resolution of problems of complexity. Scanning by
varying the proportion of primitive oligonucleotides in an
independent (or Markov) mixing model leads to the analysis
of several thousands of possible situations. A calculus of
complexity shows that such a scanning cannot be realized by
an algorithm that generates a population of simulated sequences
for each situation, but can be done by an algorithm of exact
calculus (see section ‘Problem of complexity’” below).

(iv) An interactive and user-friendly software that can be used
without any computer knowledge. Several utilities have been
developed concerning the entry and modification of data by
menus, automatic manipulation of files, graphic tools, etc. (see
section ‘Utilities available’ below).

System and methods

AGE is implemented on IBM or compatible microcomputer with
a standard graphics VGA video card. The source code contains
~ 8500 Pascal lines in 13 units, each unit corresponding to a
functionality. This structure in units easily allows modifications
and extensions of AGE. The executable file needs 170 kbytes.
The output of AGE, in particular the figures, includes
PostScript, thereby allowing the use of a broad range of printing
devices.

Algorithm

Autocorrelation function YRY

Let F be a gene population with n(F) sequences. Let s be a
sequence in F with a length I(s). Let the /-motif m; =
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YRY(N);YRY (R = purine = A or G, Y = pyrimidine = C
or T, N = R or Y) by varying i in the range [0,99], be two
trinucleotides YRY separated by any 7 bases N. For each s of
F, the counter ¢,(s) counts the occurrences of m; in 5. In order
to count the m; occurrences in the same conditions for all i,
only the first I(s) — 104 (= I(s) — (99 + 6) + 1) bases of
s are examined (99 + 6 is the maximal length of m;). Then,
the occurrence probability o,(s) of m; for s is equal to ¢(s)/[I(s)
— 104], i.e. the ratio of the counter by the total number of
current bases read. Then, the occurrence probability p;(F) of
m; for F is equal to [X; ¢ r0,(s)1/n(F). For each population F,
the function, called ‘autocorrelation function YRY’, i — p(F)
by varying i, is represented as a curve C(F). In order to have
a sufficient number of mgqy occurrences, the function is applied
to sequences having a minimal length of 250 bases.

The curve C(F) is represented as follows. (i) The abscissa
shows the number i of bases N (R or Y) between two
trinucleotides YRY by varying i between 0 and 99. (ii) The
ordinate shows the occurrence frequency of YRY i bases after
itself in a gene population F (see e.g. Figure 1a and b).

Description of the software AGE

Each functionality of AGE will be illustrated with an example
deduced from our previous results found with the autocorrela-
tion function YRY. In the study of a genetic reality, this
particular autocorrelation function was applied in gene
populations.

Functionality to study a genetic reality. Example: AGE with
the autocorrelation function YRY applied in the two gene
populations, eukaryotic introns and the 5’ eukaryotic regions,
reveals a periodicity P2 (modulo 2) in the range [0,L] defined
as follows: p,(F) > max{p; _ (F), p; + {(F)} with i € [0,L]
and 7 = 1[2] ( = 1 + 2n), 1.e. i = 1, 3, 5, etc. Precisely:

(1) The eukaryotic introns IEUK (1790 sequences from the
EMBL release 21; Figure 1a) has the periodicity P2 in the range
[0,L = 49] and the highest value p,dEUK) at i = 1.

(i) The 5' eukaryotic regions NSEUK (2489 sequences from
the EMBL release 21; Figure 1b) has the periodicity P2 in the
range [0,L = 23], the highest value p(NSEUK) at/ = 3 and
four obvious sets of points that can be joined by regular curves:
(@i=3,9,1521,27and33; b)i = 1,5, 7, 11, 13, 17,
19,23 and 25; (¢)i = 6, 12, 18 and 24; and (d) i = 2, 4,
8, 10, 14 and 16. All these naturally appearing curves join
modulo 6 periodic sets of i values.

The curves of these two populations IEUK and NSEUK have
non-random features. It should be stressed that the curve
associated with an autocorrelation function can be ‘random’
(see, for example, the curve of the gene CLCK given in Arques
and Michel, 1990b, p. 755). Such a random curve cannot be
simulated using primitive oligonucleotides. Therefore to analyse
genes in terms of primitive oligonucleotides, it is important to
choose, if possible, an autocorrelation function leading to a
curve with non-random properties such as the following:
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Fig. 1. Study of a genetic reality by applying the autocorrelation function YRY
in gene populations (see section ‘Functionality to study a genetic reality’). The
horizontal axis represents the number i of bases N in the i-motif YRY(N),YRY,
with i € [0,99]. The vertical axis represents the frequency piF) in the
following populations F: (a) eukaryotic introns IEUK showing the periodicity
P2 (modulo 2) in the range [0,L = 49] and the highest value at i = 1; (b) 5’
eukaryotic regions NSEUK showing the periodicity P2 (modulo 2) in the range
[0,L = 23], the highest value at i = 3 and the four subcurves modulo 6.

@ Existence of a periodicity: modulo 2, 3, etc. This periodicity
can be obvious (e.g. in IEUK and NSEUK), but in some
cases it must be identified with a statistical test such as a
binomial test (Arques and Michel, 1990a). According to the
current state of statistical analyses, the periodicity modulo
2 has been only found in eukaryotic introns and in the 5’
and 3’ regions of eukaryotes. It was attributed to regulatory
functions of genes (Arques and Michel, 1987c, 1990a). The
periodicity modulo 3 is found in protein-coding genes of any
taxonomic group: eukaryotes, prokaryotes, viruses, chloro-
plasts, mitochondria and plasmids. It is related to the coding
function of genes. This periodicity modulo 3 is also observed
in introns of viruses (optimization of functions of a genome
of small size) and mitochondria (maturases) (see Arques and
Michel, 1990a, for the details).

® Beginning and end of a periodicity. Several situations have
already been observed and simulated: a periodicity modulo
3 in the range [0,99], a periodicity modulo 2 in the range
[0,L] with L < 99 (e.g. in IEUK and N5SEUK), a periodicity
modulo 2 in the range [0,L] and a periodicity modulo 3 in
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Fig. 2. Independent mixing model of the three oligonucleotides YRYYRY, YRYRYR and YRY(N)4; curves associated with the autocorrelation function YRY
(see section ‘Functionality of sequence creation’). (a—f) Scanning varying the proportions in (2%,14%,26%} for YRYYRY and in {57%,69%,81%]} for YRYRYR,
the proportion of YRY(N), being the complement to 100%. The simulated curve (e) is similar to the real curve IEUK (Figure la); the simulated curve (f) is

similar to the real curve NSEUK (Figure 1b).

the range [L,99] (Arqués and Michel, 1990a,b). For
example, it was explained in Arqués and Michel (1990b)
that the gene populations with a periodicity modulo 2 in the
range [0,L] with a large value for L have large alternating
purine/pyrimidine stretches.

® Presence of a maximal (respectively minimal) value
significantly greater (respectively less) than the other values
(see, for example, the methodologies developed in Arques
and Michel, 1987a,b, to identify important values of i in
an autocorrelation curve). For example, the maximal value
at i = 6 with the autocorrelation function YRY obtained
in most of the genes (hidden in IEUK and NSEUK) has been
related to a primitive code of the DNA helix pitch generated
by the primitive oligonucleotide YRY(N)s (Arques and
Michel, 1987b, 1990b).

® Presence of subcurves (e.g. in NSEUK), etc.

AGE can compute any autocorrelation function on the
alphabet {R,Y} (not only related to the trinucleotide YRY) in
a gene population or in a sequence and stores its associated curve

(see also section ‘Data structures’ below). The definition of the
particular autocorrelation function YRY in a gene population,
was presented in section ‘Autocorrelation function YRY" above.
Its generalization to motifs different from YRY is obvious. The
definition of the autocorrelation function in a gene is also trivial:
it is the particular case of a population containing one gene
(n(F) = 1). The implementation of the computation of an
autocorrelation function is given in to complementary ways (see
next section: ‘Functionality of sequence creation’).

Functionality of sequence creation. Example: it was proved in
Arqués and Michel (1990b) that the real curves of the 5’
eukaryotic regions NSEUK and eukaryotic introns [EUK can
be simulated by an independent mixing of the three primitive
oligonucleotides YRYYRY, YRYRYR and YRY(N)¢. For
example, if AGE mixes these three oligonucleotides by varying
the proportions in {2%,14%,26%} for YRYYRY, in
{57%,69%,81%} for YRYRYR, the proportion of YRY(N)s
being the complement to 100%, then six simulated curves
(Figure 2) associated with the autocorrelation function YRY,
are obtained with this scanning.

8
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The simulated curve 2(e) has the statistical properties of the
real curve IEUK (Figure 1a): periodicity P2 in the range [0,L
= 41] and the highest value at i = 1.

The simulated curve 2(f) has the statistical properties of the
real curve NSEUK (Figure 1b): periodicity P2 in the range [0,L
= 23], the highest value at i = 3 and the four subcurves
modulo 6.

AGE can compute any autocorrelation function on the
alphabet {R,Y] either for the concatenation model in series of
a primitive oligonucleotide or for the independent (or Markov)
mixing model of primitive oligonucleotides. Note that the
concatenation model is the particular case of a mixing model
with one primitive oligonucleotide. For reasons of complexity
(see section ‘Problem of complexity’ below), AGE has two
types of algorithms.

(i) Algorithm of approximated simulation. This algorithm
generates a population of simulated sequences according to the
following choices: the number and the type of oligonucleotides,
their associated probabilities and the type of mixing—
independent or Markov. Then, the autocorrelation function in
the simulated population is computed in the same way as in
the real gene population. The simulated population must have
at least 200 simulated sequences of length 1000 in order to
obtain a significant simulated curve.

(ii) Algorithm of exact calculus. This algorithm, detailed in
section ‘Algorithm of exact calculus of the autocorrelation
function” below, computes an autocorrelation function by a
unique travel in depth of the lexicographical tree representing
all possible series of oligonucleotides on the alphabet of
oligonucleotides chosen. It avoids the effective generation in
memory of a population of simulated sequences, allowing
important savings of memory space and execution time.

For reasons of complexity (see section ‘Problem of
complexity’ below), the best strategy to obtain a simulated curve
similar to a real one during a scanning varying the proportions
of oligonucleotides consists in computing the simulated curve
for a small number of points (i < 20) with the algorithm of
exact calculus. In the case of similarity with the real curve for
the first 20 points, the simulated curve is computed for 100
points (i € [0,99]) with the algorithm of approximated
simulation. For the scanning, the user specifies lower and upper
limits of percentages for each oligonucleotide and the increment.

A curve-form recognition algorithm allows the search of the
similarity between a simulated curve and a real curve and then
the automatic selection of similar simulated curves (remember
that a scanning may create several thousands of simulated
curves). Precisely, this algorithm compares the simulated curves
with a model curve, keeping only the most significant features
of a real curve in order to reduce its complexity. This model
curve is stored by a string of characters on the alphabet
{+,—,=,7} with the following conventions: the character in
position i is ‘+’ (respectively ‘—’, ‘=", ‘?’) if the value p; .
|(F) of the autocorrelation curve in i + 1 is greater
(respectively less, close, uncertain in position) than the value
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Fig. 3. Random insertion/deletion process of mononucleotides in the
(YRY(N)y)* sequences; curves associated with the autocorrelation function
YRY (see section ‘Functionality of sequence evolution’). This statistical function
i — p{S) is constituted of four curves shown at the following steps of the
process: (a) step 0; (b) step 1; (¢) step 15 (the points are joined in one curve);
this simulated curve is similar to the real curve NSEUK (Figure 1b).

P{(F) of the autocorrelation curve in /. For example, the
periodicity P2 in the range [0,L = 23] of the real curve NSEUK
is traduced in the model curve by ‘(+ —)'% Therefore, the
scanning done for NSEUK and IEUK would select the three
candidate curves 2(c), (e) and (f). Among them, the two curves

9
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2(e) and (f) are the simulated curves for IEUK and NSEUK
respectively.

Functionality of sequence evolution. Example: the real curve
of the 5’ eukaryotic regions NSEUK can be simulated with a
concatenation model in series using the primitive oligonucleotide
YRY(N);, i.e. sequences YRY(N);YRY(N);. . ., denoted by
(YRY(N)3)*, associated with the random insertion/deletion
process of mononucleotides, precisely one mononucleotide
insertion and one mononucleotide deletion per sequence per
step.

A simulated population S, having 500 sequences
(YRY(N)p)* of base length 2000, is generated by random
specification of the (N); bases with an R percentage of 66.66%
and with a Y percentage of 33.33% (step 0) (in order to have
the same percentages of R and Y in the sequences).

Curve Cy(S) at step O (Figure 3a). Before the insertion/
deletion process, the curve Cy(S) associated with the auto-
correlation function YRY is constituted of four horizontal lines
Ay, Ay, Az and A, of points in decreasing ordinate: A;, points
(,p(S) with i = 3 [6]; A,, points (7,p,(S)) with i = 1,5[6];
A, points (i,p(S)) with i = 0[6]; A4, points (,p«(S)) with i
= 2,4[6]. This decomposition is explained in Tables I and II.
There is no highest value at i = 3 because the point (3,ps(S))
on the highest line A; cannot be differentiated from the other
points (i,p;(S)) with i = 3[6]: (9,ps(S)), (15,p15(5)), ete.

Next curves at steps 1 and 15 (Figure 3b and c respectively,
associated with the autocorrelation function YRY). By
increasing the number of steps, the two lines A; and A,
become curves the decreasing slope, while the two lines Ay

Table 1. Probability of YRY(N);YRY in (YRY(N)3)*: example of a complete
calculus (the probability to have R in N is equal to %, to have Y in N, %)

(YRY (N)4)*: YRYNNNYRYNNNYRY. .. Probability
YRY (N);YRY location 1 YRYNNNYRY (1/6)yx1
YRY (N)3YRY location 2 YRYNNNYRY (1/6)x0

YRY (N) 3YRY location 3 YRYNNNYRY (1/6)><(2/3)2><(1/3)2

YRY (N) 3YRY location 4 YRYNNNYRY (1/6)><(2/3)2><(1/3)4

YRY (N)3YRY location 5 YRYNNNYRY (1/6)><(2/3)2><(l/3)2

YRY (N) 3YRY location 6 YRYNNNYRY {1/6)x0

(1/6)%(805/729)
0.184

Rou

Table II. Probability of YRY(N);YRY in (YRY(N)3)*: final resuits

and A, become curves with increasing slope. This process
leads to the periodicity P2. Futhermore, the simulated curve
C,5(S) (Figure 3c—the points are joined in one curve) is
strongly similar to the real curve C(NSEUK) (Figure 1b)
because in both cases the periodicity there are P2 in the range
[0,L = 23], the highest value at i = 3 and the four subcurves
modulo 6 (issued from the four lines Ay, Ay, Az and Ay). The
decreasing slope of the highest line A, (taken as an example)
and the highest value at i = 3 are explained by the fact that
one insertion (or deletion) of mononucleotide in (YRY(N);)*
destroys only one subsequence YRY(N);YRY, but two
subsequences YRY(N),YRY, three subsequences
YRY(N);sYRY, etc. (see Table III). The values p(S) with
i = 3[6] decrease all the more since / increases.

The functionality of sequence evolution follows the sequence
creation functionality. AGE allows a population of simulated
sequences created by a concatenation model or by an independ-
ent (or Markov) mixing model to be subjected to an evolutionary
process per sequence per step: (i) process of random insertions
and/or deletions of mononucleotides, but also di(tri)nucleotides;
(i) process of base mutation by random transformation of bases,
R (respectively Y) giving Y (respectively R).

These two processes can be associated together or not. At
each step, the autocorrelation function is computed with the
algorithm of approximated simulation.

Algorithm of exact calculus of the autocorrelation function

Aim. This algorithm computes any autocorrelation function on
the alphabet {R,Y]} for the independent (or Markov) mixing
model of primitive oligonucleotides by a unique travel in depth
of the lexicographical tree representing all possible series of
oligonucleotides on the alphabet of oligonucleotides chosen. It
avoids the effective generation in memory of a population of
simulated sequences. This algorithm is a generalization of the
one used, but not described, in Arqués and Michel (1990b,
p. 756).

Data. et there exist

(i) m oligonucleotides (a series of a few nucleotides)
0,, . . ., 0, with the occurrence probabilities Py, . . ., Py,
respectively and with Z; .y P = 1.

(if) An autocorrelaton function using a trinucleotide T, e.g.
T = YRY.

Probability of YRYYRY in (YRY(N)y)* =
Probability of YRY(N),YRY in (YRY(N);)* =
Probability of YRY(N),YRY in (YRY(N);)* =
Probability of YRY(N);YRY in (YRY(N);)* =
Probability of YRY(N),YRY in (YRY(N);)* =
Probability of YRY(N)sYRY in (YRY(N);)* =

(1/6) % (4/27) = 0.025
(1/6) X (40/81) = 0.082
(1/6) X (8/243) = 0.005
(1/6) X (805/729) (see Table T) = 0.184
(1/6) X (8/243) = 0.005
(1/6) x (40/81) = 0.082

The occurrence probability of YRY(N); . ¢ YRY is equal to the occurrence probability of YRY(N);YRY, i¢[0.5] (by the modulo 6 invariance of the (YRY(N);)*
sequence). Four different probabilities are obtained, giving the four lines A}, A, A; and 4.
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Result. The algorithm gives, for all i from O to a value 7,
(imax = 49 in the example in Figure 2), the probability C(i)
of occurrence of T i bases after itself in a sequence created
artificially and randomly by the independent concatenation of
the m oligonucleotides (0)), 1 = i < m, according to the
probabilities (P;), 1 < i < m respectively.

Idea of the algorithm. Let |w| be the length of the
oligonucleotide w. For 1 < a,d < mand 1 < k; < |0/,
1 < k = |0,], and for (0), 1 = j = ra series of
oligonucleotides {0, . Ou), we call the situation
o= S(d,kl;a,kz;(O,-j), 1 = j = r) of the autocorrelation
function using the trinucleotide T, the situation in which
(Figure 4):

(i) The first base of the first (respectively second) trinucleotide

Table III.

2 YRY(N)9YRY DESTROYED

1 YRY(N)3YRY DESTROYED

YRYNNNYRYNNNYRYNNNYRYNNN

I INSERTION OF MONONUCLEOTIDE

Fig. 4. A situation in the lexicographical tree representing all possible series
of oligonucleotides on the alphabet of the oligonucleotides {0, . . ., O,]}.

T of the autocorrelation function is in position k; (respective-
ly k) of the oligonucleotide O, (respectively O,), with 1 <
ki < |0, and 1 < d < m (respectively 1 < k, < |O,] and
1 = a = m) with a probability of ¢,(k;,d) (respectively
qx(ky,a)) depending on Oy, P, and &, (respectively O,, P, and
kz).

(ii) The two oligonucleotides O, and O, are separated in the
sequence by the concatenated oligonucleotides N

The probability C(i) for i in [0,i,,.] is then obtained by
adding all the probabilities P(u) of all the situations u so that
(Figure 5):

rz0andl <ad <m
1<k =|0)and 1 <k < |0,
(04 = ky —2) + Loy, ]01}1 + k= 1) =1

This equation can be rewritten as:
04 +Z;_ 4, lOijI —k +ky + T =

allowing the generalization to autocorrelation functions using
nucleotides of length other than 3.

The good way to obtain all situations u is to travel the lexico-
graphical tree (Figure 4) on the alphabet {0, . . ., O,}.

Remarks

All values i between 0 and i, must be simultaneously
computed with a unique travel of this tree; the depth of the
lexicographical tree is then a function of i,y.

The probability of each situation u is the product:

qitk,d) X gqylky,a) X I, - 1Py X Py X P,

This probability is given for an independent concatenation; it
can be easily generalized for a Markov concatenation.

There is a difference between the two probabilities ¢; and
> because in the case when the first trinucleotide T overlaps
O, and O, , its probability depends on O;, while this problem
does not exist with the second trinucleotide T.

The travel of this lexicographical tree allows the probabilities
P(u) to be computed and added for all the possible situations
u by updating during the travel the cumulated length of
oligonucleotides and the product of their probabilities P,},

Zjer 10

T
U [0gl- ky-2

0'2 ----------- o‘

i

Fig. 5. The general situation showing the distance i between the two
trinucleotides T of the autocorrelation function, as a function of the lengths
of concatenated oligonucieotides.
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8  Execution time (in seconds) including the
creation time of the simulated population

90 points 49 points
60 T 30 points
20 points (number of points
in the autocorrelation curve)
40 +
20 +
0 , R N . N Numper of sequences of leng_th
b 10‘0 20'0 300 400 500 1000 in the simulated population
Number of sequences of length 1000 100 200 300 400 800
Creation time (in seconds) 3 5 8 14 28
C 49 points

Execution time (in seconds)

38 points
60 T
40 +
20 points (number of points

20 - in the autocorrelation curve)
Number of
oligonucleotides of

0 length 6

length 10 : _______

Fig. 6. Execution times with the algorithms (a,b) approximated simulation; (c) exact calculus. (a) Execution time as a function of the number of sequences to
compute a given number of points in an autocorrelation curve with the algorithm of approximated simulation. (b) Creation time of the simulated population as
a function of the number of sequences of length 1000 (included in a). (c) Execution time as a function of the number of oligonucleotides to compute a given
number of points in an autocorrelation curve with the algorithm of exact caleulus. For 14 points and up to 7 oligonucleotides of length =6, the execution time

is below 1 second (curve not drawn).

Implementation
Problem of complexity

Figure 6(a) shows the execution time as a function of the number
s of sequences to compute a given number of points in an
autocorrelation curve with the approximated simulation
algorithm. This execution time includes the time to create the
population of simulated sequences (Figure 6b) and the time to
compute the autocorrelation curve in the population so created.
These two times are obviously linear functions of s, thus
explaining why the curves in Figure 6(a) are straight lines.
The execution time to compute one autocorrelation curve of
90 points is acceptable, e.g. 48 seconds for 200 sequences of
length 1000 (the size of a simulated population giving results
that are statistically significant). However, the execution time
becomes prohibitive in the case of a scanning that varies the

proportions of oligonucleotides (leading to several thousands
of autocorrelation curves), because it is necessary to re-create
the simulated population and to compute again the autocorrela-
tion curve for each situation. In practice, the approximated
simulation algorithm cannot be used for a scanning and must
be replaced by the algorithm of exact calculus.

Figure 6(c) shows the execution time as a function of the
number 7 of oligonucleotides (all chosen with the same length
[ of nucleotides) to compute the first p = 20 (30,35,49) points
in an autocorrelation curve with the exact calculus algorithm.
For a given p, this execution time is a polynomial function in
oy with h = [ @+ 1+ 3) J as it is related to the size
of the tree to be traveled. Precisely, if the tree is an n-ary perfect
tree of height / (the case when all oligonucleotides chosen have
the same length), then the tree has "' = D/(n — 1) nodes,
leading to the complexity calculus mentioned above.

12
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CURVES ASSOCIATED

TO THE AUTOCORRELATION
FUNCTIONS
HEADER THE SEQUENCES:
& certaln number of pages A —

1 page)

[2Ef~12 ] [3EEE]

HI=F

1 sequence:
m+m¢m

FT A

packed In 2-blts

7 c|Bhit
L1t

{ACGT}or (RY) l

Fig. 7. Data structures concerning the file associated with the functionality of
approximated simulation.

The execution time to compute an autocorrelation curve with
less than p = 20 points and up to seven oligonucleotides of
length =6, is ~1 seconds, i.e. significantly less than the
execution time of 18 seconds (for 200 sequences of length 1000)
with the approximated simulation algorithm. Therefore, the
exact calculus algorithm is appropriate to compute several
thousands of autocorrelation curves with a small number of
points (in practice <20) during a scanning. However, the
execution time becomes prohibitive (several minutes or hours)
to compute a complete autocorrelation function with 100 points
[algorithm in O(") complexity]: in this case, the algorithm of
exact calculus must be replaced by the approximated simula-
tion one.

Utilities available

Due to the high combination of possible solutions, AGE has
been developed to be interactive and user-friendly. It can be
used without any computer knowledge as it has several utilities
such as: data entries and data modifications by menus; automatic
manipulation of files concerning the search, the creation, etc.;
graphic tools allowing choices of the number of points in the
autocorrelation curve, the number of curves displayed or
printed, the color for the curves, the superposition or not of
several curves, etc.; PostScript output of text files and figures
allowing the use of a broad range of printing devices; display
of the execution time according to the constraints chosen,
display of the file size, etc.

Data structures

The AGE files are structured according to the functionalities;
real, approximated simulation, exact calculus and evolution.
For example, the file associated with the functionality of
approximated simulation is composed of three parts (Figure 7):
(i) the header, which contains the information for the file
management and for the type of model (independent, Markov);
(ii) the sequences, in particular the nucleotides are stored in
2 bits in order to compress the file; and (iii) the curves associated
with the autocorrelation functions; these are stored (to avoid
new computations) with a direct access (to get a fast
visualization).

Discussion

The software AGE allows the study of a genetic reality, i.e. the
identification of statistical properties that are common (or
primitive) in genes by applying autocorrelation functions in gene
populations, or specific (or actual) to a gene by applying
autocorrelation functions in this gene. AGE can simulate this
observed genetic reality by models of molecular evolution such
as the independent (or Markov) mixing model of primitive
oligonucleotides according to given probabilities (or Markov
matrix), the random insertion/deletion process of (mono,di,
tri)nucleotides, the base mutation process, etc. It is important
to stress that AGE can be used both to study a reality and to
develop simulation models. This ability is important because
a model should be correlated with the reality.

AGE is currently used to generalize our model of DNA
sequence evolution (Arques and Michel, 1990b) with auto-
correlation functions different from YRY in newly available
gene populations (D.G.Arques, C.J.Michel and K.Orieux, in
preparation). On the other hand, AGE can be used by biologists
without any computer knowledge to identify statistical properties
in their newly determined DNA sequences and to simulate
(i.e. to explain) their history by models of molecular evolution.
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