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Statistical studies of gene populations on the purine/pyrimidine alphabet have shown that the 
mean occurrence probability of the/-motif YRY(N)iYRY (R = purine, Y = pyrimidine, N = R or 
Y) is not uniform by varying i in the range [1, 99], but presents a maximum at i=6  in the 
following populations: protein coding genes of eukaryotes, prokaryotes, chloroplasts and 
mitrochondria, and also viral introns, ribosomal RNA genes and transfer RNA genes (Arqu6s 
and Michel, 1987b, J. theor. Biol. 128, 457--461). From the "universality" of this observation, we 
suggested that the oligonucleotide YRY(N)6 is a primitive one and that it has a central function 
in DNA sequence evolution (Arqu6s and Michel, 1987b, J. theor. Biol. 128, 457-461). Following 
this idea, we introduce a concept of a model of DNA sequence evolution which will be validated 
according to a shema presented in three parts. 

In the first part, using the last version of the gene database, the YRY(N)6YRY preferential 
occurrence (maximum at i=6)  is confirmed for the populations mentioned above and is 
extended to some newly analysed populations: chloroplast introns, chloroplast 5' regions, 
mitochondrial 5' regions and small nuclear RNA genes. On the other hand, the YRY(N)6YRY 
preferential occurrence and periodicities are used in order to classify 18 gene populations. 

In the second part, we will demonstrate that several statistical features characterizing different 
gene populations (in particular the YRY(N)6YRY preferential occurrence and the periodicities) 
can be retrieved from a simple Markov model based on the mixing of the two oligonucleotides 
YRY(N) 6 and YRY(N)3 and based on the percentages of RYR and YRY in the unspecified 
trinucleotides (N)3 of YRY(N)6 and YRY(N)3. Several properties are identified and prove in 
particular that the oligonucleotide mixing is an independent process and that several different 
features are functions of a unique parameter. 

In the third part, the return of the model to the reality shows a strong correlation between 
reality and simulation concerning the presence of large alternating purine/pyrimidine stretches 
and of periodicities. It also contributes to a greater understanding of biological reality, e.g. the 
presence or the absence of large alternating purine/pyrimidine stretches can be explained as 
being a simple consequence of the mixing of two particular oligonucleotides. 

Finally, we believe that such an approach is the first step toward a unified model of DNA 
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sequence evolution allowing the molecular understanding of both the origin of life and the actual 
biological reality. 

1. Introduction: Concept of a Model of D N A  Sequence Evolution. Our 
hypothesis is that DNA sequence evolution (Fig. 1) on the two-letter alphabet 
{R, Y} (R = purine, Y = pyrimidine) is constituted of two successive steps (in 
first approximation).  

S I M U L A T I O N  M O D E L  

R E A L I T Y  S I M U L A T I O N  

Step 1 : Process of generation of 
primitive sequences by independent 

concatenation of oligonucleotides 
according to given probabilities 

Step 2 : Divergence [ 
of species by 

I~ Real gene population Mutations, etc Simulated population 
(protein coding genes, 9 
introns, 5' regions,...) of primitive sequences 

Statistical l ~ Statistical 
function ~ function 

Noise Real curve ~ Simulated curve 
with statistical properties : I 

Periodicity P2, P3 .... I 
,Return of the model to reality by identification 

of new properties (new periodicities,...) 

Figure 1. Concept of a model of DNA sequence evolution. 

(1) The first step (step 1 in Fig. 1) leads to primitive sequences from a 
concatenation process of a few (i.e. preferential type) primitive oligo- 
nucleotides according to given probabilities. This concatenation process 
must have been independent (due to the absence of any clever process at 
the primitive stage). 

(2) At a later stage, the second step (step 2 in Fig. 1) leads to the actual 
divergence of species by using random changes on the primitive sequences 
such as mutations (changes R-~Y and Y~R) ,  transformation of the 
alphabet {R, Y} into {A, C, G, T} (A = adenine, C = cytosine, G = gua- 
nine, T--thymine), insertion and deletion of bases, etc. 

If our hypothesis is true, then the primitiv e sequences built from a few 
primitive oligonucleotides must have strong statistical features. One can hope 
that such features are still statistically significant and still present in all (because 
present before the divergence) actual real gene populations even if random 
ch_anges (mutations, etc.) have introduced an important "noise" effect. 
Section 2 will validate this consequence of the hypothesis by identifying 
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statistical features found in several gene populations (in particular, the 
YRY(N)6YRY preferential occurrence is almost universal; N = R  or Y), 
features which can be easily explained by the existence of only a few 
oligonucleotides. 

This DNA sequence evolution process (Fig. 1) can be simulated as follows: 

(1) Identification of a few oligonucleotides on the alphabet {R,Y}: 
YRY(N)6 and YRY(N)3 will be deduced from the results obtained in 
Section 2. 

(2) Concatenation of these oligonucleotides according to a stochastic 
process (in function of the occurrence probabilities associated with each 
oligonucleotide) leading to the simulated populations: development of a 
Markov model in Section 3 which will be proved to be a random one, i.e. 
the concatenation process is independent. 

(3) Determination, for each real population, of an associated simulated 
population by making use of an appropriate statistical function whose 
simultaneous application in the real population and in its associated 
simulated population, gives the same statistical features: results of 
Section 3. 

(4) The simulated curve does not contain the "noise" effect resulting from 
the random rules (mutations, etc.) and therefore it has stronger statistical 
features compared to the real curve. Then, the observation of the obvious 
statistical features in the simulated curve allows the identification of new 
(but hidden by the "noise" effect) properties in the real populations: 
return of the model to the reality presented in Section 4. 

2. Statistical Features and Classification of Gene Populations.t The transfor- 
mation of genetic information into statistical information leads to a loss of 
information which can be minimized by choosing the appropriate statistical 
function analysing, on the two-letter alphabet {R, Y} (R = purine, Y = pyrimi- 
dine), the occurrence probability of the/-motif YRY(N)iYRY (N = R or Y). In 
gene populations this function can reveal in particular the YRY(N)6YRY 
preferential occurrence (Arqu~s and Michel, 1987b; defined below) and the 
periodicities P3 and P2 (Shepherd, 1981; Fickett, 1982; Arqu6s and Michel, 
1987a-c, defined below). The gene populations studied are protein coding_ 
genes, introns, 5' regions, ribosomal RNA genes, transfer RNA genes and small 
nuclear RNA genes (Table 1). 

Statistical studies of protein coding genes of eukaryotes, prokaryotes, 
viruses, chloroplasts, mitochondria and plasmids, have shown a periodicity P3 
(called coding periodicity; defined below) (Shepherd, 1981; Fickett, 1982; 

t The statistical features of gene populations presented in this section are confirmed by release 21 of the 
EMBL data base containing about double the amount of sequences described in release 17. 
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Table 1. Gene populations 

1. Protein coding populations 
Eukaryotes, noted CEUK (4531 sequences, 4414 kb) 
Prokaryotes, noted CPRO (1753 sequences, 1804 kb) 
Viral, noted CVIR (1895 sequences, 2293 kb) 
Chloroplasts, noted CCHL (182 sequences, 180 kb) 
Mitochondria, noted CMIT (172 sequences, 160 kb) 
Plasmids, noted CPLA (243 sequences, 214 kb) 

2. Intron populations 
Eukaryotes, noted IEUK (701 sequences, 680 kb) 
Viral, noted IVIR (51 sequences, 102 kb) 
Chloroplasts, noted ICHL (38 sequences, 27 kb) 
Mitochondria, noted IMIT (29 sequences, 37 kb) 

3. 5' Region populations 
Eukaryotes, noted NEUK (1501 sequences, 1051 kb) 
Prokaryotes, noted NPRO (556 sequences, 285 kb) 
Viral, noted NVIR (266 sequences, 183 kb) 
Chloroplasts, noted NCHL (46 sequences, 20 kb) 
Mitochondria, noted NMIT (39 sequences, 19 kb) 

4. Ribosomal RNA genes, noted RR (145 sequences, 270 kb) 
(eukaryotes, prokaryotes, chloroplasts, mitochondria) 

5. Transfer RNA genes, noted TR (1157 sequences, 87 kb) 
(eukaryotes, prokaryotes, viral, chloroplasts, mitochondria) 

6. Small nuclear RNA genes, noted SNR (97 sequences, 15 kb) 

Arqu6s and Michel, 1987a-c). Then, a statistical study of a perturbation in this 
periodicity P3 (Arqu6s and Michel, 1987a) has led to the following result: 

The mean occurrence probability of the/-motif YRY(N)iYRY is not uniform 
with i in the range [1, 99], but presents a maximum at i = 6 in the following gene 
populations: protein coding genes of eukaryotes, prokaryotes, chloroplasts 
and of mitochondria, viral introns, ribosomal RNA genes and transfer RNA 
genes (Arqu6s and Michel, 1987b). The main exception found which is the 
eukaryotic introns, has been solved by showing that the YRY(N)6YRY 
preferential occurrence (maximum at i=  6) is hidden by a periodicity P2 (called 
alternating purine/pyrimidine periodicity; defined below) (Arqu6s and Michel, 
1987c). We have already suggested from the "universality" of this observation 
that the oligonucleotide YRY(N)6 is a primitive one and that it has a central 
function in DNA sequence evolution (Arqu6s and Michel, 1987b). 

By using the last version of the gene database, the YRY(N)6YRY preferential 
occurrence is confirmed for the populations mentioned above and is observed 
in four newly analysed populations: chloroplast introns, chloroplast 5' regions, 
mitochondrial 5' regions and small nuclear RNA genes. On the other hand, the 
YRY(N)6YRY preferential occurrence and the periodicities P3 and P2 are used 
in order to classify 18 gene populations. 
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2.1. Method. The method was developed previously by Arqu6s and Michel 
(1987b). The outlines are briefly stated below. 

2.1.1. Data: gene populations. The gene populations obtained from the 
EMBL Nucleotide Sequence Data Library (release 17) are characterized by 
their notation, by their number of sequences and by their number of kilobases 
(kb) (Table 1). The protein coding genes, the introns and the 5' regions are 
analysed according to their taxonomic group. The small number of ribosomal 
RNA genes and the short length of transfer RNA genes actually do not allow an 
objective statistical analysis per taxonomic group for these two populat ions.  
Therefore, the two populations of ribosomal and transfer RNA genes belong to 
eukaryotes, prokaryotes, chloroplasts and mitochondria (a few transfer RNA 
genes being also viral). The small nuclear RNA genes are eukaryotic. The 5' 
regions are located upstream the open reading frames starting with an initiator 
ATG codon. The other types of 5' regions have been excluded from this survey, 
while the data concerning the 3' regions are not yet available. A gene 
population incorporates all the nonduplicated sequences which can be 
classified, i.e. a sequence with unspecified bases or one with an unmentioned 
taxonomic group, is excluded, etc. 

2.1.2. Statistical function. Let Fbe  a gene population with n(F) sequences. 
Let s be a sequence in F with a length l(s). 
Let the/-motif m i = YRY(N)iYRY (R --- purine, Y = pyrimidine, N = R or Y) by 
varying i in the range [0, 99], be 2 trinucleotides YRY separated by any i bases 
N (note: compared to the previous methods, this study treats the particular 
case of the/-motif  YRY(N)iYRY at i=0).  For each s of F, the counter ci(s) 
counts the occurrences of m~ in s. In order to count the m~ occurrences in the 
same conditions for all i, only the first l ( s ) -  104 ( = l(s) - (99 + 6) + 1) bases ofs 
are examined (99 +6  is the maximal length of mi). Then, the occurrence 
probability oi(s ) of m i for s, is equal to ci(s)/(l(s ) -  104), i.e. the ratio of the 
counter by the total number of current bases read. Then, the occurrence 
probability pi(F) ofm~ for F, is equal to (Zs~Fo~(s))/n(F). For each population F, 
the statistical function i~p~(F) by varying i, is represented as a curve C(F). In 
order to have a sufficient number of m99 occurrences, the function is applied to 
sequences having a minimal length of 250 bases. For the transfer and small 
nuclear RNA genes, the minimal length for the sequences analysed is fixed at 60 
bases and the maximal value of i is reduced to 29 because the length of these 
genes is small (in the range [60, 250]) (Arqu6s and Michel, 1978b for more 
details). 

2.2. Results 

2.2.1. Statistical features of gene populations. The main statistically 
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significant features found in the gene popula t ions  and revealed by the curve 
C(F) are the two periodicities P3 and P2, and the maximal  value of pi(F) 
(mainly po(F) and p6(F)). The minimal  value of pi(F) is sometimes also 
considered. 

(a) Features concerning the periodicities P3 and P2. 
Feature  P3: periodicity P3 in the range [3, 98]: 

pi(F) >~ Max {pi_ 1 (F), p~ + 1 (F)} with i = 0[3] and i ~ [3, 98]. 

The periodicity P3 is incomplete if a few points  do not  satisfy the above 
inequality, i.e. a few values i in [3 ,98] ,  i - 0 1 3 ]  and p i ( F ) < M a x  
{P,- x(F), P, + x(r)}. 

Feature  P2: periodicity P2 in the range [0, L]: 

p~(F)>~Max{p~_~(r), p~+a(r)} with i -  112] and i t [ 0 ,  L]. 

(b) Features  concerning the maximal  and minimal  values of pi(F) in the 
range [-0, 99]. 

Feature  M0, 6: 
po(F)>P6(F)>p~(F), i =  1 . . . .  ,5 ,  7 . . . .  ,99.  

Feature  Mj: 
p~(F)>pi(F), i# j  and i,j~[-O, 99]. (Mainly M0 and M6.) 

Feature  mj: 
pi(F) < pi(F), i # j  and i, j ~ [-0, 99]. 

2.2.2. Classification of gene populat ions  according to the statistical 
features. A figure will be given for each major  feature. 

(a) Gene populat ions  with the periodicity P3 in the range [-3, 98]. 
Gene popula t ions  with the features P3 and M0, 6: C E U K  (Fig. 2a), 
C P R O  (Fig. 2b) and C M I T  (data not  shown). The periodicity P3 is 

Legend for pages 746-748 

Figure 2. Mean occurrence probability of the/-motif YRY(N)IYRY in gene populations. The 
horizontal axis represents the number i of bases N in the i-motif YRY(N)IYRY, with i in the range 
[0, 99]. The vertical axis represents the mean occurrence probability pi(F) (see Section 2.1) over 
all the sequences in the following gene populations F: (a) CEUK, eukaryotic protein coding 
genes; (b) CPRO, prokaryotic protein coding genes; (c) CCHL, chloroplast protein coding 
genes; (d) IVIR, viral introns; (e) IMIT, mitochondrial introns; (f) IEUK, eukaryotic introns; (g) 
NEUK, eukaryotic 5' regions; (h) RR, ribosomal RNA genes; (i) NVIR, viral 5' regions. A 

horizontal dashed line goes through the point (6, P6(F))). 
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(b) 

(c) 

uniform for CEUK and CPRO: there are two different sets of well 
separated points so that: 

Min{p,(F), i=013]} > Max{pi(F), i = 1, 2[3]} with i t [0 ,  99]. 

Furthermore, for each set, the points can be joined by a nearly 
horizontal line, except for the top line of CEUK which decreases slightly 
by increasing i. Finally, for CPRO, pl(CPRO) is the the lowest value 
(feature ml), whereas for CEUK, pl(CEUK) is the highest value in the 
bottom curve i= 1, 2[3]. 
Gene populations with the features P3 and M0: CVIR, CPLA, NPRO 
(data not shown because the features P3 and M0 are more general than 
the features P3 and M0, 6). CVIR has an uniform periodicity P3. NPRO 
has an incomplete periodicity P3 and the feature ml (as CPRO). (Note: 
P6(F) is in the five first values for these three populations.) 
Gene populations with the features P3 and M6: CCHL (Fig. 2c) and 
IVIR (Fig. 2d). CCHL and IVIR have an incomplete periodicity P3. 
Gene population with the features P3 and M15: IMIT (Fig. 2e). IMIT 
has an incomplete periodicity P3 for i~< 21. 
Gene populations with the periodicity P2 in the range [0, L]. 
Gene population with the features P2 in the range [0, L = 49] and MI: 
IEUK (Fig. 2f). 
Gene population with the features P2 in the range [0, L =  23] and M3: 
NEUK (Fig. 2g). 
For IEUK, p~(IEUK) is the highest value and pa(IEUK) is the second 
highest, whereas for NEUK, p3(NEUK) is the highest value and 
P l(NEUK) is the second highest. Furthermore, for NEUK, P0 (NEUK), 
p6(NEUK), p~2(NEUK), p~8(NEUK) and P24(NEUK) are nearly 
equal. Indeed, their associated points can be joined by a horizontal line. 
Three other obvious sets of points can be joined by regular curves: (1) 
i=  3, 9, 15, 21, 27 and 33; (2) i= 1, 5, 7, 11, 13, 17, 19, 23 and 25; (3) i=2,  
4, 8, 10, 14, 16, 20 and 22. All these naturally appearing curves join 
modulo 6 periodic sets of i values (Fig. 2g). 
Gene populations with no periodicity P3 or P2. 
Gene populations with the feature M6: RR (Fig. 2h), ICHL, NCHL, 
NMIT, TR (0 ~< i ~< 29), SNR (0 ~< i ~< 29) (data not shown). 
Gene population with no feature: NVIR (Fig. 2i). 

2.3. Discussion 

2.3.1. Biological meanings of the statistical features. Statistical studies at 
the DNA sequence level (Shepherd, 1981) and at the gene population level 
(Fickett, 1982; Arqu6s and Michel, 1987a-c) have shown the periodicity P3 in 
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protein coding genes of any taxonomic group: eukaryotes, prokaryotes, viral, 
chloroplasts, mitochondria and plasmids (Section 2.2.2a). This periodicity P3 
is found, not only in protein coding genes, but also in introns of viruses and 
mitochondria (Arqu6s and Michel, 1987c and Section 2.2.2a). These two 
populations of introns have the genetic information necessary to code for 
proteins (Arqu6s and Michel, 1987c). Indeed, viruses use overlapping genes, 
both DNA strands and alternative patterns of RNA splicing in order to 
maximize the functions of a viral genome whose size is small (Ziff, 1980). On the 
other hand, many mitochondrial introns encode splicing proteins (maturases) 
(Lazowska et al., 1980). The prokaryotic 5' regions constitute a newly analysed 
population having the periodicity P3 (Section 2.2.2a). This periodicity P3 
could be related to one of the reasons mentioned above concerning introns, in 
particular with a supply protein coding function because the size of the 
prokaryotic genome is small compared to the eukaryotic one. In summary, the 
periodicity P3 is related to the protein coding function of a gene and is found in 
protein coding genes, viral introns, mitochondrial introns and prokaryotic 5' 
regions. 

A different type of periodicity, i.e. the periodicity P2, was identified in 
eukaryotic introns (Arqu6s and Michel, 1987c and Section 2.2.2b). The 
periodicity P2 is related to regulatory functions of a gene (Arqu6s and Michel, 
1987c) and is found in eukaryotic introns and in the newly analysed population of 
the eukaryotic 5' regions (Section 2.2.2b), i.e. only in the eukaryotic genome. 

This study shows three families of genes: genes with the periodicity P3 (9 
populations), genes with the periodicity P2 (2 populations) and genes with no 
particular periodicity (7 populations). These three families have a common 
feature: a higher frequency of YRY(N)6 Y R Y  (Arqu~s and Michel, 1987b and 
Section 2.2.2) because one of the two highest frequency of YRY(N)~YRY is 
obtained at i=6  in 11 populations out of 18 (features M6 and M0, 6). Only 
mitochondrial introns and the viral 5' regions are "real" exceptions. These 
exceptions may be due to the small size for the IMIT population (see the 
statistical reason presented in Section 2.3.3) and/or to the presence of some 
properties which hide the YRY(N)6YRY preferential occurrence. This latter 
case is found in eukaryotic introns and in the eukaryotic 5' regions, where the 
higher frequency of YRY(N)6YRY is only true in the bottom curve i=012] 
(Arqu6s and Michel, 1987c and Figs 2f and 2g). 

2.3.2. Comparison with the current molecular theories of DNA sequence 
evolution. 

(a) The biological concept. None of the actual theories of DNA sequence 
evolution analyses in totality the great genetic variety (in terms of 
taxonomic group: eukaryotes, prokaryotes, viruses, chloroplasts, mito- 
chondria, plasmids and their subpopulations or in terms of gene 
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(b) 

function: protein coding genes, introns, 5' regions, 3' regions) according 
to the existence of a unique process of gene formation. Several 
observations such as the approximate constancy of the amino acid 
substitution rate in each protein (Zuckerkandl and Pauling, 1965) and 
the large amount of genetic polymorphism in many populations (e.g. 
Lewontin and Hubby, 1966), led to the development of the "mutation" 
models (reviews in Kimura, 1987; Nei, 1987) without pattern for the 
primitive genes. The "RNY" model (Eigen and Schuster, 1978), giving a 
pattern on the purine/pyrimidine alphabet for the primitive protein 
coding genes, differs from the mutation models. 
The molecular evolution must be understood at the entire DNA 
sequence level and not only at the level of protein coding genes. Indeed, 
DNA sequences encode more information than protein sequences, as a 
large proportion of DNA sequences do not code for proteins and as the 
genetic code is degenerated. Despite of this DNA variety, DNA 
sequences rely on physical constants: (i) a primary structure with the 
same four nucleotides: adenine, cytosine, guanine and thymine; (ii) a 
tertiary structure in double helix, however a few exceptions are found 
with certain types of viruses. Therefore, a model related to the spatial 
structure of DNA sequences is more general. Such a model will be 
developed in Section 3 allowing the simulation of most features which 
characterize the biological reality. At present, such a model seems to be 
the most general. 
The 9reat number of biological and statistical hypotheses. No simple 
biological rule was identified because the actual theories attempt to find 
a general model of DNA sequence evolution from the analysis of 
particular cases. A statistical reason (see Section 2.3.3) explains the 
limits (even, the impossibility) of such approaches. Furthermore, if a 
model is developed for each different set of only a few DNA sequences, 
then some hypotheses are necessary to make the models coherent with 
each other. 

2.3.3. The concept of the population evolution history (or the mean 
evolution history of a sequence from a population). In order to develop a 
general model of DNA sequence evolution whose one necessary condition is to 
be independent of particular cases and of hypotheses, the biological concept of 
the population evolution history (or the mean evolution history of a sequence) 
must be introduced. This concept can be statistically studied if a great number 
of DNA sequences is used to define a population (see Section 3.3). Indeed, if 
only a few (at the limit, one) sequences are studied, then the population 
evolution history is confused with the particular history of the chosen 
sequences. The features of a few sequences (induced by random changes, i.e. 
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mutations, insertions, deletions, etc.) hide the weaker and more general 
features characterizing the population evolution history. The statistical reason 
is obvious and it is deduced from the law of large numbers. An illustration is 
given with the following example. 

Assume, for the sake of simplicity, that all sequences in a population have 
only two statistical features: a common feature and a specific one. For a given 
parameter q studied, Fig. 3a shows the statistical function i~qi associated with 
one sequence of a population F: (i) a common feature related to the F 
population history, e.g. a small value q6=0.02; (ii) a feature specific to the 
sequence history, e.g. a high value ql = 0.5 for a particular i. 

Figure 3b shows the statistical function i--.q~ which is the mean of the 
statistical curves associated with 10 sequences: the 10 specific features (assume 
that all are different) occur with probability of 0.05 (0.5/10), but the common 
feature q6 is now only 2.5 (0.05/0.02) times smaller. 

Figure 3c shows the statistical function i~q~(F) applied to a great number 
(10 000) of such sequences (law of large numbers): the common feature q6(F) is 
now 4 (0.02/0.005) times larger than the specific features having a probability of 
approximately 0.005 (0.5 x 100/10 000). On the other hand, the features 
specific to the sequence history are no longer identified at the population level 
because they are on a straight line (Fig. 3c), (i.e. white noise). 

In addition, the same reason explains that: (1) the periodicity P3 existing at 
the population level can be absent at the level of a sequence of this population 
(see for example in Fig. 4, the eukaryotic protein coding gene with the EMBL 
identification CLCK, starting at position 39 and ending at position 1184); (2) 
the motifs YRY(N)0YRY and YRY(N)6YRY having a high frequency at the 
population level can occur with a low frequency at the level of a sequence of this 
population (see the same example in Fig. 4). 

In summary, by hiding the features specific for each sequence, the statistical 
study of gene populations analyses the population evolution history or the mean 
evolution history of a sequence from a population. 

3. Simulation Model A simple model is developed in order to simulate a gene 
population by mixing the two oligonucleotides YRY(N)3 and YRY(N)6 
according to a Markov chain (of order 2:2 matrix parameters), and by varYing 
the percentages of RYR and YRY in the unspecified trinucleotides (N) 3 of 
YRY(N)a and YRY(N)6 (four percentage parameters). The principle of this 
model is to determine the values of these six parameters so that the curve C(S) 
of the simulated population S has similar features to the curve C(F) of a given 
real population F. The features of the real populations were presented in 
Section 2. We will demonstrate that a simple model with six parameters can 
retreive the YRY(N)6 YRY preferential occurrence, the periodicities P3 and P2 
and some particular values of pi(S). Furthermore, several properties identified 
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Figure 3. Difference between the statistical study of a few DNA sequences and the 
statistical study of a large gene population. Mean statistical curve for: (a) 1, (b) 10; 

(c) 10 000 sequences (see Section 2.3). 
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Figure 4. Mean occurrence probability of the /-motif YRY(N)~YRY in the 
eukaryotic protein coding gene CLCK (EMBL identification), starting at 
position 39 and ending at position 1184: absence of the periodicity P3 and low 
frequencies of YRY(N)oYRY and YRY(N)6YRY. The horizontal axis represents 
the number i of bases N in the/-motif YRY(N)~YRY with i in the range [0, 99]. The 
vertical axis represents the mean occurrence probability pi(CLCK) (see 

Section 2.1). 

will show that the Markov model is a random independent one and that the 
YRY(N)6YRY preferential occurrence and the perioditicities P3 and P2 are 
functions of a unique parameter. 

3.1. Method The model uses 2 oligonucleotides: O3=YRY(N)3 and 
0 6 =YRY(N)6. Then, a simulated sequence is obtained by concatenation of 
0 3 and 0 6 according to the 2 states of a Markov chain having the matrix: 

State 0 6 0 3 

O 6 [  ~ - ~  P ] 
03 q 1 --q 

where p (resp. 1 - p ,  q, l - q )  is the probability that 03 follows 06 (resp. 06 
follows 06 , 06 follows 03,  03 follows 03) in the concatenation process. In 
addition to these 2 matrix parameters p and q, four percentage parameters 
characterize the occurrence probabilities of YRY and RYR in (N)3 of 03 and 
06: let Ya (resp. r3) be the probability ofYRY (resp. RYR) in (N)a ofO 3 and let 
Y6 (resp. r6) be the probability of YRY (resp. RYR) in the first or in the last 
three bases in (N)6 of 06 . 

When an oligonucleotide 03 (resp. 06) is generated, the three bases in (N)3 
(resp. the first three bases then the last three bases in (N)6) are specified 
according to the two following rules. 
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Rule 1: by YRY and RYR with the probabilities Y3 and r 3 (resp. Y6 and r6) , 
otherwise by application of the rule 2 with the probabilities "' 
1 - y 3 - r a  (resp. 1 - - y 6 - r 6 ) .  

Rule 2: by three bases R or Y, chosen according to the respective 
probabilities r and 1 -  r (determined below), so that  R and Y have 
the same percentage 0.5 in the final simulated sequence. 

Note:  (i) a a = Y3 + r3 ~ 1 and a 6 = Y6 + r6 ~< 1. (ii) 1 - a a or 1 - a 6 have to be 
large enough for balancing the number  of R occurrences by application of the 
rule 2 because O a and 0 6 have initially a greater number  of Y occurrences. 

More  precisely, f rom the Markov  chain formula (Feller, 1968, p. 375), 'the 
p ropor t ion  of O a (resp. 06)  is p/(p + q) (resp. q/(p + q)). Let ~ (resp. fl, ),) be the 
p ropor t ion  of Y (resp. R, N) in the simulated sequence after having specified 
(N)a and (N)6 with the rule 1. Then,  the following formulae can be proved:  

ct = {2(p + q) + p(2y a + r3) + q(4y 6 + 2r6)}/(6 p + 9q) 

fl = {P + q + P(Ya + 2r3) + q(2Y6 + 4r6)}/(6P + 9q) 

), = {3p(1 - Y3 - r3) + 6q(1 - Y6 - r6)}/(6P + 9q). 

(Note: ~+f l+~,  = 1.) 
Then,  the rule 2 specifies the p ropor t ion  ~, of bases N as the sum of a 

p ropor t ion  6 of R and of a p ropor t ion  e of Y: (i) 6 + e = ~ ;  (ii) 6+f l=e+ot  
(traduces the equality between the final R propor t ion  and the final Y one). 

Then:  

6 = {2p(Z--ya-- 2r3) + q(7-- 4y 6 -  8r6)}/(12 p + 18q), 
and: 

r = 6/~, = {2p(2 - Ya -- 2r3) + q(7 --4y 6 -- 8r6)}/{6p(1 --Y3 -- r3) 

+ 12q(1 - - Y 6 -  r6)}. 

The /-motif YRY(N)iYRY is studied with the statistical function i~p i (S  ) 
(curve C(S)) by varying i in the range [0, 99] (Section 2.1.2) in a simulated 
popula t ion  S const i tuted by 300 sequences of 1104 ( =  1000 + 104) base length 
which are simulated according to a given sextuplet (p, q, Y3, Y6, r3, r6). 

In fact, for all i, the probabilities p~(S) can be exactly determined by formulae. 
Indeed, pi(S) is a function of the 6 variables p, q, Y3, Y6, r3, r6, for example: 

po(S) = { 2pu + q{ Et + 2 s ( t -  Y6) + t2} }/(6P + 9q) 
with: 

s = r ( 1 - r )  ( 1 - - Y 6 - r 6 ) + r 6 ,  t=r(1--r)2(1--y6--r6)+Y6 and 

u= r (1  - r)2(1 -Y3 - ra) + Y3 �9 

These exact values ofpi(S ) can also be compu ted  by a tree track algori thm (not 
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detailed here), but the simulation method described above is sufficient for a 
small scanning around the exact sextuplets. This simulation method is also 
simple to be programmed. 

The exhaustive search of the sextuplet (p, q, Ya, Y6, ra, r6) in [0, 1] 6 for 
identifying a simulated curve C(S) similar to a real curve C(F), needs a high 
computing time (e.g. more than 20 h with a VAX 8600). Furthermore, a large 
step for the scanning may not converge towards a solution. 

3.2. Results. With a complete scanning of 0.01 scale in the range [0, 1-], the 
sextuplets (p, q, Y3, Y6, r3, r6)  w e r e  determined for the real populations 
F= {CEUK, CPRO, CCHL, IVIR, IMIT, IEUK, NEUK, RR, NVIR} so that 
the associated simulated populations noted S={S-CEUK, S-CPRO, S- 
CCHL, S-IVIR, S-IMIT, S-IEUK, S-NEUK, S-RR, S-NVIR} have the same 
features (Section 2.2 and Table 2): 

P q Ya Y6 r3 r 6 Fig. Strongly similar to Fig. 

S-CEUK 0.69 0.25 0.92 0.00 0.06 0.00 5a 2a of CEUK 
S-CPRO 0.61 0.33 1.00 0.00 0.00 0.00 5b 2b of CPRO 
S-CCHL 0.61 0.38 0.74 0.00 0.22 0.00 5c 2c of CCHL 
S-IVIR 0.37 0.65 0.00 0.20 0.00 0.00 5d 2d of IVIR 
S-IMIT 0.18 0.30 0.05 0.34 0.75 0.24 5e 2e of IMIT 
S-IEUK 0.99 0.14 0.13 0.00 0.87 0.00 5f 2f of IEUK 
S-NEUK 0.89 0.17 0.32 0.00 0.67 0.00 5g 2g of NEUK 
S-RR 0.31 0.76 0.24 0.00 0.70 0.20 5h 2h of RR 
S-NVIR 0.67 0.53 0.32 0.08 0.54 0.20 5i 2i of NVIR 

Table 2. Statistical features 

Real curves: Fig. 2a-i Simulated curves: Fig. 5a-i 
Features (Section 2) (Section 3) 

P3 M0, 6: CEUK, CPRO, CMIT S-CEUK, S-CPRO 
P3 MO: CVIR, CPLA, NPRO see the features P3 M0, 6 
P3 M6: CCHL, IVIR S-CCHL, S-IVIR 
P3 M15: IMIT S-IMIT 
P2 M1: IEUK S-IEUK 
P2 M3: NEUK S-NEUK 
M6: ICHL, NCHL, NMIT,  RR, S-RR 

TR, SNR 
No feature: NVIR S-NVIR 

The chosen features being the most statistically significant ones, have the 
most important biological meanings, e.g. the periodicity P3 reflects the protein 
coding function of a gene. However, a simulated curve, even having these 
features, is not necessarily identical to the real curve because: (1) the 
description of a curve form by making use of features is a difficult problem of 
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pat tern  recognition, which cannot  be solved by only a few features, e.g. the 
periodicity P3 can be uniform or incomplete (Section 2.2); (2) the simulated 
curve form is simple and uniform with a model  consisting of six parameters.  
This model  cannot  simulate completely the biological reality depending on a 
great number  of factors, in the same way the first terms of development  of a 
function in series cannot  reveal the totality of the function. On  the other hand,  
the regularity of the real curves increases with the size of the popula t ion  (the 
statistical reason follows from the law of large numbers ,  Section 2.3.3.). 
Therefore, all real curve forms obtained from populat ions  of small size, have to 
be considered with caution,  except the features stressed in the Section 2 results. 

Another  problem concerns the region in [0, 1-] 6 in which the simulated 
curves satisfy the given features. This region is l imited by a sextuplet of minimal  
values and by a sextuplet of maximal  values. For  example for S-CEUK,  the 
rules used in order to obtain such a region, are the periodicity P3 and the 
following inequalities which traduce the features of C E U K  observed in 
Section 2: 

p o ( S - C E U K ) - P 6 ( S - C E U K ) > a  x D 
p 6 ( S - C E U K ) - H > b  x D 

p l ( S - C E U K ) - B > c  x D 

H - p a ( S - C E U K ) < d  x D 

where D is the difference between the max imum of the top curve (in this case 
po(S-CEUK): feature M0) and the min imum of the bo t tom curve (in this case 
P2 (S-CEUK): feature m2, H (resp. B) is the mean  value of the top (resp. bo t tom)  
curve and a, b, c, d are real so that ,  when a, b, c increase and d decreases, the 
region converges to the limit sextuplet, the convergence being a function of the 
scanning scale. 

Legendfor pages 758-760 

Figure 5. Mean occurrence probability of the /-motif YRY(N)~YRY in the simulated 
populations. The horizontal axis represents the number i of bases N in the i-motif YRY(N)iYRY, 
with i in the range [0, 99]. The vertical axis represents the mean occurrence probability p~(S) (see 
Section 2.1) over all the sequences in the following simulated populations S: (a) S-CEUK, 
simulation of the eukaryotic protein coding genes; (b) S-CPRO, simulation of the prokaryotic 
protein coding genes; (c) S-CCHL, simulation of the chloroplast protein coding genes; (d) S- 
IVIR, simulation of the viral introns; (e) S-IMIT, simulation of the mitoehonddal introns; (f) S- 
IEUK, simulation of the eukaryotic introns; (g) S-NEUK, simulation of the eukaryotic 5' 
regions; (h) S-RR, simulation of the ribosomal RNA genes; (i) S-NVIR, simulation of the viral 5' 

regions. A horizontal dashed lines goes through the point (6, p6(F)). 
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The region obtained for S-CEUK is: 

0.68 ~<p~<0.69 

0.25 ~< q ~< 0.26 

0.90 ~< Y3 ~< 0.93 

0.00 ~< Y6 ~< 0.02 

0.06 ~<r 3 ~<0.10 

0.00 ~< r 6 ~< 0.04. 

Note that the radius of the region obtained is of the same order than the 
scanning scale 0.01. This same methodology has been used to obtain the 
regions (data not shown) and the limit sextuplets (given above) for the eight 
other simulated populations. 

For a given feature choice, the simulated curve form is unique and allows 
some returns to reality (Section 4). As a first example, the curve C(S-NEUK) 
(Fig. 5g) of the simulated population S-NEUK has four obvious sets of points 
which can be joined by regular curves: (1) i=0,  6, 12, 18 and 24; (2) i=  3, 9, 15, 
21, 27 and 33; (3) i = 1, 5, 7, 11, 13, 17, 19, 23, and 25; (4) i -- 2, 4, 8, 10, 14, 16, 20 
and 22. However no condition was included in the model concerning these 
obvious curves, these features exist in the curve C(NEUK) (Fig. 2g) of the real 
population NEUK. 

The choice of the two oligonucleotides YRY(N)6 and YRY(N)3 for the 
model is deduced from our previous studies. Only the three main reasons are 
given (by convention, a sequence constituted by a concatenation of several 
identical oligonucleotides O is noted (O)*, e.g. YRY(N)6YRY(N)6...  is noted 
(YRY(N)6)*): (1) the particular sequence (YRY(N)3)* with (N)a=RYR, 
alternating purine/pyrimidine stretches, leads obviously to the periodicity P2 
(Arqu6s and Michel, 1987c): (2) any mixing of YRY(N)6 and YRY(N)3 leads to 
the periodicity P3; (3) The particular sequence (YRY(N)6)* gives a high 
frequency of the i-motif YRY(N)iYRY at i=  6, 15, 24, etc. (Arqu6s and Michel, 
1987b) and the insertion of YRY(N) 3 in a sequence (YRY(N)6)* leads to the 
highest frequency of the/-motif YRY(N)iYRY at i=  6 (compared to i-- 15, 24, 
etc.) because such an insertion destroys one subsequence YRY(N)6YRY but 
two subsequences YRY(N)lsYRY, three subsequences YRY(N)24YRY, etc. 

3.3. Discussion 

3.3.1. This "oligonucleotide" model presents the DNA sequence evolution as 
follows: Two primitive oligonucleotides 0 3 = YRY(N)3 and 0 6 = YRY(N)6, 
through concatenations (step 1 in Fig. 1), led to the primitive sequences (here the 
simulated populations S), then through random changes (mutations, etc.) 
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(step 2 in Fig. 1), these primitive sequences led to the actual sequences (here the 
real populations F). Most probably, concatenations and random changes were 
not separated into two distinct steps, but concatenations were predominant at 
an early stage and then progressively replaced by random changes. The 
random changes (i.e. the step 2 in Fig. 1) are necessary in the oligonucleotide 
model (see Section 3.3.2.), 

3.3.2. Relation between the oligonucleotide model and the mutation model 
(reviews in Kimura, 1987; Nei, 1987). The pi(S) values, absolute and relative, 
in the simulated populations S are greater (about 10 times more) than the p~(F) 
values in the real populations F. In order to reach the real values by keeping the 
same features, mutations are necessary in these simulated populations S with a 
maximal rate of  order 1/2 mutation per specificed base (R or Y) and with any 
mutation rate per unspecified base N (Arqu6s and Michel, model in 
preparation). In other words, there is a limit for the mutation rate with the 
specified bases. 

3.3.3. Relation between the oligonucleotide model and the RNY model 
(Eigen and Schuster, 1978). The oligonucleotide model is more general than 
the RNY model (the preferential use of the RNY codon leads to preferential 
series ofRNY codons, i.e. (RNY)*) because: (1) fewer bases are specified: 1/3 to 
1/2 of the bases are specified in the sequences of the oligonucleotide model 
while 2/3 of the bases are specified in the (RNY)* sequences of the RNY model; 
(2) a (RNY)* type sequence can be retrieved from the sequences of the 
oligonucleotide model by specifying (N)3 by YRN in YRY(N)3 and YRY(N)6; 
(3) many more features are explained with the ologonucleotide model. In 
particular, the YRY(N)6YRY preferential occurrence and the periodicity P2 
cannot be explained by the RNY model (both models explain the periodicity 
P3). 

3.3.4. Concept of the Markov concatenation. From a biological point of 
view, a Markov concatenation of oligonucleotides is probably too complex for 
an early stage of DNA sequence evolution. Unexpectedly, some properties (in 
particular the important property 1 given below) are identified and allow the 
simplification and the replacement of this Markov model by a random 
independent model. From a mathematical point of view, the choice of a 
Markov model allows to prove the existence of a random independent model, 
i.e. a random independent model is not taken as hypothesis. 

3.3.5. For S-CEUK, S-CPRO, S-CCHL, S-IEUK, S-IVIR, S-NEUK, S- 
NVIR, S-RR: 

Property 1: p + q ~ 1 (from Section 3.2; Fig. 6a). The projection of these eight 
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sextuplets in the plane (p, q) shows that these eight points are approximately on 
a straight line of equation p + q = 1. With a linear regression, the straight line 
has the following equation D: p =  -0 .94q  + 1.02. If S-NVIR is not considered 
because S-NVIR is the furthest point from D, then the linear regression leads to 
the straight line of equation D': p =  -1 .00q  + 1.02. 
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Figure 6. 
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Figure 6. (a) Linear regression between the two parameters p and q proving the 
independent concatenation oftbe two oligonucleotides YRY(N)3 and YRY(N)6 for 
the seven underlined simulated populations $ used in the linear regression. (b) 
Linear regression, for the five underlined simulated populations, between the two 
parameters r a and Ya proving the complete specification of the oligonucleotide 
YRY(N)a as being independently YRYYRY or YRYRYR. (c) Linear regression, for 
the five underlined simulated populations, leading to a complete specification by the 
unique parameter 17 of the probabilities characterizing the independent concaten- 

ation of the three oligonucleotides YRYYRY, YRYRYR and YRY(N)e. 

Therefore, the Markov model is associated with the simplified matrix: 

State 06 O a 
O611 - -p  

Then, the concatenation of 03 and 06 is independent because: 

Prob(state Oac~state O6) = Prob(state Oa/state 06) x Prob(state 06) 

=p(1 -p)  

= Prob(state 03) x Prob(state 06) 

In summary, the simulated populations are generated by an independent 
concatenation of the two oligonucleotides YRY(N)a and YRY(N) 6 with the 
probabilities p and 1 - p  respectively. This property leads to the important 
observation that the concatenation is random independent (proved as being a 
particular case ofa Markov model). The absence of a clever concatenation is in 
agreement with a primitive stage of DNA sequence evolution. 

3.3.6. In addition, for S-CEUK, S-CPRO, S-CCHL, S-IEUK, S-NEUK: 
Property2:y6=r6=0 (from Section 3.2). The six bases N of the oli- 
gonucleotide YRY(N)6 have not to be specified by YRY and by RYR. 
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Obviously, specification by motifs different from YRY and RYR could be 
necessary for a model more general which also considers trinucleotides (e.g. 
RRR) different from YRY. 

Property 3: Ya + r3 ~ 1 (from Section 3.2; Fig. 6b). With a linear regression, 
the straight line has the following equation r3=-1 .01y3+0.99.  The three 
bases N of the oligonucleotide YRY(N)a are completely specified either by 
YRY or by RYR. Then, the simulated populations are generated by an 
independent concatenation of the three oligonucleotides YRYYRY, YRYRYR 
and YRY(N)6 with the probabilities PY3, p ( 1 -  Y3) and 1 - p  respectively. 

Property 4:Y3 = - 2.07p + 2.19 (Fig. 6c). The simulated populations are 
generated by an independent concatenation of the three oligonucleotides 
YRYYRY, YRYRYR and YRY(N)6 with the probabilities -2 .07p 2 +2.19p, 
2.07p 2-1.19p and 1 - p  respectively, functions of the unique parameter p. 

3.3.7. Remarks. The real populations CVIR, CPLA and NPRO were not 
simulated. Indeed, these populations have the features P3 and M0 which are 
more general than features P3 and M0, 6 of the real populations CEUK, 
CPRO and CMIT (Section 2.2.2a. and Table 2). For the simulated population 
S-IMIT which does not verify any of the properties mentioned above, the 
question arises whether this model is sufficient or whether the size of the real 
population IMIT is too small (see the statistical reason presented in Section 
2.3.3). It also reveals the problem of the definition of a gene population. These 
remarks may also explain that some real populations, e.g. the transfer RNA 
genes, cannot be simulated satisfactorily, obviously except the feature M6. 

4. Return of the Model to the Reality. The evaluation of such a model relies on 
the new information concerning the reality which is returned by the model (new 
information in the sense that the information was not known before the 
construction of the model and thereby, not introduced in the model). This 
model is tested in two biological problems: the distribution of the large 
alternating purine/pyrimidine stretches and the identification of new hidden 
periodicities. 

4.1. Study of the large alternating purine/pyrimidine stretches 

4.1.1. Problem. The distribution of the large (~>15 bases) alternating 
purine/pyrimidine stretches (YR)* (or (RY)*) depends on gene populations. In 
particular, the (YR)* stretches are large and numerous (i.e. statistically 
improbable by chance) in eukaryotic introns IEUK and normal in eukaryotic 
protein coding genes CEUK (Arqu~s and Michel, 1987c). There is no simple 
and natural explanation for this observation. In fact, we will demonstrate that 
the presence or the absence of large stretches (YR)* in a real population F is 
simply a consequence of the characterization (Section 3.2) of this population 
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by the mixing of the two oligonucleotides 0 3 = YRY(N)3 and 0 6 = YRY(N)6 
and by the specification of YRY and RYR in (N)3 ofO 3 and 0 6 . It is important 
to stress that no (YR)* stretch was directly introduced in the model. 

4.1.2. Method. Let R e (resp. R s )  be the repartition function of the (YR)* 
stretches of length j i> 15 bases in a real population F (resp. in its associated 
simulated population S). S is generated according to Section 3 with the 
sextuplet from Section 3.2. The similarity between R e and R s is evaluated with 
the graphic comparison of the curves, with an identity test and with a 
correlation test of the length of the largest stretch for which the function reaches 
its maximum 1. 

4.1.3. Results 
(a) Curves of Rp and R s. The functions R r and R s are given for the six 

populations CEUK, NEUK,  IVIR, NVIR, RR and IEUK, (Figs 7a-c), 
whereas for the other populations CPRO, CCHL and IMIT, real as well 
as simulated, the number of large stretches is not statistically significant 
for this study. The similarity between R F and R s for these six populations 
is graphically obvious (Figs 7a-c). The function R s is regular because the 
size of the simulated population S is large. For the real populations of 
small size IVIR, NVIR and RR, the function R r is a repartition function 
of a discrete random variable (curve with steps) and the function R s 

appears to be the "regularized" of the R e one. 
(b) Identity test. The similarity between R v and R s can also be evaluated 

with the Kolmogorov-Smirnov test for two samples (DeGroot, 1986, 
p. 559). This test accepts (resp. rejects) at the 5% statistical level, the 
identity hypothesis of R r and R s if the value of D = Max~{Rr(j) - R s ( j )  } 

is less (resp. greater) than 1.36 {(m + n) /mn}  1/2, where m and n are the 
number of stretches of length j >i 15 bases in the populations F and S. 

This test accepts the identity hypothesis of R r and R s for CEUK, 
IVIR, NVIR and RR whatever j ~> 15, and for N E U K  withj  outside the 
range [19, 21-] (data not shown). For IEUK, the identity of R F and R s 
needs a translation but the real population IEUK and the simulated 
population S-IEUK have both unexpected large stretch (YR)*. 

(c) Correlation test. There is also a strong correlation between the real 
population F and its associated simulated population S concerning the 
length of the largest alternating purine/pyrimidine stretch (Table 3). The 
correlation coefficient r between the length Jr of the largest stretch in F 
and the length Js of the largest stretch in S is r = (E~e,s~j r X j s ) / ( Z e j  2 x 

1/2. 

For CEUK, NEUK,  IVIR, NVIR, RR and IEUK, r is equal to 94%. If 
IEUK is again not considered, r is then equal to 99%. 
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4.2. Identification of new hidden periodicities 

4.2.1. Introduction. A significant periodicity P3 for i i> 30 is observed in the 
simulated populations S, except for S-IEUK. This result was known for the real 
populations CEUK, CPRO, CCHL and IVIR (Section 2.2.2a) but it was not 
observed for the real populations NEUK,  NVIR, IMIT and RR. In agreement 
with the simulation results, the presence (resp. the absence) of a periodicity P3 
will be proved to be statistically significant for N E U K  and NVIR (resp. for 
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Figure 7. 
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Figure 7. Repartition function of the large alternating purine/pyrimidine stretches 
(length>~ 15 bases) (continued curves stand for the real populations and dashed 
curves, for the simulated populations): (a) for the eukaryotic protein coding genes 
CEUK and S-CEUK ("+" points), for the eukaryotic 5' regions NEUK and S- 
NEUK ("x" points); (b) for the viral introns IVIR and S-IVIR (" +" points), for the 
viral 5' regions NVIR and S-NVIR ("x" points); (c) for the ribosomal RNA genes 
RR and S-RR ("+" points), for the eukaryotic introns IEUK and S-IEUK ("x" 

points). 

Table 3. Length of the largest alternating purine/pyrimidine 
stretch 

Real population Simulated population 

CEUK 19 22 
NEUK 71 118 
IVIR 16 29 
NVIR 32 54 
RR 22 48 
IEUK 76 264 

IEUK) .  Thisresul t  was completely unexpected and it was not  observed in the 
classification in Section 2.2.2. 

4.2.2. Method.  For  a real populat ion F and for i - 0 1 3 ]  in the range 
[30, 98], let X~(F) be the Bernoulli random variable which is equal to 1 if 
pl(F) >I Max{p i_ I(F), pi + I(F)}, and 0 otherwise. The sum of the independent 
X~(F) is a Binomial random variable N(F) of unknown parameter  p and of 
order 23, which counts the number  of local maxima among the 23 possible 
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values ofi in the range 1-30, 98]. N(F) is a measure of the periodicity P3 (see the 
definition in Section 2.2.1.): a curve C(F) with a periodicity P3 (resp. 
incomplete periodicity P3) is associated to a parameter p equal (resp. close) to 
1. To the contrary, a random curve C(F) (having no periodicity) is associated 
to a parameter p = 1/3. 

For a given real population F, the hypothesis H0: p = 1/3 is tested against the 
hypothesis H 1: p > 1/3. Since the order is large enough (i.e. 23 i> 5/p(1 -p) ) ,  the 
central limit theorem asserts that under H 0 , Z (F )=  (N(F)/23-1/3)/(23-1 x 
2 x 9-1) 1/2 is close to a reduced centered Gaussian variable. Therefore, the 
hypothesis H1 of a (incomplete) periodicity P3 is accepted at the 5% statistical 
level, if Z(F) > 1.645. 

4.2.3. Results. N E U K  and NVIR have a periodicity P3 because 
N(NEUK) = N(NVIR)= 16 and Z ( N E U K ) =  Z(NVIR)= 3.7 > 1.645. IEUK 
has no periodicity P3 because N(IEUK) = 9 and Z(IEUK) = 0.6 < 1.645. Note: 
This statistical test cannot identify a periodicity P3 for IMIT and RR because 
N(IMIT) = N(RR) = 9 and Z(IMIT) = Z(RR) = 0.6 (see Section 3.3.7). 

4.3. Conclusion. The return of the model to the reality allows us to 
understand the presence or the absence of large alternating purine/pyrimidine 
stretches as being a simple consequence of the mixing of two particular 
oligonucleotides. It also identifies a periodicity P3 for the two 5' regions of 
eukaryotes N E U K  and viruses NVIR. 

These observations suggest that the 5' regions have the genetic information 
for protein coding genes and for introns: (1) in the eukaryotic genome, the 5' 
regions (NEUK: periodicities P2 and P3; Section 2.2.2b. and Section 4.2.3.) 
have the information for protein coding genes (CEUK: periodicity P3; 
Section 2.2.2a.) and for introns (IEUK: periodicity P2; Section 2.2.2b.); (2) in 
the prokaryotic genome, the 5' regions (NPRO: periodicity P3; Section 2.2.2a) 
have the information for protein coding genes (CPRO: periodicity P3; 
(Sections 2.2.2a); (3) in the viral genome, 5' regions (NVIR: periodicity P3: 
Section 4.2.3) have the information for protein coding genes (CVIR: periodi- 
city P3; Section 2.2.2a) and for introns (IVIR: periodicity P3; Section 2.2.2a). 
The absence of periodicity P2 in virial introns (in opposition to eukaryotic 
introns) may be related to the absence of periodicity P2 in 5' regions of viruses. 

5. Conclusion of Sections 1-4: Consequences of this Model. We have 
developed a simple model, without making any hypotheses, explaining DNA 
sequence evolution in terms of primitive oligonucleotides, of primitive 
sequences, of an oligonudeotide concatenation process and of a mutation 
process (Fig. 1). Important future applications could be deduced from this 
model: 
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More accurate dating, by comparing similar genes to an ancestor issued 
from this model. 
Homologies between various sequences, by considering the existence of 
specified (R or Y) and unspecified bases (N). 
Identification of other oligonucleotides, by obtaining a better shape 
adequation between simulated and real curves or by reaching the exact real 
values after the mutation process. 
Association of oligonucleotide concatenations with base mutations, etc. 

Finally, the development of a mathematical function which analyses motifs 
also different from YRY (but according to the statistical results, YRY has a 
central role in D N A  sequence evolution) should lead to a unified model of 
D N A  sequence evolution allowing the molecular understanding of both the 
origin of life and the actual biological reality. This view is strongly supported by 
the fact that several different features are functions of a unique parameter (see 
property 4 in Section 3.3.6). 
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