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The circular code theory proposes that genes are
constituted of two trinucleotide codes: the classical
genetic code with 61 trinucleotides for coding
the 20 amino acids (except the three stop codons
{TAA, TAG, TGA}) and a circular code based on
20 trinucleotides for retrieving, maintaining and
synchronizing the reading frame. It relies on two
main results: the identification of a maximal C3

self-complementary trinucleotide circular code X
in genes of bacteria, eukaryotes, plasmids and
viruses (Michel 2015 J. Theor. Biol. 380, 156–177.
(doi:10.1016/j.jtbi.2015.04.009); Arquès & Michel 1996
J. Theor. Biol. 182, 45–58. (doi:10.1006/jtbi.1996.0142))
and the finding of X circular code motifs in
tRNAs and rRNAs, in particular in the ribosome
decoding centre (Michel 2012 Comput. Biol. Chem. 37,
24–37. (doi:10.1016/j.compbiolchem.2011.10.002); El
Soufi & Michel 2014 Comput. Biol. Chem. 52, 9–17.
(doi:10.1016/j.compbiolchem.2014.08.001)). The uni-
verally conserved nucleotides A1492 and A1493
and the conserved nucleotide G530 are included
in X circular code motifs. Recently, dinucleotide
circular codes were also investigated (Michel &
Pirillo 2013 ISRN Biomath. 2013, 538631. (doi:10.1155/
2013/538631); Fimmel et al. 2015 J. Theor. Biol.
386, 159–165. (doi:10.1016/j.jtbi.2015.08.034)).
As the genetic motifs of different lengths are
ubiquitous in genes and genomes, we introduce
a new approach based on graph theory to study
in full generality n-nucleotide circular codes X,
i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4
(tetranucleotide), etc. Indeed, we prove that an
n-nucleotide code X is circular if and only if the
corresponding graph G(X) is acyclic. Moreover, the

2016 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2015.0058&domain=pdf&date_stamp=2016-02-08
mailto:c.michel@unistra.fr
http://dx.doi.org/doi:10.1016/j.jtbi.2015.04.009
http://dx.doi.org/doi:10.1006/jtbi.1996.0142
http://dx.doi.org/doi:10.1016/j.compbiolchem.2011.10.002
http://dx.doi.org/doi:10.1016/j.compbiolchem.2014.08.001
http://dx.doi.org/doi:10.1155/2013/538631
http://dx.doi.org/doi:10.1155/2013/538631
http://dx.doi.org/doi:10.1016/j.jtbi.2015.08.034


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150058

.........................................................

maximal length of a path in G(X) corresponds to the window of nucleotides in a sequence
for detecting the correct reading frame. Finally, the graph theory of tournaments is applied
to the study of dinucleotide circular codes. It has full equivalence between the combinatorics
theory (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. (doi:10.1155/2013/538631)) and the
group theory (Fimmel et al. 2015 J. Theor. Biol. 386, 159–165. (doi:10.1016/j.jtbi.2015.08.034)) of
dinucleotide circular codes while its mathematical approach is simpler.

1. Introduction
Trinucleotide codes, such as the genetic code, provide a fascinating theory that combines the
search for solutions to old and open problems with modern techniques from different fields of
science. About 60 years ago, before the discovery of the genetic code, a class of trinucleotide
codes, called comma-free codes, was proposed by Crick et al. [1] for explaining how the reading of
a sequence of trinucleotides could code amino acids. In particular, how the correct reading frame
can be retrieved and maintained. The four nucleotides {A, C, G, T} as well as the 16 dinucleotides
{AA, . . . , TT} are simple codes which are not appropriate for coding 20 amino acids. However,
trinucleotides induce a redundancy in their coding. Thus, Crick et al. [1] conjectured that only 20
trinucleotides among the 64 possible trinucleotides {AAA, . . . , TTT} code the 20 amino acids. Such
a bijective code implies that the coding trinucleotides are found only in one frame—the comma-
freeness property. The determination of a set of 20 trinucleotides forming a comma-free code has
several necessary conditions:

(i) A periodic trinucleotide from the set {AAA, CCC, GGG, TTT} must be excluded from
such a code. Indeed, the concatenation of AAA with itself, for instance, does
not allow the (original) reading frame to be retrieved as there are three possible
decompositions: . . . AAA, AAA, AAA . . . (original frame), . . . A, AAA, AAA, AA . . . and
. . . AA, AAA, AAA, A . . . , the commas showing the adopted decomposition.

(ii) Two non-periodic permuted trinucleotides, i.e. two trinucleotides related by a circular
permutation, e.g. ACG and CGA, must also be excluded from such a code. Indeed, the
concatenation of ACG with itself, for instance, does not allow the reading frame to
be retrieved as there are two possible decompositions: . . . ACG, ACG, ACG . . . (original
frame) and . . . A, CGA, CGA, CG . . .

Therefore, by excluding the four periodic trinucleotides and by gathering the 60 remaining
trinucleotides in 20 classes of three trinucleotides such that, in each class, the three trinucleotides
are deduced from each other by a circular permutation, e.g. ACG, CGA and GAC, we see that
a comma-free code can contain only one trinucleotide from each class and thus has at most 20
trinucleotides. This trinucleotide number is identical to the amino acid number, thus leading
to a code assigning one trinucleotide per amino acid without ambiguity. A few combinatorial
results on trinucleotide comma-free codes were obtained by Golomb et al. [2,3]. However, no
trinucleotide comma-free code was identified in genes statistically. Furthermore, at the beginning
of the 1960s, the discovery that the trinucleotide TTT, an excluded trinucleotide in a comma-free
code, codes phenylalanine [4] led to the abandonment of the concept of comma-freeness over the
alphabet {A, C, G, T}. For several biological reasons, in particular the interaction between mRNA
and tRNA, this concept was again taken up later over the purine/pyrimidine alphabet {R, Y}
(R= {A, G}, Y= {C, T}) with two trinucleotide comma-free codes: RRY [5] and RNY= {RRY, RYY}
(N being any letter on {R, Y}) [6]. Some statistical results studying and identifying these two
comma-free codes were obtained at the sequence level by Shepherd [7] and at the population
level by Michel [8]. In 1986, it was shown that introns, in contrast to exons, have no nucleotide
periodicity modulo 3 ([9, fig. 2], with a statistical analysis of 90 introns). One year later, with the
increase in sequence data, a nucleotide periodicity modulo 2 was identified in introns by two
different statistical methods [10,11]. So far, no circular code has been found in introns.
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In 1996, a statistical analysis of occurrence frequencies of the 64 trinucleotides {AAA, . . . , TTT}
in the three frames of genes of both prokaryotes and eukaryotes showed that the trinucleotides are
not uniformly distributed in these three frames [12]. By excluding the four periodic trinucleotides
and by assigning each trinucleotide to a preferential frame (frame of highest occurrence
frequency), three subsets X=X0, X1 and X2 of 20 trinucleotides were found in the frames 0
(reading frame), 1 (frame 0 shifted by one nucleotide) and 2 (frame 0 shifted by two nucleotides)
in genes of both prokaryotes and eukaryotes. This set X contains the following 20 trinucleotides:

X= {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC,

GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}.
The two sets X1 and X2, of 20 trinucleotides each, in the shifted frames 1 and 2, respectively,

of genes can be deduced from X by a circular permutation. These three trinucleotide sets
present several strong mathematical properties, particularly the fact that X is a maximal C3 self-
complementary trinucleotide circular code [12]. The subset {CAG, CTC, CTG, GAG} of the circular
code X is a trinucleotide comma-free code and, furthermore, C3 and self-complementary [13].
Comma-free codes are important codes as they represent a limit class of circular codes with three
particular properties: (i) no word of a comma-free code is found in a shifted frame; (ii) the length
of reading frame retrieval is the shortest; and (iii) the probability of reading frame coding is
maximal and equal to 1 [14]. In 2015, by quantifying the approach used in 1996 for identifying
a preferential frame and by applying a massive statistical analysis of gene taxonomic groups,
the circular code X was strengthened in genes of prokaryotes (7 851 762 genes, 2 481 566 882
trinucleotides) and eukaryotes (1 662 579 genes, 824 825 761 trinucleotides), and has now also
been identified in genes of plasmids (237 486 genes, 68 244 356 trinucleotides) and viruses (184 344
genes, 45 688 798 trinucleotides) [15]. Several non-maximal C3 self-complementary circular codes
have been identified in genes of viruses (table 1 in [15]) which are all subsets of X (table 7d in [15]):

— X\{CAG, CTG, GTA, TAC} of 16 trinucleotides in genes of double-stranded DNA viruses
(172 198 genes, 39 934 299 trinucleotides) and single-stranded RNA viruses (4492 genes,
3 510 773 trinucleotides);

— X\{ACC, CAG, CTC, CTG, GAG, GCC, GGC, GGT} of 12 trinucleotides in genes of double-
stranded RNA viruses (973 genes, 654 931 trinucleotides);

— X\{CAG, CTC, CTG, GAG, GCC, GGC, GTA, TAC} of 12 trinucleotides in genes of single-
stranded DNA viruses (3562 genes, 796 401 trinucleotides);

— X\{AAC, ACC, CAG, CTG, GCC, GGC, GGT, GTA, GTT, TAC} of 10 trinucleotides in genes
of retro-transcribing viruses (559 genes, 269 070 trinucleotides); and

— X\{CAG, CTG, CTC, GAG, GTA, TAC} of 14 trinucleotides in genes of phages (2560 genes,
523 324 trinucleotides).

A trinucleotide circular code has the fundamental property to always retrieve the reading frame
in any position of any sequence generated with the circular code. In particular, initiation and stop
trinucleotides as well as any frame signals are not necessary to define the reading frame. Indeed,
a window of a few nucleotides, whose nucleotide length depends on the class of circular codes,
positioned anywhere in a sequence generated with the circular code always retrieves the reading
frame.

As an example let us take the word w= . . . AGGTAATTACCAG . . . of the circular code X. Is
the first nucleotide of w, i.e. A, the 1st, the 2nd or the 3rd nucleotide of a trinucleotide of X?
By trying the three possible factorizations (frames) w0, w1 and w2 (w1 and w2 being w0 shifted
by one and two nucleotides, respectively) into trinucleotides of X, only one factorization, i.e.
w1, is possible. Thus, the first nucleotide A of w is the 3rd nucleotide of a trinucleotide of X.
Indeed, the factorization w1 leads to the trinucleotides NNA, GGT, AAT, TAC and CAG (N being
any appropriate letter of X) which belong to X. The factorizations w0 and w2 are impossible as
no trinucleotide of X starts with the prefix AG. This case occurs immediately for w0 and after
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11 letters for w2. Thus, the unique factorization of w is w1 = . . . A, GGT, AAT, TAC, CAG, . . .. This
word w can be located anywhere in a sequence of X, i.e. the sequence of X does not require
an initiator codon, a stop codon or any frame signal to retrieve the reading frame. The word
w′ =AGGTAATTACCA (w without the last G) with a length of 12 nucleotides is ambiguous as it
has two factorizations w1 and w2 into trinucleotides of X. The word w′ is called an ambiguous
word of X. By definition of a circular code, all the ambiguous words are finite words. The word
w′, taken as an example here, is one of the four longest ambiguous words of X (see below). Thus,
the window length l to retrieve the construction frame of a word of a circular code Y is the letter
length of the longest ambiguous words w′, plus one letter. With the circular code X, l= 12+ 1= 13
nucleotides [16]. The window lengths l for the trinucleotide circular codes X1 and X2 are also equal
to l= 13 nucleotides [16]. In conclusion, the retrieval of the reading frame with the circular code
X, the frame 1 with the circular code X1 and the frame 2 with the circular code X2 needs the same
window length l of 13 nucleotides (l≥ 13).

In 2012, in addition to the circular code X in genes (mRNA), a second major step of this
circular code theory was revealed by the identification of X motifs, i.e. motifs generated with
the circular code X, in the 5′ and/or 3′ regions of tRNAs of prokaryotes and eukaryotes [13,17]
and 16S rRNAs, in particular in the ribosome decoding centre where the universally conserved
nucleotides A1492 and A1493 and the conserved nucleotide G530 are included in the X
motifs [13,18]. A three-dimensional visualization of X motifs in the ribosome shows several spatial
configurations involving mRNA X motifs, tRNA X motifs and 16S rRNA X motifs [13,18]. These
results led to the concept of a possible translation (framing) code based on the circular code which
was proposed in Michel [13].

Trinucleotides are the fundamental words for genes. Dinucleotides are also words with
important biological functions in genomes as they are involved in some genome sites, e.g. the
splice sites of introns in eukaryotic genomes are based on the dinucleotides GT and AT [19,20]; and
in some genome regions, e.g. the dinucleotide CG in animal and plant genomes allows a positive
or negative control over gene expression [21]; the dinucleotides CA [22,23], CT [24] and TG [25] in
eukaryotic genomes occur as concatenated words (l1l2)+, l1, l2 ∈ {A, C, G, T} (called tandem repeats
in biology), etc. Thus, dinucleotide circular codes have been studied according to two approaches,
by the combinatorics theory [26] and the group theory [27].

As the genetic motifs of different lengths are ubiquitous in genes and genomes, we introduce
here a new approach based on graph theory to study in full generality n-nucleotide circular codes
X, i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4 (tetranucleotide), etc. To each such code, a
graph is associated and the main theorem states that an n-nucleotide code X is circular if and only
if the corresponding graph G(X) is acyclic. Moreover, many properties of the codes can be seen in
its representing graph.

2. The graph theory of n-nucleotide circular codes
Throughout this section, let B= {A, C, G, T} be the set of nucleotide bases, where A stands for
adenine, C stands for cytosine, G stands for guanine and T stands for thymine. For n ∈N with n≥ 2
an n-nucleotide code is a subset X⊆ Bn. The following definition relates a directed graph to any
n-nucleotide code. Recall from graph theory [28] that a graph G consists of a finite set of vertices
(nodes) V and a finite set of edges E. Here, an edge is a set {v, w} of vertices from V. The graph is
called oriented if the edges have an orientation, i.e. edges are considered to be ordered pairs [v, w]
in this case.

Definition 2.1. Let X⊆ Bn be an n-nucleotide code (n ∈N). We define a directed graph G(X)=
(V(X), E(X)) with a set of vertices V(X) and a set of edges E(X) as follows:

— V(X)= {N1 . . . Ni, Ni+1 . . . Nn : N1N2N3 . . . Nn ∈X, 1≤ i≤ n− 1}
— E(X)= {[N1 . . . Ni, Ni+1 . . . Nn] : N1N2N3 . . . Nn ∈X, 1≤ i≤ n− 1}.

The graph G(X) is called the representing graph of X or the graph associated with X.
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A G C T

Figure 1. Graph representing the dinucleotide code {AG, CG, GA, TC, TT}. (Online version in colour.)

GT

TG

TA ATG

A T AG

Figure 2. Graph representing the trinucleotide code {AGT , ATG, GTA, TGT}. (Online version in colour.)

Basically, the graph G(X) associated with a code X interprets n-nucleotide words from X in
(n− 1) ways by pairs of i-nucleotides and (n− i)-nucleotides for 1≤ i≤ n− 1. Figures 1–3 give
examples of codes and their representing graphs in the case of n= 2 (dinucleotide code), n= 3
(trinucleotide code) and n= 4 (tetranucleotide code).

As we can see, the graph of the tetranucleotide code has four disjoint parts. However, note
that two parts are built by vertices labelled with dinucleotides and two parts are built by vertices
labelled with nucleotides and trinucleotides. These parts are called components of G. Recall that a
subset V′ of the set of vertices V is called connected if for any two nodes v, w ∈V′ there is a path
[v, v1][v1, v2] . . . [vn−1, vn][vn, w] of vertices from V′ connecting v and w. Any graph decomposes
uniquely into connected components which are pairwise disjoint. Recall also that a graph is
bipartite if its set of vertices V can be decomposed into two disjoint subsets V′ and V′′ such that
the edges of G connect only nodes from V′ with nodes from V′′ and vice versa. Obviously, if X is
an n-nucleotide code, then the components of G(X) are exactly the graphs

G(X)j = (V(X)j, E(X)j) for 1≤ j≤ n− 1

with

V(X)j = {N1 . . . Nj, Nj+1 . . . Nn, N1 . . . Nn−j, Nn−j+1 . . . Nn : N1N2N3 . . . Nn ∈X}

and

E(X)j = {[N1 . . . Nj, Nj+1 . . . Nn], [N1 . . . Nn−j, Nn−j+1 . . . Nn] : N1N2N3 . . . Nn ∈X}.

These components do not have to be connected, as we can see in figure 3. However, quite often
they are. In fact, G(X)j consists exactly of the nodes (and their corresponding edges) that interpret
the elements of X in two ways: as a pair of a j-nucleotide and an (n− j)-nucleotide and as a
pair of an (n− j)-nucleotide and a j-nucleotide. Note that by symmetry we have G(X)j = G(X)n−j
for all j < n− 1. For instance, in figure 3 the two components of the graph associated with the
tetranucleotide code are G(X)1 (=G(X)3) and G(X)2. The next observation is obvious.
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ATG

A GTT T TT GT

GTG

AGT

TGT

TTT

G AAT TG AA

AG

Figure 3. Graph representing the tetranucleotide code {AATG, AGTT , GTGT , GTTT}. (Online version in colour.)

Lemma 2.2. Let X be an n-nucleotide code for some n ∈N. Then the following statements hold:

(1) If n is odd, then G(X) is a bipartite graph. In particular, all its components G(X)j are bipartite.
(2) If n is even, then all components of G(X) are bipartite except for perhaps G(X)n/2.

We now start to investigate our desired objects, namely n-nucleotide circular codes.

Definition 2.3. Let X⊆ Bn be a code. We say that X is a circular code if for any concatenation
c1 . . . cm of n-nucleotide words from X there is only one partition into n-nucleotide words from X
when read on a circle.

The first observation shows that for circular codes the associated graph is already simple.
Recall from graph theory [28] that an oriented graph is simple if it does not contain loops, i.e.
edges between a node and itself, and does not have multiple edges with the same orientation
between two nodes. Note that the orientations for the multiple edges do play a role, i.e. for a
simple oriented graph G, we can still have [x, y] ∈ E(G) and [y, x] ∈ E(G), which means that there is
a cycle (circle) of length 2. However, for circular codes this structure is also excluded. Recall that
a cycle in G is an oriented closed path in G. A circle is a cycle that visits no node twice except for
the starting node (which is the end node at the same time). For instance, in figure 2, the sequence
of vertices T, GT, A, TG, T is a circle while the sequence T, GT, A, GT, A, TG, T is a cycle that is not
a circle.

Lemma 2.4. Let X⊆ Bn be a circular code. Then its representing graph is a simple oriented graph
without circles of length 2.

Proof. A proof can be found in appendix A. �

Let us remark that lemma 2.4 simply says that for circular codes the representing graph has
an underlying simple unoriented graph. Moreover, the circularity is only needed in a weaker form
requiring definition 2.3 only for m= 1. These codes are called 1-circular (see, for instance, [29] for
more details on these codes) and will appear again in §3.

Example 2.5. In figure 4, we show two examples of trinucleotide codes and their representing
graphs. The code {ATG, CAC, CAT, GTG} (a) is circular and has a simple graph, while the code
{ATG, ATT, TGA, TGT} (b) is non-circular and its graph is not simple.
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AC AT

AT

TT

GT

GA

TG

A

G

T

A

C

G

T

TG

CA

GT

(b)

(a)

Figure 4. (a) The trinucleotide code {ATG, CAC, CAT , GTG} is circular and has a simple graph. (b) The trinucleotide code
{ATG, ATT , TGA, TGT} is non-circular and its representing graph is not simple. (Online version in colour.)

We now state our first main theorem which proves the connection between the circularity of
codes and the acyclicity of graphs. Recall from graph theory [28] that a graph is called acyclic if it
does not contain cycles, i.e. oriented closed paths.

Theorem 2.6. Given a code X⊆ Bn the following statements are equivalent:

(1) X is circular.
(2) G(X) is acyclic.

Proof. Let X⊆ Bn be any code and assume that it is circular. If G(X) is not acyclic, then one of its
components G(X)i is not acyclic. Hence there is a cycle in G(X)i of the form

[N1
1 . . . N1

i , N1
i+1 . . . N1

n][N1
i+1 . . . N1

n, N2
1 . . . N2

i ][N2
1 . . . N2

i , N2
i+1 . . . N2

n] . . .

[Nk
1 . . . Nk

i , Nk
i+1 . . . Nk

n]([Nk
i+1 . . . Nk

n, N1
1 . . . N1

i ])

for some natural number k. This means that the n-nucleotides

N1
1 . . . N1

n, . . . , Nk
1 . . . Nk

n ∈X

as well as the n-nucleotides

N1
i+1 . . . N1

nN2
1 . . . N2

i , . . . , Nk−1
i+1 . . . Nk−1

n Nk
1 . . . Nk

i , Nk
i+1 . . . Nk

nN1
1 . . . N1

i ∈X

are in the code. In the case i �= n− i, the cycle has an even length. However, for even n, if i= n− i,
i.e. i= n/2, it can happen that Nk

i+1 . . . Nk
n =N1

1 . . . N1
i , and the last edge is missing. Hence, the cycle

has odd length. In both cases taking every second edge from the cycle and starting with the edge
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AG

CC

TC

TG

CA

CT

GA

GG

AA

AC

AT

GC

GT

TA

TT

A

C

G

T

Figure 5. Graph G(X) of the maximal trinucleotide circular code X observed in genes of bacteria, eukaryotes, plasmids and
viruses [12,15] (example 2.7). The four nucleotides {A, C, G, T} ofG(X) have ingoing and outgoing edges. The four dinucleotides
{AG, CC, TC, TG} ofG(X) have no outgoing edge, the four dinucleotides {CA, CT , GA, GG} ofG(X) have no ingoing edge and the
seven remaining dinucleotides {AA, AC, AT , GC, GT , TA, TT} ofG(X) have ingoing and outgoing edges. (Online version in colour.)

[N1
1 . . . N1

i , N1
i+1 . . . N1

n] until we get the same edge repeated for the first time, we obtain the word

N1
1 . . . N1

i N1
i+1 . . . N1

nN2
1 . . . N2

nN3
1 . . . N3

n . . . Nk
1 . . . Nk

i (Nk
i+1 . . . Nk

n).

This word consists of k n-nucleotides N1
1 . . . N1

n, . . . , Nk
1 . . . , Nk

n if the cycle length is even and
of (2k− 1) n-nucleotides N1

1 . . . N1
n, . . . , Nk

1 . . . Nk
n, N1

i+1 . . . N1
nN2

1 . . . N2
i , . . . , Nk−1

i+1 . . . Nk−1
n Nk

1 . . . Nk
i

if the cycle length is odd. Now, taking every second edge from the cycle but this time starting with
the edge [N1

i+1 . . . N1
n, N2

1 . . . N2
i ] until we get the same edge repeated for the first time, we obtain

a second decomposition of the word on the circle, namely

N1
i+1 . . . N1

nN2
1 . . . N2

i , . . . , Nk
i+1 . . . Nk

n(N1
1 . . . N1

i ).

This is a contradiction to the circularity of X. The converse follows with similar arguments. �

Clearly, the above result also gives a handy criterion for the C3 property of trinucleotide codes,
namely by the fact that a code is C3 if and only if the graph of X as well as the graphs of the two
circularly permuted sets of trinucleotides of X are acyclic. Recently, C3 codes played an important
role in the theory of error detection in genetic information. In particular, the maximal trinucleotide
circular code X observed in genes of bacteria, eukaryotes, plasmids and viruses [12,15] initiated a
renewed interest and had another interesting property, namely self-complementarity. Recall that
an n-nucleotide code X⊆ Bn is self-complementary if for each n-nucleotide from X the reversed
complemented n-nucleotide is in X (see [30] for more details on C3 codes). As an illustration we
give the graph associated with the maximal self-complementary C3 code found in [12,15].

Example 2.7. There are 12 964 440 maximal circular codes of 20 trinucleotides [12]. The maximal
trinucleotide circular code X observed in genes of bacteria, eukaryotes, plasmids and viruses
[12,15] has the following 20 trinucleotides:

X= {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC,

GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}.
The graph G(X) associated with X is shown in figure 5.
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In order to see self-complementarity of a code X, we need to investigate first the reversing
(mirroring) transformation which plays an important biological role. Recall that the reversing
transformation inverts the order of bases in any n-nucleotide, i.e. for x=N1N2 . . . Nn−1Nn ∈
Bn we have ←−x =NnNn−1 . . . N2N1 ∈ Bn. If X is a code of n-nucleotides, then

←−
X = {←−x : x ∈X}

is the reversed code of X. Similarly, the complementing map c : {A, C, G, T}→ {A, C, G, T} that
exchanges A and T as well as C and G induces the complemented code c(X)= {c(x) : x ∈X},
where c(N1N2 . . . Nn−1Nn)= c(N1)c(N2) . . . c(Nn−1)c(Nn) for any n-nucleotide x ∈ Bn. Note that for

trinucleotides (codons) x=N1N2N3 the anti-codon of x is exactly
←−
c(x).

The next lemma shows that the graphs G(X) and
←−−
G(X) of a code X and its reversed code

←−
X are

anti-isomorphic while at the same time the graphs G(X) and G(c(X)) of the complemented code c(X)
are isomorphic. Recall that an (anti-) isomorphism between two graphs G and G′ is a bijective map
f : V→V′ that preserves edges in the sense that [g1, g2] ∈ E if and only if [f (g1), f (g2)] ∈ E′ ([g1, g2] ∈
E if and only if [f (g2), f (g1)] ∈ E′). For example, the graphs G= ({1, 2, 3}, {[1, 2], [2, 1], [1, 3]})
and G′ = ({1, 2, 3}, {[1, 2], [2, 1], [3, 1]}) are anti-isomorphic. Their anti-isomorphism is easy to see
considering the identical map f = id.

Lemma 2.8. Let X⊆ Bn be a code and G(X) its associated graph. Moreover, let c be the usual
complementing map. Then

(1) The map f←− : V(X)→←−−V(X) that sends a vertex N1 . . . Nj to Nj . . . N1 is an anti-isomorphism

between G(X) and
←−−
G(X).

(2) The map fc : V(X)→ c(V(X)) that sends a vertex N1 . . . Nj to c(N1) . . . c(Nj) is an isomorphism
between G(X) and G(c(X)).

Proof. The claims are obvious by the construction of the reversed code and the complemented
code. �

We can now formulate self-complementarity in our graphs. The proof of the following result
is obvious.

Theorem 2.9. Let X⊆ Bn be a code. Then X is self-complementary if and only if G(X) equals the
reversed complemented graph f←−(fc(G(X))).

The next theorem shows that we can even see the comma-freeness property of a code
in its associated graph. Recall that an n-nucleotide code X⊆ Bn is comma-free if for any
two n-nucleotides N1 . . . Nn and N′1 . . . N′n from X the n-nucleotides in frame 1 to n− 1, i.e.
Nj . . . NnN′1 . . . N′j−1 for 2≤ j≤ n, do not belong to X. Comma-free codes are obviously circular
but the converse is not true.

As an illustration, we give the graph associated with a maximal comma-free trinucleotide code.

Example 2.10. There are 408 maximal comma-free codes of 20 trinucleotides [2,3,31]. As an
example, let Y be the following maximal comma-free code:

Y= {AAC, AAG, AAT, CCA, GAC, TAC, GCA, GAG, TAG, TCA,

GAT, TAT, CCG, CCT, GCG, TCG, GCT, TCT, GGT, TTG}.
The graph G(Y) associated with Y is shown in figure 6.

Our second main theorem shows that comma-freeness of a code X is connected to the maximal
length of paths in its representing graph. In example 2.10, this length is 2, which is not a
coincidence as we show now.

Theorem 2.11. Given a code X⊆ Bn the following statements are equivalent:

(1) The maximal length of a path in G(X) is 2.
(2) The code X is comma-free.
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AA AC

AG

AT

CA

CT

CG

GT

TG

A

C

G

T

CC

GA

GC

GG

TA

TC

TT

Figure 6. The graphG(Y) of themaximal trinucleotide comma-free code Y (example 2.10). The four nucleotides {A, C, G, T} of
G(Y) have ingoing and outgoing edges. The eight dinucleotides {AA, CC, GA, GC, GG, TA, TC, TT} ofG(Y) have no ingoing edges
and the eight dinucleotides {AC, AG, AT , CA, CT , CG, GT , TG} ofG(Y) have no outgoing edges. (Online version in colour.)

Proof. A proof can be found in appendix B. �

In general, the maximal length of a path in a representing graph G(X) of a code has a relation
to the error correcting window of the code, i.e. the longest number of nucleotides that have to be
read in an arbitrary sequence of words from the code X in order to retrieve the correct frame. In
fact, any path in such a graph yields a sequence of nucleotides that can be read in two frames just
by concatenating the labels of the vertices of the path. Conversely, any sequence (of words from
the code) that can be read in two frames yields a path in the associated graph. The exact relation
is not yet clear and has to be investigated in the future but we would like to present an example.

Example 2.12. For the circular code X from example 2.7, the longest paths in G(X) have
12 nucleotides if we start with a nucleotide. They are as follows: [G, GT, A, AT, T, AC, C, AG],
[G, GT, A, AT, T, AC, C, TC] and [G, GT, A, AT, T, AC, C, TG]. Thus, the two longest ambiguous
words of 11 nucleotides which can be read in at least two frames, namely frame 0 and frame 1,
are: GGTAATTACCA and GGTAATTACCT where GGT ∈X is in frame 0.

If we start with a dinucleotide, then the longest paths in G(X) have 14 nucleotides and are given
by: [CA, G, GT, A, AT, T, AC, C, AG], [CA, G, GT, A, AT, T, AC, C, TC], [CA, G, GT, A, AT, T, AC, C, TG],
[CT, G, GT, A, AT, T, AC, C, AG], [CT, G, GT, A, AT, T, AC, C, TC], [CT, G, GT, A, AT, T, AC, C, TG],
[GA, G, GT, A, AT, T, AC, C, AG], [GA, G, GT, A, AT, T, AC, C, TC] and [GA, G, GT, A, AT, T, AC, C, TG].

Thus, the four longest ambiguous words of 12 nucleotides which can be read in at least two
frames, namely frame 0 and frame 1, are: AGGTAATTACCA, AGGTAATTACCT, TGGTAATTACCA
and TGGTAATTACCT as AG and TG are suffixes of trinucleotides from X.

3. Application for dinucleotide circular codes
In this section, we investigate our graph theoretic approach for the case n= 2, i.e. for
dinucleotides, nucleotide words of length two. Given a dinucleotide code X⊆ B2 the associated
graph G(X) has at most four vertices, labelled by the nucleotide bases, and at most 12 directed
edges. Each of the vertices can have at most four ingoing and four outgoing edges (see [27] for a
classification of these codes).
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A C

T G

Figure 7. Graph representing the maximal dinucleotide circular code X = {AC, AG, AT , CG, CT , TG}. (Online version in colour.)

A C

T G

Figure 8. Graph representing themaximal dinucleotide 1-circular but not 2-circular code X = {AG, AT , CA, CT , GC, TG}. (Online
version in colour.)

Example 3.1. Example of the maximal dinucleotide circular code X= {AC, AG, AT, CG, CT, TG}.
The associated graph G(X) is shown in figure 7.

Recall that a dinucleotide code X⊆ B2 is k-circular for k ∈N if for any concatenation c1 . . . cm,
(m≤ k) of dinucleotides from X there is only one partition into dinucleotides from X when read
on a circle [27]. Obviously, 1-circularity of a dinucleotide code X means that for each dinucleotide
N1N2 ∈X the reversed dinucleotide N2N1 is not a member of X. This already implies that the
associated graph G(X) of such a code can have at most six edges. Moreover, it is known [27] that
for dinucleotide codes 3-circularity already implies circularity.

Example 3.2. Two examples of a 1-circular but not 2-circular dinucleotide code and a 2-circular
but not 3-circular dinucleotide code.

(1) Let X= {AG, AT, CA, CT, GC, TG}, then X is 1-circular but not 2-circular and the associated
graph G(X) is shown in figure 8.

(2) Let X= {AG, CA, CG, CT, GT, TA}, then X is 2-circular but not 3-circular and the associated
graph G(X) is shown in figure 9.

Recall from graph theory [28] that a graph G is a tournament if it is obtained by assigning a
direction to each edge of a complete (and hence simple) graph, i.e. it has |V|(|V| − 1)/2 edges. The
following lemma shows that the tournaments on four vertices correspond exactly to the maximal
1-circular dinucleotide codes.

Lemma 3.3. Given a code X⊆ B2, the following statements are equivalent:

(1) X is a maximal 1-circular dinucleotide code.
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A C

T G

Figure 9. Graph representing themaximal dinucleotide 2-circular but not 3-circular code X = {AG, CA, CG, CT , GT , TA}. (Online
version in colour.)

(b)(a) (c)

Figure 10. Graphs representing a maximal dinucleotide (a) circular, (b) 1- but not 2-circular and (c) 2-circular (but not circular)
code. TheHamiltonian cycle from case (b) and the oriented cycle of length 3 from case (c) are highlighted as dashed lines. (Online
version in colour.)

(2) G(X) is a tournament on four vertices.

Proof. A proof can be found in appendix C. �

It follows immediately from lemma 3.3 that there are 26 = 64 different maximal 1-circular
dinucleotide codes since every tournament on four vertices has six edges and every edge can
be oriented in two ways. We now characterize the graphs associated with 2- and 3-circular
dinucleotide codes. Recall that a Hamiltonian cycle in some (oriented) graph is a (oriented) cycle
that visits every node of the graph exactly once (except for the vertex that is both the start and
end, which is visited twice). The proof of the following theorem can be found in appendix D.

Theorem 3.4. Let X⊆ B2 be a 1-circular dinucleotide code. Then

(1) X is circular if and only if G(X) is acyclic, i.e. G(X) does not contain any oriented cycle.
(2) X is a 1-circular but not 2-circular code if and only if G(X) contains a Hamiltonian cycle of

length 4.
(3) X is a 2-circular but not 3-circular code if and only if G(X) contains an oriented cycle of length 3

and has no Hamiltonian cycle.

Figure 10 visualizes the situations described in theorem 3.4.
As we have seen each maximal 1-circular dinucleotide code corresponds to a tournament on

four vertices. The theory of tournaments is well studied in graph theory (see, for instance, [28]).
Recall that the score sequence of a tournament is the set of out-degrees of its vertices {d+(v) : v ∈V},
where d+(v)= |{[v, w] ∈ E : w ∈V}| for a vertex v ∈V. Thus, we count how many edges start in
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each vertex. For instance, in figure 10 the score sequences are (clockwise beginning from the upper
left-hand vertex) (a) 1, 0, 3, 2; (b) 1, 1, 2, 2; (c) 1, 1, 3, 1.

Theorem 3.5. The following statements are equivalent for a tournament T= (V, E) on n vertices:

(T-1) T is acyclic.
(T-2) T does not contain a cycle of length 3.
(T-3) The score sequence of T is {0, 1, 2, . . . , (n− 1)}.
(T-4) T is transitive (i.e. from [x, y] ∈ E and [y, z] ∈ E it follows that [x, z] ∈ E).
(T-5) T has exactly one Hamiltonian path.

We are now in a position to transfer theorem 3.5 one to one to circular dinucleotide codes showing
a beautiful equivalence between the theory of tournaments on four vertices and the theory of
maximal 1-circular dinucleotide codes. The equivalence of (C-1), (C-2) and (C-3) is known (see,
for instance, [26,27]) but was proved using different techniques.

Theorem 3.6. Let X⊆ B2 be a maximal 1-circular dinucleotide code. Then the following statements are
equivalent:

(C-1) X is circular.
(C-2) X is 3-circular.
(C-3) X has the form X= {N1N2, N1N3, N1N4, N2N3, N2N4, N3N4}, Ni ∈ B, Ni �=Nj.
(C-4) X is transitive in the following sense: from N1N2, N2N3 ∈X it follows that N1N3 ∈X.
(C-5) The relation < defined on B= {A, C, G, T} by

N1 < N2 ⇔ N1N2 ∈X, Ni ∈ B
is a total order.

Proof. A proof can be found in appendix E. �

As an immediate corollary, we obtain the classifications of all maximal k-circular dinucleotide
codes that were obtained in [26,27]. The idea of the proof which can be found in appendix F is
that for a maximal circular dinucleotide code X the associated tournament G(X) is acyclic and
hence completely determined by its unique Hamiltonian path. Hence there are 24 such codes
since there are 24 different Hamiltonian paths possible. For 2-circular but not 3-circular codes,
G(X) has a Hamiltonian cycle which determines four such codes. Since there are only six possible
Hamiltonian cycles we get 24 such codes in total.

Corollary 3.7. Let X⊆ B2 be a maximal 1-circular code. The following statements are true:

(1) There are 24 different maximal dinucleotide circular (=3-circular) codes.
(2) There are 24 different maximal dinucleotide 1- but not 2-circular codes.
(3) There are 16 different maximal dinucleotide 2-circular but not circular codes.

Figure 10 illustrates the graphs associated with maximal dinucleotide circular, 2-circular but
not circular and 1- but not 2-circular codes. By labelling of the vertices with nucleotide bases
A, C, G, T, all 24 maximal dinucleotide circular codes can be obtained from figure 10a, all 24
maximal dinucleotide 1- but not 2-circular codes from figure 10b and eight different 2-circular
but not circular codes from figure 10c (some of the labels will lead to the same code). The other
eight of the 2-circular but not circular codes can be obtained from figure 10c by reversing all edges
(compare lemma 2.8 and corollary 3.7).

Finally, we consider maximal dinucleotide comma-free codes which have been classified
recently in [32]. Also in this case, our new graph theoretical approach recovers the same result in
a more elegant way. We begin with embedding circular dinucleotide codes into maximal circular
dinucleotide codes. According to theorem 3.4, every dinucleotide circular code can be represented
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A C

T G

A C

T G
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T G

(b)(a) (c)

Figure 11. Graphs representing the maximal comma-free dinucleotide code (a) {AC, AG, AT , CT , GT} and its two circular
extensions (b) {AC, AG, AT , CG, CT , GT} and (c) {AC, AG, AT , CT , GC, GT}. (Online version in colour.)

by an acyclic graph with at most four vertices. Straightforward calculations show that every
such graph can be expanded to an acyclic tournament which represents a maximal dinucleotide
circular code according to theorem 3.4. Hence we have the following.

Lemma 3.8. Every dinucleotide circular code is contained in a maximal dinucleotide circular code. In
particular, every comma-free dinucleotide code can be extended to a maximal circular dinucleotide code.

Example 3.9. In figure 11, a maximal comma-free dinucleotide code and its two circular
extensions are shown.

According to lemma 3.8, every comma-free code is contained in some maximal dinucleotide
circular code. On the other hand, no maximal dinucleotide circular code is comma-free since its
representing graph contains a Hamiltonian path of length 3 (compare theorem 2.11). If we remove
one of the three edges which belongs to the (unique) Hamiltonian path N1→N2→N3→N4
from the corresponding acyclic tournament we obtain a graph which contains paths of at most
length 2. According to theorem 2.11, we obtain in each case a graph that represents a dinucleotide
comma-free code which will be maximal since it contains five edges (dinucleotides).

Example 3.10. In figure 12, a maximal dinucleotide circular code and its three maximal comma-
free subcodes are shown.

Thus, we easily obtain the following.

Theorem 3.11 ([32]). There are exactly 36 maximal dinucleotide comma-free codes. These are given as

(1) 12 codes of the form {N1N2, N1N3, N1N4, N2N4, N3N4},
(2) 12 codes of the form {N1N2, N1N3, N1N4, N2N3, N2N4},
(3) 12 codes of the form {N2N1, N3N1, N4N1, N3N2, N4N2},

where Ni ∈ B, i= 1, 2, 3, 4 and Ni �=Nj, i �= j.
Moreover, each of these codes can be obtained from a maximal dinucleotide circular code

X= {N1N2, N2N3, N3N4, N1N4, N1N3, N2N4}
with Ni ∈ B, Ni �=Nj by removing one of its dinucleotides N1N2, N2N3 or N3N4.

4. Conclusion and perspectives
The circular code theory proposes that genes are constituted of two trinucleotide codes: the
amino acid code and the circular code. The classical amino acid code contains 64 trinucleotides
{AAA, . . . , TTT} with 61 trinucleotides coding the 20 amino acids and three stop codons
which do not code for amino acid. The amino acid code in today’s genes do not use all 64
available trinucleotides but a subset of 61 trinucleotides for coding the 20 amino acids. It
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Figure 12. Graphs representing the maximal dinucleotide circular code (a) {AC, AG, AT , CG, CT , GT} and its three maximal
comma-free subcodes (b) {AC, AG, AT , CG, CT}, (c) {AC, AG, AT , CT , GT} and (d) {AG, AT , CG, CT , GT}. (Online version in colour.)

is a surjective code. Furthermore, it contains two particular codes, a start code and a stop
code, related to the reading frame of genes, precisely to initiate and close it. The main start
trinucleotide code Tstart = {ATG} is both a signal for the beginning of a gene and a code for
the amino acid Met. The main stop trinucleotide code Tstop = {TAA, TAG, TGA} (also called
stop codons) is only a signal for the end of a gene, i.e. without amino acid coding. The
two codes Tstart and Tstop have great variability among the variant genetic codes, showing
an important evolution of the start and stop codes among species (see the genetic codes in
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t). Indeed, in the standard
code (code 1), the start trinucleotide code is extended to Tstart = {ATG, CTG, GTG, TTG} coding
the multi-set of amino acids {Met, Leu, Val, Leu} (amino acid according to trinucleotide order) in
eukaryotic genes. However, in the ciliate, dasycladacean and hexamita nuclear code (code 6),
the euplotid nuclear code (code 10), the alternative flatworm mitochondrial code (code 14),
the chlorophycean mitochondrial code (code 16) and the scenedesmus obliquus mitochondrial
code (code 22), the start trinucleotide code is restricted to one trinucleotide Tstart = {ATG}
coding Met. By contrast, in the mould, protozoan and coelenterate mitochondrial code and the
mycoplasma/spiroplasma code (code 4), the start trinucleotide code is extended up to eight
trinucleotides Tstart = {ATA, ATC, ATG, ATT, CTG, GTG, TTA, TTG} coding the multi-set of amino
acids {Ile, Ile, Met, Ile, Leu, Val, Leu, Leu} (amino acid according to trinucleotide order). In the codes
6 and 14, the stop trinucleotide code is restricted to one trinucleotide Tstop = {TGA} and Tstop =
{TAG}, respectively. In the thraustochytrium mitochondrial code (code 23), the stop trinucleotide
code is extended to four trinucleotides Tstop = {TAA, TAG, TGA, TTA}.

The circular code X identified in genes of bacteria, eukaryotes, plasmids and viruses [12,15]
is based on 20 trinucleotides with two mathematical properties involved in translation. It
codes 12 amino acids G(X)= {Ala, Asn, Asp, Gln, Glu, Gly, Ile, Leu, Phe, Thr, Tyr, Val} according to
the standard genetic code G [12, table 4(a)]. Thus, it is also a surjective code. Furthermore, it
allows the reading frame to be retrieved, maintained and synchronized at any position in a gene
generated by X. It is an extended mathematical property compared with the start and stop codes
occurring only at the beginning and end positions of genes. The start code with a coding function
and a frame function reduced to the first three nucleotides of a gene may be an evolutionary relic

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t
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of a circular code. Thus, the circular code X allows translation without the aid of proteins. As a
consequence, we think that the circular code X has occurred before the classical amino acid code
existing in today’s genes. According to this hypothesis, primitive genes of short lengths would
be directly decoded by the circular code X. This primitive coding of genes would be based on
the property of reading frame retrieval of the circular code X and the coding of oligopeptides
(peptides of short lengths) using the 12 amino acids G(X). It would not use the ribosome, which
is a complex apparatus containing proteins, e.g. the 22 proteins S1–S22 in the small subunit and
the 34 proteins L1–L36 in the large subunit of Escherichia coli, the two classes of aminoacyl tRNA
synthetase, etc. Then, the complexity evolution of gene coding would have required an increase
in the size of the protein alphabet (from 12 to 20), an increase in the length of proteins allowing
diversity (the average size of today’s genes is 1000 nucleotides for coding proteins of about
300 amino acids) and the development of the ribosomal apparatus as the property of reading
frame retrieval of the circular code X would become inefficient with the size and topology of
today’s genes. The property of reading frame retrieval of the circular code has not completely
disappeared during evolution as today’s genes contain start and stop codes and as X motifs have
been identified in tRNAs [13,17] and rRNAs, in particular in the ribosome decoding centre [13,18].

In this paper, we present a new approach to circular codes based on graph theory and extended
to n-nucleotide codes. To each such code, a graph was assigned that interprets the n-nucleotides of
the code as pairs of prefixes and suffixes. The general theorem established here identifies among
the n-nucleotide codes those which are circular. Moreover, several properties of the circular codes
can be seen in the representing graph, e.g. the error detecting window. Since dinucleotide circular
codes may also have a biological function in the coding process of amino acids [26] we applied
our approach to such codes and have established a beautiful correspondence between the theory
of these codes and the theory of tournaments.

Tetranucleotide codes may also be involved in the amino acid coding [33–36] and thus our
approach may help to investigate also the tetranucleotide circular codes in the future.
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Appendix A. Proof of lemma 2.4
Proof. A self-loop in G(X) can only arise for even n and would mean that N1 . . . Nn/2N1 . . . Nn/2 ∈

X for some N1, . . . , Nn/2 ∈ B. The existence of multiple edges means that the same n-nucleotide is
represented in the graph twice and the existence of inverted edges that N1 . . . NiNi+1 . . . Nn ∈X
as well as Ni+1 . . . NnN1 . . . Ni ∈X. All this is forbidden by the construction of the graph and the
circularity of the code X. �

Appendix B. Proof of theorem 2.11
Proof. Let X⊆ Bn be given and assume that X is comma-free. If G(X) contains a path of length at

least 3, then it has one of length 3 which must belong to one of the components G(X)j of G. Thus,
it is either of the form

[N1 . . . Nj, Nj+1 . . . Nn][Nj+1 . . . Nn, N′1 . . . N′j][N
′
1 . . . N′j , N′j+1 . . . N′n]

or

[N1 . . . Nn−j, Nn−j+1 . . . Nn][Nn−j+1 . . . Nn, N′1 . . . N′n−j][N
′
1 . . . N′n−j, N′′1 . . . N′′n−j+1].

In the first case, the three n-nucleotides

N1 . . . NjNj+1 . . . Nn, Nj+1 . . . NnN′1 . . . N′j and N′1 . . . N′jN
′
j+1 . . . N′n
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are in X. Thus, the concatenation N1 . . . NjNj+1 . . . NnN′1 . . . N′jN
′
j+1 . . . N′n violates comma-freeness

since Nj+1 . . . NnN′1 is also in X. In the latter case, the three words

N1 . . . Nn−jNn−j+1 . . . Nn, Nn−j+1 . . . NnN′1 . . . N′n−j and N′1 . . . N′n−jN
′′
1 . . . N′′n−j+1

are in X. Thus, the concatenation N1 . . . Nn−jNn−j+1 . . . NnN′1 . . . N′n−jN
′′
1 . . . N′′n−j+1 violates

comma-freeness since the n-nucleotide Nn−j+1 . . . NnN′1 . . . N′n−j is also in X.
Conversely, assume that the maximal length of a path in G(X) is at most 2 and assume that X is
not comma-free. Then there are two n-nucleotides N1 . . . Nn and N′1 . . . N′n in X such that the
concatenation N1 . . . NnN′1 . . . N′n violates comma-freeness, i.e. there is 1≤ j≤ n− 1 such that
Nj+1 . . . NnN′1 . . . N′j is in X as well. Thus, we obtain a path of length 3 in the jth components G(X)j

of G(X), namely the [N1 . . . NjNj+1 . . . Nn][Nj+1 . . . NnN′1 . . . N′j][N
′
1 . . . N′jN

′
j+1 . . . N′n] contradiction.

�

Appendix C. Proof of lemma 3.3
Proof. Let X be a maximal 1-circular code. Then X contains exactly six dinucleotides with all

nucleotide bases appearing at least in one of its dinucleotides (see, for instance, [27]). Moreover,
due to lemma 2.4 the associated graph G(X) is simple. Hence, G(X) is a complete graph on four
vertices, which means that G(X) is a tournament on four vertices. The converse is obvious. �

Appendix D. Proof of theorem 3.4
Proof. For claim (1) see theorem 2.6.
For claim (2) assume that X is 1- but not 2-circular. Then there are N1N2, Ñ1Ñ2 ∈X so that the

word N1N2Ñ1Ñ2 has two decompositions on the circle. That means that also N2Ñ1, Ñ2N1 ∈X.
However, N1, N2, Ñ1, Ñ2 are different bases due to the 1-circularity of X and, thus, N1N2Ñ1Ñ2N1
is a Hamiltonian cycle in G(X).

Let us assume now that N1→N2→N3→N4→N1, Ni ∈ B is a Hamiltonian cycle in G(X).
Then N1N2, N2N3, N3N4, N4N1 ∈X and the word N1N2N3N4 has two decompositions on the
circle. Thus, X is not 2-circular.

Finally, for claim (3) let X be a 2- but not 3-circular code. Then according to (2) G(X) cannot
have a Hamiltonian cycle. According to (1) G(X) cannot be acyclic since there are 2-circular codes
which are not circular. The only case left is that G(X) has a cycle of length 3 but is not Hamiltonian.

Assume now that G(X) has a cycle of length 3 N1→N2→N3→N1, Ni ∈ B. Then the word
N1N2N3N1N2N3 has two decompositions on the circle since N1N2, N2N3, N3N1 ∈X and, thus, X
is not 3-circular. In addition, X is 2-circular according to (2) since G(X) has no Hamiltonian cycle.

�

Appendix E. Proof of theorem 3.6
Proof. (C-1)⇒ (C-2): is obvious.
(C-2)⇒ (C-1): let X be a 3-circular code. According to theorem 3.4 (3) G(X) does not contain

cycles of length 3 and, thus, according to theorem 3.5 G(X) is acyclic. It follows from theorem 2.6
(1) that X is circular.

(C-1)⇔ (C-3): clearly, if X= {N1N2, N2N3, N3N4, N1N4, N1N3, N2N4}, Ni ∈ B, Ni �=Nj it follows
that the score sequence of G(X) is 0, 1, 2, 3. According to theorem 3.5, this is equivalent to the
acyclicity of G(X) and, thus, to the circularity of X.

(C-1)⇔ (C-4): is obvious in view of the definition of G(X).
(C-1)⇔ (C-5): according to theorem 3.5, the acyclicity of G(X) and, thus, the circularity of X is

equivalent to the existence of the unique Hamiltonian path in G(X). Given the unique Hamiltonian
path N1→N2→N3→N4 in G(X) we define the order N1 < N2 < N3 < N4 which is a total order
on B and vice versa. �
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Appendix F. Proof of corollary 3.7
Proof. For claim (1), the representing graph of a maximal dinucleotide circular code X is an

acyclic tournament on four vertices. In such a tournament, there is exactly one Hamiltonian
path [28] N1→N2→N3→N4. The remaining three edges can be oriented in the unique way
to avoid cycles, namely N1→N4, N1→N3 and N2→N4. There are 24= 4! possibilities to choose
such a Hamiltonian path, which proves (1).

For claim (2), let X be a maximal dinucleotide 1- but not 2-circular code. Owing to theorem 3.4
the representing graph has a Hamiltonian cycle N1→N2→N3→N4→N1, Ni ∈ B. There are
6= 3× 2 possibilities to choose such a cycle and in each case 4= 2× 2 additional possibilities
to orient the remaining two edges. It is easy to see that any orientation of the remaining two
edges does not lead to new Hamiltonian cycles. Therefore, we have 24= 6× 4 different maximal
dinucleotide 1- but not 2-circular codes.

For claim (3), the remaining codes which are not covered by (1) or (2) must be 2-circular but
not circular. There are 16= 64− 24− 24 such codes. �
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