
G
(

E
T

a

A
R
R
A
A

K
M
S
I
D
D

1

m
i
t

1

t
n
b
t
e
o
s
s
t

s

B

h
0

BioSystems 135 (2015) 15–34

Contents lists available at ScienceDirect

BioSystems

journa l homepage: www.e lsev ier .com/ locate /b iosystems

enome evolution by transformation, expansion and contraction
GETEC)

mmanuel Benard1, Sophie Lèbre, Christian J. Michel ∗

heoretical Bioinformatics, ICube, University of Strasbourg, CNRS, 300 Boulevard Sébastien Brant, 67400 Illkirch, France

r t i c l e i n f o

rticle history:
eceived 16 December 2014
eceived in revised form 4 May 2015
ccepted 21 May 2015
vailable online 29 June 2015

eywords:
odel of gene evolution

a b s t r a c t

We propose here the GETEC (Genome Evolution by Transformation, Expansion and Contraction) model of
gene evolution based on substitution, insertion and deletion of genetic motifs. The GETEC model unifies
two classes of evolution models: models of substitution, insertion and deletion of nucleotides as function
of time (Lèbre and Michel, 2010) and sequence length (Lèbre and Michel, 2012), and models of symmetric
substitution of genetic motifs as function of time (Benard and Michel, 2011). Evolution of genetic motifs
based on substitution, insertion and deletion is modeled by a differential equation whose analytical solu-
tions give an expression of the genetic motif occurrence probabilities as a function of time or sequence
ubstitution
nsertion
eletion
ifferential equation

length, as well as in direct time direction (past–present) or inverse time direction (present–past). Evolu-
tion models with “substitution only”, i.e. without insertion and deletion, and with “insertion and deletion
only”, i.e. without substitution, are particular cases of the GETEC model. We have also developed a research
software for computing the analytical solutions of the GETEC model. It is freely accessible at http://icube-
bioinfo.u-strasbg.fr/webMathematica/GETEC/ or via the web site http://dpt-info.u-strasbg.fr/∼michel/.

© 2015 Elsevier Ireland Ltd. All rights reserved.
. Introduction

Substitution, insertion and deletion of nucleotides are important
olecular evolution processes. A major challenge for understand-

ng genome and gene evolution is the mathematical analysis of
hese three processes.

.1. Substitution models

Stochastic models of evolution were initially developed to study
he substitution rates of nucleotides (adenine A, cytosine C, gua-
ine G, thymine T). Typically, the substitution process is described
y a differential equation defined by a constant rate substitu-
ion matrix (of size (4,4)) and whose analytical solutions give an
xpression of the nucleotide occurrence probabilities as function

f time. The first substitution models were based on symmetric
ubstitution matrices with one formal parameter for all nucleotide
ubstitution types (Jukes and Cantor, 1969), two formal parame-
ers for nucleotide transitions and transversions (Kimura, 1980)
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and three formal parameters for transitions and the two types
of transversions (Kimura, 1981). These substitution models were
later generalized to asymmetric substitution matrices (Felsenstein,
1981; Takahata and Kimura, 1981; Hasegawa et al., 1985; Tavaré,
1986; Tamura and Nei, 1993; Yang, 1994; Felsenstein and Churchill,
1996) with an equilibrium distribution different from 1/4 for all
nucleotides.

During the last 25 years, parallel to the growth in complex-
ity of nucleotide substitution matrices, we introduced substitution
matrices for genetic motifs, i.e. matrices of sizes (16,16) for dinu-
cleotides, (64,64) for trinucleotides, etc., and obtained the analytical
solutions of the associated differential equations in various cases.
They were expressed as a mean number of random substitutions
per base site or as function of time with several formal parame-
ters: trinucleotide matrix on the alphabet {R, Y} (R = {A, G}, Y = {C,
T}) (Arquès and Michel, 1993), dinucleotide matrix on the alpha-
bet {A, C, G, T} (Arquès and Michel, 1995) and with 2×3 =6 formal
parameters (Michel, 2007c), trinucleotide matrix on the alphabet
{A, C, G, T} with 3×1 =3 formal parameters (Arquès et al., 1998,
1999), 3×2 =6 formal parameters (Frey and Michel, 2006) and
3×3 =9 formal parameters (Michel, 2007a; Benard and Michel,
2009). The development of these models, i.e. the determination

of analytical solutions of the differential equations, required sev-
eral years, mainly due to two facts: (i) the analytical expression of
eigenvalues and eigenvectors of motif substitution matrices can-
not be computed in a straightforward way and required some
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edious algebra manipulation, in particular linear combination of
he determinant and block-matrix factorization (Tian and Styan,
001); and (ii) the limited power of formal calculus, e.g. Math-
matica, at that time. This problem has recently been solved
y using Kronecker operators (sum and product) which allowed
s to generalize the 3-parameter symmetric substitution matrix
Kimura, 1981) to substitution matrices for motifs of any (finite)
ize (Benard and Michel, 2011). Motif substitution matrices with
onstant formal parameters were also generalized to time depen-
ent parameters (Bahi and Michel, 2004), then later to chaotic
onstant parameters (Bahi and Michel, 2008) and finally to chaotic
ime dependent parameters (Bahi and Michel, 2009). Notably, in
he particular case of 3-letter motifs, these approaches can be used
or codon substitution models (see Anisimova and Kosiol, 2009, for
review).

.2. Substitution, insertion, deletion models

In addition, some molecular evolution models were extended to
he insertion and deletion of residues (nucleotides, amino acids) as
ell as residue substitution. These substitution–insertion–deletion

SID) models can be divided into three classes. A pioneering
aper by Thorne et al. (1991) proposed a time-reversible Markov
odel for insertions and deletions (termed the TKF91 model). This

ID model represents sequence evolution in two steps. First, the
equence is subjected to an insertion–deletion process which is
omogeneous over all sites in the sequence. Second, conditional on
he result of the insertion–deletion process, a substitution process
s applied to the two sequences. The total process is time-reversible

henever the substitution process is. Some drawbacks of the pre-
iminary TKF91 model were improved by the same authors with the
KF92 version of the model (Thorne et al., 1992). Later, the origi-
al SID models were refined in many ways, for instance by Metzler
2003) and Miklós et al. (2004) (see e.g. Miklós et al., 2009, for a
eview). A second class of SID models was introduced by McGuire
t al. (2001) who defined a Markov model by extending the F84
ubstitution matrix (Felsenstein and Churchill, 1996) of size four
omprising the four nucleotides to a substitution matrix of size
ve with one additional line and one additional column for the gap
haracter involved in the alignment. Then, an insertion is described
y the substitution of a gap by a nucleotide whereas a deletion
mounts to the substitution of a nucleotide by a gap. The inser-
ion rate is proportional to the F84 substitution matrix equilibrium
istribution. A third class of SID models was introduced by Rivas
2005) with a non-reversible evolution model which extends the

odel of McGuire et al. (2001) for the evolution of sequences of
esidues in any alphabet of size K, i.e. for any substitution matrix.
he insertion rates are defined by explicit parameters and the dele-
ion rate is uniform for all residues. In the particular case where the
nsertion rate is proportional to the substitution matrix equilibrium
istribution, an analytical expression of the substitution probabili-
ies Pt(i, j) of residue i by residue j over time t can be derived (Rivas
nd Eddy, 2008). However, even if the insertion process is inde-
endent of the substitution process, the substitution and deletion
rocesses are not independent (detailed in Section 1 in Lèbre and
ichel, 2012).
More recently, we have developed a dynamic evolution model

called IDIS model) inspired by a concept in population dynamics
Malthus, 1798) where the three processes of substitution, inser-
ion and deletion of nucleotides are independent of each other
Lèbre and Michel, 2010, 2012). This model is defined by a differen-

ial equation whose analytical solution gives an expression of the
equence content vector P(t) at evolution time t (Lèbre and Michel,
010) or P(l) at sequence length l (Lèbre and Michel, 2012) for any
iagonalizable substitution matrix M of nucleotides.
s 135 (2015) 15–34

1.3. GETEC model

The molecular evolution models we have developed over
the last 25 years, i.e. substitution models of motifs as well as
substitution–insertion–deletion models of nucleotides (summa-
rized in Fig. 1), have several interesting mathematical properties
compared to some other evolution models in this research field:
(i) they rely on a real physical process of sequence evolution, in
other words, the analytical expressions of the sequence content
at time t are identical (by numerical approximations) to the val-
ues obtained by simulating sequence evolution under substitution,
insertion and deletion; thus, they allow a realistic interpretation of
the model parameters (evolution time t, sequence length l and rates
of substitution, insertion and deletion); (ii) they enable the math-
ematical analysis of the sequence content curves along time with
local/global maxima or minima, increasing or decreasing curves,
crossing curves, asymptotic behavior, etc.; (iii) they provide a
description of sequence content evolution and in particular the
evolution of motif content inside the sequence, unlike the phy-
logenetic approaches for tree reconstruction; and (iv) they allow
to introduce models of “primitive” genes or “primitive” motifs of
nucleotides or amino acids, to study substitution rates, to analyze
the residue occurrence probabilities in the natural evolution time
direction (from past to present or from present to future) or the
inverse direction (from present to past).

We propose here to generalize the evolution model for motif
substitution (Benard and Michel, 2011) to an evolution model for
motif substitution–insertion–deletion using the IDIS model (Lèbre
and Michel, 2010, 2012). The generalized model, called GETEC
(Genome Evolution by Transformation, Expansion and Contrac-
tion), is based on substitution, insertion and deletion of genetic
motifs of any (finite) size. The three evolution processes are inde-
pendent of each other (following the IDIS model assumptions) and
the motif substitution matrix extends the classical 3-parameter
symmetric substitution matrix (Kimura, 1981). The GETEC model
yields an analytical expression of the vector P(t) of motif content in
the sequence at evolution time t or the vector P(l) of motif content at
sequence length l as function of the substitution parameters (three
parameters (as, bs, cs) per site s ranging from 1 to the motif length),
a vector R of the motif insertion rates, the total insertion rate r, a
deletion rate d and the vector P (t0) of initial motif content in the
sequence at evolution time t0 or the vector P (n0) of initial motif
content at sequence length n0. We have also developed a research
software for computing online the analytical solutions of the GETEC
model associated with a chosen set of parameters. It is freely acces-
sible at http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
or via the web site http://dpt-info.u-strasbg.fr/∼michel/. It allows
biologists and bioinformaticians to develop their own gene evolu-
tion models by studying evolution of genetic motifs, both in the
direct evolution time direction (past–present) and the inverse evo-
lution time direction (present–past). To our knowledge, the model
GETEC and its computational software have no equivalent in this
evolutionary field.

This paper is organized as follows. Section 2 presents
first a new and comprehensive formulation of the
substitution–insertion–deletion models for nucleotides initi-
ated in Lèbre and Michel (2010, 2012), and second the substitution
model for motifs (Benard and Michel, 2011) with here a new
and simplified proof for the recursive construction of a motif
substitution matrix. Section 3 describes the construction of the
GETEC model which allows the substitution, insertion and deletion
of genetic motifs. The analytical solutions are given for the GETEC

model at time t and sequence length l, and for particular cases
of the GETEC model: “substitution only” model at time t and
“insertion–deletion only” model at time t and sequence length l.
The relationship between time t and sequence length l in the GETEC

http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
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Fig. 1. Substitution models of motifs and substitution–insertion–deletion models of nucleotides. The hierarchy of models is given from top (more general models) to bottom
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particular models). The bottom “row” corresponds to the nucleotide evolution mo
eature motif evolution models.

odel is presented. Section 4 describes the research software
ETEC which computes the analytical solutions of the GETEC model
nline. Section 5 provides the detailed procedures of the GETEC
oftware to retrieve the classical formulas of nucleotide substitu-
ion matrices with one formal parameter (Jukes and Cantor, 1969)
nd two formal parameters (Kimura, 1980). Section 6 provides
n example of biological application to an evolution study of the
mino acid glycine in bacterial genes.

. Two classes of evolution models

.1. Substitution–insertion–deletion models for nucleotides
Lèbre and Michel, 2010, 2012)

We propose here a new and global formulation of the
ubstitution–insertion–deletion models for nucleotides as function
f time and sequence length, called IDIS (Insertion and Deletion
ndependent of Substitution) models initiated in Lèbre and Michel
2010, 2012).

The IDIS model is defined by explicit parameters for the insertion
ate ri of each residue i and the deletion rate d. The insertion rates
nd the deletion rate are independent of each other and also inde-
endent of the substitution parameters. Let us consider an alphabet
f K residues. For example, K = 4 for the set of nucleotides {A, C, G,
}, K = 20 for the set of amino-acids, K = 2 for the set of purine and
yrimidine {R, Y}. For all 1≤ i≤K, let pi(t) be the occurrence proba-
ility of residue i at time t≥0 per “residue site” in the sequence and
(t) = [pi(t)]1≤i≤K the column vector of size K made of the proba-
ilities pi(t) for all 1≤ i≤K.

The IDIS model superimposes a substitution process and an

nsertion–deletion process. By assuming that the substitution and
he insertion–deletion processes are independent, i.e. a substitu-
ion event does not alter the probability of an insertion–deletion
vent and reciprocally, the derivative P′(t) of the residue occurrence
he rows above to dinucleotide and trinucleotide evolution models and upper rows

probability at time t is the result of the instantaneous variation due
to substitution and insertion–deletion,

P ′(t) = (M − I) ·P(t)︸ ︷︷ ︸
Substitution

+ (−rP(t)+ R)︸ ︷︷ ︸
Insertion–Deletion

(2.1)

= A ·P(t)+ R

where A = M− (1 + r)I, M = [Pr(j→ i)]1≤i,j≤K is the substitution proba-
bility matrix, R = [ri]1≤i≤K is the vector of the residue insertion rates
per site and r =

∑
1≤i≤Kri > 0 is the total insertion rate, ∀1≤ i≤K,

ri ≥0. Explanation of Eq. (2.1) is briefly recalled below (see detail in
Lèbre and Michel, 2010).

(i) Substitution term in Eq. (2.1). The change of the residue
occurrence probability due to substitution is governed by the
classical matrix differential equation (Michel, 2007a)

P ′(t) =M ·P(t)− P(t)

= (M − I) ·P(t)
(2.2)

where M = [mij]1≤i,j≤K
is the substitution probability matrix

with element mij = Pr(j→ i) in row i and column j referring to
the substitution probability of residue j into residue i, matrix I
is the identity matrix of size K and the symbol · is the matrix
product.

Remark 1. The matrix M = [mij]1≤i,j≤K
is the instanta-

neous substitution probability matrix whose element mij
in row i and column j refers to the substitution proba-

bility mij = Pr(j→ i) of residue j into residue i. Thus, the
substitution probability matrix M is stochastic in column.
Indeed, for all 1≤ j≤K, the elements of matrix M satisfy∑

1≤i≤Kmij =
∑

1≤i≤K Pr(j→ i) = 1. The substitution probability
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matrix M is the transpose matrix of the classical substitu-
tion matrix � = [Pr(i→ j)]1≤i,j≤K which is stochastic in line (e.g.
Kimura, 1980, 1981), i.e. �ij = Pr(i→ j) = mji.

ii) Insertion–deletion term in Eq. (2.1). The insertion–deletion
process is modeled by explicit parameters which are set inde-
pendently from the substitution parameters: ri is the insertion
rate per site of each residue i, ∀1≤ i≤K, ri ≥0, and d is the
deletion rate for all residues, d≥0. Let ni(t) be the occurrence
number of residue i in the biological sequence at time t and
n(t) =

∑
1≤i≤Kni(t) be the total number of residues at time t. By

definition, a sequence has at least one residue, i.e. n(t)≥1. From
a concept in population dynamics (Malthus, 1798), the growth

rate n′
i
(t) = ∂ni(t)

∂t
of residue i at time t due to insertion is equal

to ri×n(t). Similarly, the growth rate n′
i
(t) of residue i at time t

due to deletion is d×ni(t). Thus, the growth rate n′
i
(t) resulting

from the insertion–deletion process is, for all 1≤ i≤K,

n′i(t) = ri × n(t)− d× ni(t). (2.3)

The derivative P′(t) of the occurrence probability of residue i at
time t can be written

p′
i
(t) = ∂

∂t

(
ni(t)
n(t)

)

= 1
n2(t)

⎡
⎣(rin(t)− dni(t)) n(t)− ni(t)

∑
1≤j≤K

n′j(t)

⎤
⎦ .

By replacing n′
j
(t) using Eq. (2.3), we obtain (see detail in Lèbre

and Michel, 2010)

p′i(t) = ri −

⎛
⎝∑

1≤j≤K

rj

⎞
⎠pi(t).

With the total insertion rate r =
∑

1≤i≤Kri > 0, the change of
the residue occurrence probability due to insertion–deletion
is explained by the matrix differential equation

P ′(t) = −rP(t)+ R. (2.4)

A general solution of Eq. (2.1) containing substitution Eq. (2.2)
nd insertion–deletion Eq. (2.4) is derived when the substitution
robability matrix M can be diagonalized with real eigenvalues
Proposition 1). It is well known that the substitution matrices of
eversible models are diagonalizable with real eigenvalues (Aldous
nd Fill, 2002) but this is not an exclusive condition as substitution
atrices of non-reversible models can also be diagonalized with

igenvalues (e.g. Exercises of Chapter 1 in Kelly, 1979).

roposition 1. When the substitution probability matrix M can be
iagonalized with real eigenvalues (�k)1≤k≤K , an analytical solution of
he IDIS model defined by Eq. (2.1) is derived. Let Q be an associated
igenvector matrix of M, the kth column of Q being an eigenvector for
igenvalue �k. Then, for any (non-zero) residue insertion rate vector
= [ri]1≤i≤K such that ∀1≤ i≤K, ri ≥0, and the total insertion rate

=
∑

1≤i≤Kri > 0, the residue occurrence probability P(t) at time t is

(t) = Q ·D1(t) ·Q−1 ·P(t0)+ Q ·D2(t) ·Q−1 ·R (2.5)

here D1(t) = Diag
(

(e−(r+1−�k)(t−t0))1≤k≤K

)
, D2(t) =(( ) )
iag 1
r+1−�k

(1− e−(r+1−�k)(t−t0))
1≤k≤K

and P(t0) =
pi(t0)]1≤i≤K is the initial residue occurrence probability at time
0.
s 135 (2015) 15–34

Proof. By extending Eq. (2.11) in Lèbre and Michel (2010) to any
initial time t0. �

From Eq. (2.5), we derive in Proposition 2 a general formula giv-
ing an analytical expression of the residue occurrence probability
as a function of time t or sequence length l by introducing a function
h(x, x0) which is equal to h(x, x0) = e−(t−t0) for evolution time t and

to h(x, x0) =
(

l
l0

)− 1
r−d

for sequence length l.

Proposition 2. When the substitution probability matrix M can
be diagonalized with real eigenvalues (�k)1≤k≤K , for any (non-zero)
residue insertion rate vector R = [ri]1≤i≤K , ∀1≤ i≤K, ri ≥0, and the
total insertion rate r =

∑
1≤i≤Kri > 0, deletion rate d≥0 and ini-

tial residue occurrence probability P(t0) = [pi(t0)]1≤i≤K at time t0,
the residue occurrence probability P(x) as function of a variable x
representing time x = t or sequence length x = l with the following
convention (x, x0, h(x, x0)) = (t, t0, e−(t−t0)) for time expression and

(x, x0, h(x, x0)) =
(

l, l0,
(

l
l0

)− 1
r−d

)
for sequence length expression

is

P(x) =
(

K∑
k=1

1
r + 1− �k

Ok

)
·R

+
K∑

k=1

Ok ·
(

P(x0)− 1
r + 1− �k

R
)

h(x, x0)r+1−�k (2.6)

where the matrices (Ok)1≤k≤K of size K×K are defined from the eigen-
vector matrix Q of matrix M by

Ok = Q ·1k · (1k)T ·Q−1

with 1k =
(

ıi,k

)
= (0, . . ., 0, 1, 0, . . ., 0)T , a vector having 1 in kth row

and 0 otherwise, and (1k)T , its transpose vector.

Proof.

(i) Case x = t. P(t) is obtained after some algebraic manipulation of
Eq. (2.5) (see also Eq. (2.13) in Lèbre and Michel, 2010, for the
particular case t0 = 0).

(ii) Case x = l. P(l) is obtained by deriving from Eq. (2.3)
n′(t) =

∑
1≤i≤K n′

i
(t) = (r − d)n(t) which leads to e−(t−t0) =(

n(t)
n(t0)

)− 1
r−d =

(
l

l0

)− 1
r−d

(see also Eq. (10) in Lèbre and Michel,

2012, for the particular case t0 = 0).

�

The general formula (2.6) allows to derive the residue occur-
rence probability P(t) at time t and P(l) at sequence length l both
in the direct (t > t0, l > l0) or inverse (t < t0, l < l0) direction of evolu-
tion. In the direct evolution direction, P(t) and P(l) converge to the
residue equilibrium distribution when t and l increase (Eqs. (4.7)
and (4.9) in Lèbre and Michel, 2010, and Proposition 3 in Lèbre
and Michel, 2012). In the inverse evolution direction, P(t) and P(l)
do not converge when t and l increase, and the only constraint to
be respected is that P(t) and P(l) remain probability vectors. This
condition becomes not verified when a residue probability has a
negative value.

Remark 2. The sum of the matrices
{

Ok

}
k

is
∑K

k=1Ok = Q ·Q−1 =∑K ∑K −1
I. Indeed, for all i, j, k=1Ok[i, j] = k=1Q [i, k] ·Q [k, j] is the
term in row i and column j of the matrix product Q ·Q−1.

Remark 3. The non-zero condition for the vector R of inser-
tion rates ensures that r =

∑
1≤i≤Kri > 0. Thus, the denominator of
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he ratio 1
r+1−�k

is different from zero as the eigenvalues of the

tochastic matrix M satisfies �k ≤1, ∀1≤ k≤K. If the insertion rate
ector R is null, then the residue occurrence probability P(t) satisfies
(t) = Q ·D1(t) ·Q−1 ·P(t0) with D1(t) = Diag

(
(e−(1−�k)(t−t0))1≤k≤K

)
s in the “substitution only” model (Michel, 2007a).

emark 4. As in all the current insertion–deletion models for gene
volution, the deletion rate di of each residue i is equal to d. It is
lassically assumed that there is no distinction among residue for
eletion. Moreover, the derivation of an analytical expression is not
nsured with specific deletion rate di for each residue i.

Particular cases such as the “substitution only” model
Proposition 3) and the “insertion–deletion only” model
Proposition 4) can be derived from the general formula (2.6).

roposition 3. “Substitution only” model. The residue occurrence
robability P(t) at time t is equal to

(t) =
(

K∑
k=1

Oke−(1−�k)(t−t0)

)
·P(t0)

here (�k)1≤k≤K are real eigenvalues of the substitution probability
atrix M and matrices (Ok)1≤k≤K of size K×K are defined by Ok =
·1k · (1k)T ·Q−1 with Q, the eigenvector matrix of matrix M, and 1k =

ıi,k

)
= (0, . . ., 0, 1, 0, . . ., 0)T , a vector having 1 in kth row and 0

therwise, and (1k)T , its transpose vector.

roposition 4. “Insertion–deletion only” model. The residue occur-
ence probability P(x) at time x = t or sequence length x = l with the
ollowing convention (x, x0, h(x, x0)) = (t, t0, e−(t−t0)) for time expres-

ion and (x, x0, h(x, x0)) =
(

l, l0,
(

l
l0

)− 1
r−d

)
for sequence length

xpression is equal to

(x) = R

r
+
(

P(x0)− R

r

)
h(x, x0)r

here R = [ri]1≤i≤K ,∀1 ≤ i ≤ K, ri ≥ 0, is the residue insertion rate
ector, r =

∑
1≤i≤Kri > 0 is the total insertion rate and d≥0 is the dele-

ion rate.

.2. Substitution models for motifs (Benard and Michel, 2011)

A Kronecker property was identified for constructing symmet-
ic substitution matrices for genetic motifs of size n containing
p to three substitution parameters per motif site and for solv-

ng their eigenelements analytically. It was found by Benard and
ichel (2011) after a detailed analysis of the dinucleotide matrix
(Fig. 1 in Michel, 2007c) and the trinucleotide matrix ı (Fig. B.1

n Michel, 2007b). It allows to derive analytical solutions giving the
ccurrence probabilities of genetic motifs of size n at time t with
-parameter symmetric substitution matrices. Thus, it extends the
lassical 3-parameter symmetric substitution model of nucleotides
Kimura, 1981) to any genetic motif of size n.

We propose here a new and simplified proof for the recursive
onstruction of a motif substitution matrix An by applying the Kro-
ecker operators to nucleotide substitution matrices Ns associated
o each site s of genetic motifs of size n.

Let s be the nucleotide site of a genetic motif of size n, 1≤ s≤n.
or a given site s, let as, bs and cs be the parameters of transi-
ions A←→G and C←→ T, transversions I A←→ T and C←→G and
ransversions II A←→C and G←→ T, respectively. For example,
hen considering a dinucleotide w = l1l2 then a1, b1 and c1 are
he transitions, transversions I and transversions II in the 1st site
1 of w, respectively, and a2, b2 and c2 are the transitions, transver-
ions I and transversions II in the 2nd site l2 of w, respectively. Thus,
motif of size n has 3n substitution parameters. Let us denote by
s 135 (2015) 15–34 19

An = Mn− In of size (4n, 4n) the symmetric substitution rate matrix
of motifs of size n where Mn is the instantaneous substitution prob-
ability matrix for motifs of length n and In is the identity matrix
of size (4n, 4n) (see Eq. (2.2)). The columns and lines of An sum
to 0. Matrix An is a block matrix which is classically constructed
recursively by varying s = n to s = 1 as follows (Michel, 2007b,c)

As =

⎛
⎜⎜⎜⎜⎝

As−1 cn−s+1Is−1 an−s+1Is−1 bn−s+1Is−1

cn−s+1Is−1 As−1 bn−s+1Is−1 an−s+1Is−1

an−s+1Is−1 bn−s+1Is−1 As−1 cn−s+1Is−1

bn−s+1Is−1 an−s+1Is−1 cn−s+1Is−1 As−1

⎞
⎟⎟⎟⎟⎠ (2.7)

where Is−1 is the identity matrix of size
(

4s−1, 4s−1
)

with I0 = 1,

As−1 is the recursive matrix of size
(

4s−1, 4s−1
)

with A0 =
−
∑n

s=1 (as + bs + cs) and as, bs, cs, 1≤ s≤n, are the substitution
parameters for the sth motif site.

As the matrix An is real and symmetric, An is diagonalizable,
i.e. An = Qn ·Dn ·Q−1

n where Dn is the spectral matrix of An and Qn

is its associated eigenvector matrix. This property will allow the
occurrence probability P(x) of residues in Eq. (2.6) to be extended
to genetic motifs.

Let Ns, 1≤ s≤n, be the nucleotide substitution rate matrix of size
(4,4) of a site s of a motif of size n

Ns =

⎛
⎜⎜⎜⎜⎝

ds cs as bs

cs ds bs as

as bs ds cs

bs as cs ds

⎞
⎟⎟⎟⎟⎠

with ds = − (as + bs + cs). As the matrix Ns is real and symmetric,
Ns is diagonalizable for all 1≤ s≤n

Ns = Q · Ss ·Q−1

where the nucleotide spectral matrix Ss of Ns is

Ss =

⎛
⎜⎜⎜⎝

0 0 0 0

0 −2 (as + bs) 0 0

0 0 −2 (as + cs) 0

0 0 0 −2 (bs + cs)

⎞
⎟⎟⎟⎠ (2.8)

and its associated nucleotide eigenvector matrix Q is

Q =

⎛
⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎞
⎟⎟⎠ . (2.9)

Remark 5. For the substitution rate matrix of nucleotides
(n = 1), A1 = N1 = Q1 ·D1 ·Q−1

1 = Q · S1 ·Q−1 leading to D1 = S1 and
Q1 = Q.

Remark 6. Q−1 = 1
4 Q.

Proposition 5. The spectral matrix Dn and the eigenvector matrix
Qn to be deduced from Ss and Q, are respectively⎧⎪⎪⎨
⎪⎪⎩

Dn = ⊕n
s=1Ss

Qn = ⊗n
s=1Q

Q−1
n =

(
⊗n

s=1Q
)−1=⊗n

s=1Q−1=⊗n
s=1

(
1

Q
)
= 1

n
⊗n

s=1Q= 1
n

Qn
4 4 4

where the operators⊕ and⊗ are the Kronecker sum and the Kronecker
product, respectively (defined e.g. in Laub (2005)). Thus, the motif sub-
stitution rate matrix An can be directly determined from the Kronecker
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um of the n nucleotide spectral matrices Ss and the Kronecker product
f the n nucleotide eigenvector matrix Q as follows

n = ⊗n
s=1Q · ⊕n

s=1Ss · ⊗n
s=1Q−1.

oreover,

n = ⊕n
s=1Ns. (2.10)

Appendix A gives the proof of Proposition 5 and an explicit
xample of construction of a dinucleotide substitution matrix with
he Kronecker operators, i.e. with the Kronecker sum ⊕ and the
ronecker product ⊗ which are rarely used in the bioinformatics
esearch field.

. GETEC model

The GETEC (Genome Evolution by Transformation Expansion
ontraction) model introduced here generalizes the motif substitu-
ion model (Section 2.2) to a motif substitution–insertion–deletion

odel. To our knowledge, it is the first biomathematical model
f gene evolution in this research field analyzing transformation,
xpansion and contraction of genetic motifs during evolution time,
nd moreover, in both directions, direct (past–present) and inverse
present–past).

In the subsections below, we give two Propositions 6 and 7
or constructing the GETEC model. Then, we derive the analytical
olutions from Propositions 6 and 7: model TECt (Transformation
xpansion Contraction) at time t and model TECl (Transformation
xpansion Contraction) at sequence length l, and for its particu-
ar cases: “substitution only” model Tt (Transformation) at time
, “insertion–deletion only” model ECt (Expansion Contraction) at
ime t and “insertion–deletion only” model ECl (Expansion Contrac-
ion) at sequence length l. All these models are implemented in the
esearch software GETEC (Section 4).

.1. Construction of the GETEC model

roposition 6. Let us denote by Mn = An + In the instantaneous sub-
titution probability matrix for motifs of length n where An is the
ymmetric substitution rate matrix for n-letter motifs (Eq. (2.7)) and
n is the identity matrix of size (4n, 4n). Then, the substitution prob-
bility matrix Mn is diagonalizable with spectral matrix Dn + In and
igenvectors matrix Qn such that Dn = ⊕n

s=1Ss and Qn = ⊗n
s=1Q where

s is the 3-parameter symmetric substitution matrix associated with
ite s (Eq. (2.8)) and Q is the eigenvectors matrix associated with any
-parameter symmetric substitution matrix (Eq. (2.9)).

roof. From Proposition 5, the motif substitution rate matrix An

s diagonalizable with real eigenvalues and decomposes as An =
n ·Dn ·Q−1

n where Dn is the diagonal spectral matrix of An and Qn

s its associated eigenvectors matrix. Then, the substitution proba-
ility matrix Mn satisfies

Mn = An + In

= Qn ·Dn ·Q−1
n + In

= Qn ·Dn ·Q−1
n + Qn · In ·Q−1

n

= Qn · (Dn + In) ·Q−1
n

here Dn = ⊕n
s=1Ss and Qn = ⊗n

s=1Q results from Proposition 5. �
roposition 7. The GETEC model for substitution, insertion and dele-
ion of n-letter genetic motifs with symmetric substitution probability
atrix Mn defined in Proposition 6, n-letter genetic motif insertion rate

ector R = [ri]1≤i≤4n with∀1≤ i≤4n, ri ≥0 and deletion rate d satisfies
s 135 (2015) 15–34

Eq. (2.6) giving the occurrence probability of genetic motifs of size n as
function of time t and sequence length l with⎧⎨
⎩

�k = 1+ Dn[k, k]

Ok =
1
4n
⊗n

s=1Q ·1k · (1k)T · ⊗n
s=1Q

(3.1)

where Dn =
(
⊕n

s=1Ss

)
, Ss is the 3-parameter symmetric substitution

matrix associated with site s (Eq. (2.8)) and Q is the eigenvectors matrix
associated with any 3-parameter symmetric substitution matrix (Eq.
(2.9)).

3.2. Analytical solutions of the GETEC model

We give here the new analytical solutions which are derived
from the GETEC model: TECt (Transformation Expansion Contrac-
tion) at time t and TECl (Transformation Expansion Contraction) at
sequence length l, and the particular cases: Tt (Transformation) at
time t, ECt (Expansion Contraction) at time t and ECl (Expansion
Contraction) at sequence length l.

3.2.1. Model TECt (Transformation Expansion Contraction) at
time t

Using Eq. (2.6) and the relations (3.1), the occurrence probability
P(t) of genetic motifs of size n at time t with the initial condition
P(0) at time t0 = 0 is

P(t) =
(

4n∑
k=1

1
r + 1− �k

Ok

)
·R

+
4n∑

k=1

Ok ·
(

P(0)− 1
r + 1− �k

R
)

e−(r+1−�k)t (3.2)

where R = [ri]1≤i≤4n is the vector of n-letter genetic motif insertion
rate with∀1 ≤ i ≤ 4n, ri ≥ 0, r =∑1≤i≤4n ri is the total genetic motif
insertion rate with r > 0 and for all 1≤ k≤4n

Ok =
1
4n
⊗n

s=1Q ·1k · (1k)T · ⊗n
s=1Q

with 1k =
(

ıi,k

)
= (0, . . ., 0, 1, 0, . . ., 0)T , a vector having 1 in kth

row and 0 otherwise and

�k = 1+
(
⊕n

s=1Ss

)
[k, k] ,

with

Ss =

⎛
⎜⎜⎜⎝

0 0 0 0

0 −2 (as + bs) 0 0

0 0 −2 (as + cs) 0

0 0 0 −2 (bs + cs)

⎞
⎟⎟⎟⎠

and

Q =

⎛
⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎞
⎟⎟⎠

defined in Eqs. (2.8) and (2.9).
The time inversion proposition (Lèbre and Michel, 2010, Sec-
tion 3.3) allows the evolution time direction to be inverted for
the substitution–insertion–deletion model. If t≥0 then the evo-
lution direction is direct else inverse. From a computational point
of view, the analytical formulas in the inverse evolution direction
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present–past) can be deduced from the direct evolution direction
past–present) in Eq. (3.2) by replacing t by −t.

From Eq. (3.2), the occurrence probability Pi(t) of a chosen
enetic motif i at time t, implemented in the GETEC software, is
asily obtained by

i(t) =
(

4n∑
k=1

1
r + 1− �k

Ok[i, ]

)
·R

+
4n∑

k=1

Ok[i, ] ·
(

P(0)− 1
r + 1− �k

R
)

e−(r+1−�k)t .

.2.2. Model TECl (Transformation Expansion Contraction) at
equence length l

Using Eq. (2.6) and the relations (3.1), the occurrence probability
(l) of genetic motifs of size n at sequence length l with the initial
ondition P(l0) at sequence length l0 is

(l) =
(

4n∑
k=1

1
r + 1− �k

Ok

)
·R

+
4n∑

k=1

Ok ·
(

P(l0)− 1
r + 1− �k

R
)(

l

l0

)− r+1−�k
r−d

(3.3)

here �k, Ok, R and r are defined in Eq. (3.2) and d is the deletion
ate.

emark 7. The length l0 cannot be equal to 0, in contrast to the
ime t0.

If (r−d) > 0 then the sequence length l increases else decreases.
The occurrence probabilities of a given genetic motif i with the

ECl model and the particular cases of the GETEC model described
elow in Section 3.3, implemented in the GETEC software, are given

n Appendix B.
The substitution probability matrix M = [Pr(j→ i)]1≤i,j≤K, the

nsertion rates R = [ri]1≤i≤K and the deletion rate d are specific
arameters of the GETEC model which can be determined from
enomic data extracted, e.g. from databases, using these analyti-
al expressions. For example, a best fit curve minimizing the error
SS (Residual Sum of Squares) can be estimated from genomic data,
uch as the GC content as function of the genome length l (see Lèbre
nd Michel, 2013, Section 7).

.3. Particular cases of the GETEC model

.3.1. “Substitution only” model Tt (Transformation) at time t
The occurrence probabilityP(t) of genetic motifs of size n at time

with the initial condition P(0) is( n )

(t) =

4∑
k=1

Oke−(1−�k)t ·P(0) (3.4)

here �k and Ok are defined in Eq. (3.2).

roof. In absence of insertion, then r = 0 and vector R is null. Eq.
3.2) leads to Eq. (3.4) immediately. �

If t≥0 then the evolution direction is direct else inverse.
s 135 (2015) 15–34 21

3.3.2. “Insertion–deletion only” models ECt and ECl
3.3.2.1. Model ECt (Expansion Contraction) at time t. The occurrence
probability P(t) of genetic motifs of size n at time t with the initial
condition P(0) is

P(t) = R

r
+
(

P(0)− R

r

)
e−rt (3.5)

where R and r are defined in Eq. (3.2).

Proof. The absence of substitution is associated to a substitution
matrix equal to the identity matrix. Then, for all 1≤ k≤K, �k = 1.
Hence, 1

r+1−�k
= 1

r . From Remark 2, the sum of the matrices
{

Ok

}
k
,

is
∑K

k=1Ok = Q ·Q−1 = I. Consequently, Eq. (3.2) leads to Eq. (3.5).
�

If t≥0 then the evolution direction is direct else inverse.

3.3.2.2. Model ECl (Expansion Contraction) at sequence length l. The
occurrence probability P(l) of genetic motifs of size n at sequence
length l with the initial condition P(l0) is

P(l) = R

r
+
(

P(l0)− R

r

)(
l

l0

)− r
r−d

(3.6)

where R and r are defined in Eq. (3.2).

Proof. Similar to the proof with the model ECt applied to Eq. (3.3).
�

If (r−d) > 0 then the sequence length l increases else decreases.

Remark 8. The Kronecker operators are absent in the models ECt
and ECl.

The analytical solutions of the models TECt at time t and TECl at
sequence length l, the “substitution only” model Tt at time t and the
“insertion–deletion only” models ECt at time t and ECl at sequence
length l, all in both directions (direct and inverse), are implemented
in the GETEC software. Thus, five classes of analytical formulas of
genetic motif evolution are available to the biological community
for analyzing their own gene evolution problems.

3.4. Relation between time t and sequence length l in the GETEC
model

From the growth rate n′
i
(t) of residue i at time t resulting from

the insertion–deletion process (Eq. (2.3)), the number l = n(t), l≥1,
of residues in the sequence at time t is

∀t ≥ 0, l = l0e(r−d)t

where l0 is the sequence length at time t = 0. Thus,

t = ln l − ln l0
(r − d)

.

In an insertion–deletion process with dominant insertion, i.e.
(r−d) > 0, then ln l > ln l0 and the sequence length l increases. In
contrast, in an insertion–deletion process with dominant deletion,
i.e. (r−d) < 0, then ln l < ln l0 and the sequence length l decreases.

4. Development of the research software GETEC

We present here the different functionalities of the research
software GETEC (Genome Evolution by Transformation Expansion
Contraction) freely accessible at http://icube-bioinfo.u-strasbg.fr/
webMathematica/GETEC/ or via the web site http://dpt-info.u-

strasbg.fr/∼michel/ (Fig. 2). It is a major extension of the research
software SEGM (Stochastic Evolution of Genetic Motifs) (Benard
and Michel, 2011). To our knowledge, it is to date the only com-
putational biological software in this evolution field. Thus, a brief

http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
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Fig. 2. Home page of the research software GETEC. Evolution Plots functionalities and Formal Analytical Solutions functionalities are available for the five classes of evolution
models TECt, TECl, Tt, ECt and ECl.
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Fig. 3. Screenshot of the Formal Analytical Solutions interface for the

escription of the GETEC functionalities is given here for the com-
uter user.

.1. Gene evolution models available in the GETEC software

Five gene evolution models are proposed in the GETEC soft-
are to compute evolution of occurrence probabilities of genetic
otifs. The most general models are the substitution, insertion and

eletion models TECt (Transformation Expansion Contraction; Eq.
3.2)) at time t and TECl (Transformation Expansion Contraction;
q. (3.3)) at sequence length l. The particular models are the “sub-
titution only” model Tt (Transformation; Eq. (3.4)) at time t and
he “insertion–deletion only” models ECt (Expansion Contraction;
q. (3.5)) at time t and ECl (Expansion Contraction; Eq. (3.6)) at
equence length l. For the five models TECt, TECl, Tt, ECt and ECl,
ormal and numerical analytical solutions and evolution plots are
vailable in the Evolution Plots functionality and the general for-
al analytical solutions are given in the Formal Analytical Solutions

unctionality.

.2. Size of genetic motifs
The computation complexity (time and space) of the analyti-
al solutions depend on the gene evolution model and the motif
ize. For the general models TECt and TECl, the genetic motif sizes
llowed are length 1, i.e. the four genetic motifs {A, . . ., T}, to 4, i.e.
l TECt. Example with the dinucleotide GT in Standard output format.

the 256 genetic motifs {AAAA, . . ., TTTT}. For the particular models
Tt, ECt and ECl, the genetic motifs can have a size up to 5, i.e. the
1024 genetic motifs {AAAAA, . . ., TTTTT}. This motif limitation is not
related to the mathematical model but to the GETEC software which
is currently hosted on a simple PC with a Core i7-4770 at 3.4 GHz
and 8 Go RAM.

4.3. Formal Analytical Solutions functionality

The Formal Analytical Solutions functionality proposes the gen-
eral formal analytical solution of one particular genetic motif for
the models TECt, Tt and ECt at time t≥0 (in the direct evolution
direction), and for the models TECl and ECl at sequence length l≥ l0
when (r−d)≥0. An example with the dinucleotide GT for the model
TECt is given in Fig. 3.

For each model, three options permit to obtain the general for-
mal analytical solutions: choice of the motif size n; choice of the
genetic motif among the 4n possible motifs; and choice of the out-
put format (Standard, C, Fortran or TeX) for the solution which is
displayed in the Results interface and can be saved in a text file.

4.4. Evolution Plots functionality
The Evolution Plots functionality allows for the five models
TECt, TECl, Tt, ECt and ECl to compute the analytical occurrence
probabilities of genetic motifs and plot their evolution at time t
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ig. 4. Screenshot of the Evolution Plots interface for the model TECt: selection of
ccurrence probabilities, the motif insertion rates and the deletion rate.

r sequence length l. An example for the model TECt is shown in
ig. 4.

.4.1. Initial motif occurrence probabilities, motif insertion rates
nd deletion rate

The first user step consists in selecting the genetic motif size n
nd uploading a parameter file containing the initial motif occur-
ence probabilities, the motif insertion rates and the deletion rate.
n example file of initial dinucleotide occurrence probabilities,
inucleotide insertion rates and deletion rate for the model TECl

s presented in Fig. 5.
This file must contain 4n lines, i.e. one line per motif of size n.

hatever the model chosen, the two first elements of each line k,
≤ k≤4n, are the type and the initial occurrence probability of the
th motif of size n in lexicographical order. These 4n initial motif
ccurrence probabilities in the five models TECt, TECl, Tt, ECt and
Cl are the elements of the vectors P(0) in Eq. (3.2), P(l0) in Eq. (3.3),
(0) in Eq. (3.4), P(0) in Eq. (3.5) and P(l0) in Eq. (3.6), respectively.

n the four models TECt, TECl, ECt and ECl, the two next elements
f a line k are the type and the insertion rate of the kth motif of
ize n. These 4n motif insertion rates in the four models TECt, TECl,

Ct and ECl are the elements of the vector R in Eqs. (3.2), (3.3),
3.5) and (3.6), respectively. In the two models TECl and ECl, the last
wo elements of the first line are the symbol “d” and the deletion
ate. This deletion rate in the two models TECl and ECl is the term

ig. 5. Three first lines of an example parameter file of initial dinucleotide occur-
ence probabilities, dinucleotide insertion rates and deletion rate for the model TECl.
lement separator is a tabulation. Values can be rational, decimal or both.
netic motif size (1–4) and upload of the parameter file containing the initial motif

d in Eqs. (3.3) and (3.6), respectively. Note that for each line the
element separator is a tabulation. A link to a pattern parameter file
is available in the Evolution Plots Upload interface for each model
and motif size (line above the submit button in Fig. 4).

According to the model chosen, different validity conditions on
the initial motif occurrence probabilities, motif insertion rates and
deletion rate are given (Fig. 4).

Remark 9. Initial motif occurrence probabilities, substitution,
insertion and deletion parameters, and time value can be given in
decimal or rational format or both. Exact analytical solutions are
obtained when all the values are rational.

Remark 10. The deletion process, i.e. the deletion rate d, is not
involved in the three models TECt (Eq. (3.2)), Tt (Eq. (3.4)) and ECt
(Eq. (3.5)). Thus, with these three models, there is no deletion rate
in the parameter file.

The values of the parameter file, after its upload, are verified by
GETEC, e.g. a probability value must be decimal or rational in the
interval [0,1], the sum of probabilities must be equal to 1, the inser-
tion and deletion values must be positive, etc. If errors are detected,
descriptive messages are displayed and the user is invited to upload
a new parameter file. In the absence of error, the main interface
of the Evolution Plots functionality is displayed with the differ-
ent functionalities listed below according to the selected model
(Fig. 6).

4.4.2. Functionalities for the models TECt, Tt and ECt at time t
4.4.2.1. Time direction (models TECt, Tt, ECt). The computation of

the analytical occurrence probabilities P(t) (Eq. (3.2)), P(t) (Eq.
(3.4)) and P(t) (Eq. (3.5)) at time t can be carried out in direct
(past–present) or inverse (present–past) time directions (Fig. 6).
By default, the analytical solutions are computed in direct time
direction.
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Fig. 6. Main interface of the Evolution Plots functionality for the model TECt: (1) choice of the evolution time direction; (2) selection of the number of substitution parameters
per motif site; and (3) input values of substitution parameters (decimal or rational format or both).
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the models TECt and Tt (see Section 4.4.2.3).
ig. 7. Main interface of the Evolution Plots functionality for the model TECt: (4)
hoice of the genetic motifs; (5) selection of the output format; (6) time interval for
lots (optional); (7) y-axis scale (optional); and (8) time value (optional).

.4.2.2. Number of substitution parameters per site (models TECt, Tt).
he number of substitution parameters per motif site s, 1≤ s≤n,
an be chosen (Fig. 6).

The 3-parameter substitution model (Kimura, 1981) distin-
uishes the three types of substitution for each motif site s:
ransitions as (A←→G and C←→ T), transversions I bs (A←→ T and
←→G) and transversions II cs (A←→C and G←→ T). This most
eneral substitution model is chosen by default.

The particular substitution models of the 3-parameter model
an also be selected. The 2-parameter substitution model (Kimura,
980) has transitions us = as (A←→G and C←→ T) and transversions
s/2 = bs = cs (A←→C, A←→ T, C←→G and G←→ T) for each motif
ite s. The 1-parameter substitution model (Jukes and Cantor, 1969)
as substitutions ps/3 = as = bs = cs for each motif site s.
.4.2.3. Values of substitution parameters (models TECt, Tt). The val-
es of substitution parameters can be set formal, rational or decimal
r any combination type (Fig. 6). They must be positive and their

Fig. 8. Analytical solutions with the model TECt for the d
s 135 (2015) 15–34

sum must be less than or equal to 1, otherwise descriptive error
messages are displayed. By default, they are left formal.

4.4.2.4. Genetic motifs (models TECt, Tt, ECt). Evolution of up to four
genetic motifs can be studied simultaneously (Fig. 7). By default,
only one genetic motif is selected, the motif An = A· · ·A︸︷︷︸

n

for the cho-

sen size n.

4.4.2.5. Output format (models TECt, Tt, ECt). The analytical occur-
rence probabilities can be displayed in four different formats to
facilitate their integration in external user-programs: Standard
(human-readable), C, Fortran and TeX (Fig. 7). By default, the Stan-
dard format is selected (Fig. 8).

4.4.2.6. Optional functionalities for plots and numerical solutions
(models TECt, Tt, ECt). When all the model parameters are non-
formal, two evolution plots are displayed as function of time: a plot
drawing the evolution curves of the studied genetic motifs, i.e. con-
taining up to four curves, and a plot drawing the evolution curve of
their sum (see an example in Fig. 9).

(i) Time interval for plots (Fig. 7): the parameters tmin and tmax of
the time interval [tmin, tmax] can be chosen. They must always
be positive in the direct and inverse time directions. By default,
plots are drawn in the time interval [tmin, tmax] = [0, 5].

(ii) Scale of y-axis for plots (Fig. 7): the vertical zoom can be
selected: full validity range or automatic rescale.

(iii) Time value (Fig. 7): a particular numerical value for the time
t≥0 gives the numerical solutions of the occurrence probabil-
ities of the studied genetic motifs and their probability sum.

4.4.3. Functionalities for the models TECl and ECl at sequence
length l
4.4.3.1. Initial sequence length (models TECl, ECl). The analytical
occurrence probabilities P(l) (Eq. (3.3)) and P(l) (Eq. (3.6)) at
sequence length l are functions of the initial sequence length l0
which can be formal or a strictly positive integer. By default, the
initial sequence length l0 is left formal.

4.4.3.2. Number of substitution parameters per site (model TECl).
Similar to the models TECt and Tt (see Section 4.4.2.2).

4.4.3.3. Values of substitution parameters (model TECl). Similar to
4.4.3.4. Genetic motifs (models TECl, ECl). Similar to the models
TECt, Tt and ECt (see Section 4.4.2.4).

inucleotides AA and AC in Standard output format.
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ig. 9. Plots with the model TECt drawing the evolution curves for the dinucleotides
A and AC (up) and the evolution curve of their sum (bottom).

.4.3.5. Output format (models TECl, ECl). Similar to the models
ECt, Tt and ECt (see Section 4.4.2.5).

.4.3.6. Optional functionalities for plots and numerical solutions

models TECl, ECl). When all the model parameters are non-formal,
wo evolution plots are displayed as function of sequence length:
plot drawing the evolution curves of the studied genetic motifs,
Fig. 10. File Prob0TtL1.txt of initial occurrence probabilities of nucleotides of the
model Tt (Transformation) at time t.

i.e. containing up to four curves, and a plot drawing the evolution
curve of their sum.

(i) Sequence length interval for plots: the parameters lmin and lmax

of the sequence length interval [lmin, lmax] can be chosen. They
must be strictly positive integers. By default, plots are drawn
in the sequence length interval [lmin, lmax] = [1, 10].

(ii) Scale of y-axis for plots: similar to the models TECt, Tt and ECt
(see Section 4.4.2.6).

(iii) Sequence length value: a particular integer value for the
sequence length l > 0 gives the numerical solutions of the
occurrence probabilities of the studied genetic motifs and their
probability sum.

5. A bioinformatics application

We provide the detailed procedures of the research software
GETEC to retrieve the classical formulas of the 1-parameter sub-
stitution model (Jukes and Cantor, 1969) and the 2-parameter
substitution model (Kimura, 1980). The functionality Evolution
Plots of the model Tt (Transformation; Eq. (3.4)) at time t allows
these classical analytical solutions to be retrieved easily.

5.1. Analytical solutions of the 2-parameter substitution model
(Kimura, 1980) using the research software GETEC

The 2-parameter substitution model (Kimura, 1980) is based on
a symmetric substitution matrix with two formal parameters for
the nucleotide transitions and transversions (Section 4.4.2.2).

5.1.1. First user interface of the model Tt
The following parameters must be selected:

1. Choose the motif size: Nucleotides (1).
2. Upload the initial occurrence probability file: the file

Prob0TtL1.txt (Fig. 10) must contain an initial nucleotide
occurrence probability equal to 1, e.g. PA(0) = 1, and thus, the
three other initial nucleotide occurrence probabilities are equal
to 0, i.e. PC (0) = PG(0) = PT (0) = 0.

After having pressed the submit button, a second user interface
is available.

5.1.2. Second user interface of the model Tt
The following parameters must be selected:

1. Evolutionary time direction: Direct (past -> present). The user
has two possible ways to solve this problem.
(i) With the model Tt at three parameters:

2. Number of substitution parameters per motif site: 3 parameters.
3. Substitution parameters: a[1]: a, b[1]: b and v[1]: b.
(ii) With the model Tt at two parameters:
2. Number of substitution parameters per motif site: 2 parameters.
3. Substitution parameters: u[1]: a and v[1]: 2*b.
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Fig. 12. The classical analytical solutions of the 1-parameter substitution model

eter.
3. Substitution parameters: p[1]: 3*a.
ig. 11. The classical analytical solutions of the 2-parameter substitution model
Kimura, 1980; Eq. (1.10) in Yang, 2006) retrieved by the research software GETEC.

Note that the formal writing “v[1]: 2b” is also possible. Note also
hat the formal writing “v[1]: 2*v” or “v[1]: 2v” is not allowed as a

athematica recursion is generated.

emark 11. For the 2-parameter substitution model (Kimura,
980), the parameters are defined as follows: transitions us = as

A←→G and C←→ T) and transversions vs/2 = bs = cs (A←→C,
←→ T, C←→G and G←→ T) for each motif site s in order to express

his model has a particular case of 3-parameter substitution model
Kimura, 1981) (see Section 4.4.2.2). Thus, in order to retrieve the
ormulas of the 2-parameter substitution model with the model Tt
t two parameters, transversions must be multiplied by 2.

The end of the procedure is identical for the model Tt at three
nd two parameters.

. Choice of the probabilities to study and plot: motif A motif C
motif G motif T.

. Choice of the analytical solutions output format: Standard.

The submit button leads to the following results (Fig. 11) which
re the classical analytical solutions of the 2-parameter substitution
odel (Kimura, 1980; Eq. (1.10) in Yang, 2006). Note that Mathe-
atica puts some positive exponential terms in denominator.

.2. Analytical solutions of the 1-parameter substitution model
Jukes and Cantor, 1969) using the research software GETEC

The 1-parameter substitution model (Jukes and Cantor, 1969) is
ased on a symmetric substitution matrix with one formal param-
ter for all nucleotide substitution types (Section 4.4.2.2).

.2.1. First user interface of the model Tt
The procedure is identical to the first user interface of the model
t in Section 5.1.1.

.2.2. Second user interface of the model Tt
The procedure is similar to the second user interface of the

odel Tt in Section 5.1.2 with three possible ways to solve this
roblem.
(Jukes and Cantor, 1969; Eq. (1.3) in Yang, 2006) retrieved by the research software
GETEC.

(i) With the model Tt at three parameters:
2. Number of substitution parameters per motif site: 3 param-

eters.
3. Substitution parameters: a[1]: a, b[1]: a and v[1]: a.

(ii) With the model Tt at two parameters:
2. Number of substitution parameters per motif site: 2 param-

eters.
3. Substitution parameters: u[1]: a and v[1]: 2*a.

(iii) With the model Tt at one parameter:
2. Number of substitution parameters per motif site: 1 param-
Fig. 13. Partial screenshot of the Evolution Plots functionality of the GETEC software
for the models Tt and TECt showing the substitution parameter settings cs2 and csi2,
respectively: 1-parameter substitution model (top of the figure), substitution rates
equal to 1 for the site 2 and equal to 0 for the sites 1 and 3. The bottom of the figure
shows the selection of the four codons GGA, GGC, GGG and GGT coding the amino
acid glycine.
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Fig. 14. Evolution curves in bacterial genes of the four codon occurrence proba-
bilities PGGA(t),PGGC (t),PGGG(t) and PGGT (t) (top figure) and their probability sum
PGly(t) of glycine (bottom figure) in the time interval [0,5] with the model Tt and the
substitution configuration cs1 (substitution rates equal to 1 for the codon site 1 and
equal to 0 for the codon sites 2 and 3).

w
s
2

Fig. 15. Evolution curves in bacterial genes of the four codon occurrence probabili-
ties PGGA(t), PGGC(t), PGGG(t) and PGGT(t) (top figure) and their probability sum PGly(t)
of glycine (bottom figure) in the time interval [0,5] with the model TECt and the
The submit button leads to the following results (Fig. 12)
hich are the classical analytical solutions of the 1-parameter
ubstitution model (Jukes and Cantor, 1969; Eq. (1.3) in Yang,
006).
substitution–insertion configuration csi1 (substitution rates equal to 1 for the codon
site 1 and equal to 0 for the codon sites 2 and 3, and codon insertion rate according
to Eq. (6.1)).

6. A biological application: evolution of the amino acid
glycine in bacterial genes
The research software GETEC allows evolution of genetic motifs
to be studied. Thus, it is a general approach as several databases of
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ig. 16. Evolution curves in bacterial genes of the occurrence probabilitiesPGly(t) an
s1, cs2 and cs3) and TECt (substitution–insertion configurations csi1, csi2 and csi3).

enetic motifs are available and many software have been devel-
ped for identifying genetic motifs, e.g. the MEME Suite (Bailey
t al., 2009). As an example of biological application with the
ETEC software, we propose here an evolution study of glycine
nd its four encoded codons GGA, GGC, GGG and GGT, in bac-
erial genes. The main purpose of this example is to provide a
ketch of the consequences of adding an insertion process beside
site-specific substitution process on the evolution of glycine and

ts four encoded codons. Thus, the models Tt (Transformation) at
ime t and TECt (Transformation Expansion Contraction) at time t
re used for this application. The occurrence probability PGly(t) of
lycine at time t in the model Tt (Eq. (3.4)) is the sum of occur-
ence probabilities of the four codons coding glycine at time t,
.e. PGly(t) = PGGA(t)+ PGGC (t)+ PGGG(t)+ PGGT (t). The occurrence
robability PGly(t) of glycine at time t in the model TECt (Eq. (3.2))

s defined similarly.

.1. Codon usage in bacterial genes

The codon usage chosen in this example on a large population
f bacterial genes (7,851,762 genes, 2,481,566,882 trinucleotides,
rom Table 2a in Michel, 2015) is given in Appendix C. It is
sed for defining the initial vectors P(0) = P(0) of codon occur-
ence probabilities at time t = 0 in the models Tt (Eq. (3.4))
nd TECt (Eq. (3.2)). Thus, the initial occurrence probability
Gly(0) = PGly(0) of glycine at time 0 in both models Tt and
ECt is equal to PGly(0) = PGGA(0)+ PGGC (0)+ PGGG(0)+ PGGT (0) =
.0123+ 0.0335+ 0.0122+ 0.0176 = 0.0756 and is the initial
alue of glycine in the plot curves (see the Figs. 14 and 15).

.2. Parameter settings of the models Tt and TECt

Both models Tt and TECt involve a site-specific substitution
rocess. For the current example, we choose the 1-parameter sub-
titution model (Jukes and Cantor, 1969) extended to codons, i.e.
ne substitution parameter per codon site. The model TECt also
nvolves an insertion process. For the current example, we set the
odon-specific insertion rate ri as follows

i =
{

1/64 if i ∈ {GGA, GGC, GGG, GGT}
0 otherwise

. (6.1)
et cs (s standing for substitution) and csi (si standing for
ubstitution–insertion) be the two configurations of the models
t and TECt, respectively. Moreover, since the 1-parameter substi-
ution model is chosen, one substitution parameter has to be set
t) of glycine in the time interval [0,5] with the models Tt (substitution configurations

per codon site. We make the codon sites to evolve one at a time
for both configurations. Thus, three parameter settings per config-
uration are defined: (i) for the substitution configuration cs: cs1
(substitution rates equal to 1 for the codon site 1 and equal to 0 for
the codon sites 2 and 3), cs2 (substitution rates equal to 1 for the
codon site 2 and equal to 0 for the codon sites 1 and 3) and cs3 (sub-
stitution rates equal to 1 for the codon site 3 and equal to 0 for the
codon sites 1 and 2); (ii) for a substitution–insertion configuration
csi: csi1, csi2 and csi3 defined similarly to cs1, cs2 and cs3, respec-
tively, and with a codon insertion rate according to Eq. (6.1). Fig. 13
shows the substitution parameter settings cs2 and csi2 for the mod-
els Tt and TECt, respectively, in the Evolution Plots functionality of
the GETEC software.

6.3. Results

Evolution in bacterial genes of the occurrence probabilities of
glycine and its four encoded codon in the models Tt and TECt
are studied for the six parameter settings csj and csij, 1≤ j≤3,
respectively. Appendix D gives the numerical solutions of occur-
rence probabilities PGly(t) and PGly(t) of glycine in bacterial genes
at time t in the models Tt and TECt, respectively, with the six
parameter settings csj and csij, respectively. Fig. 14 generated by
the Evolution Plots functionality of the GETEC software represents
the evolution curves in bacterial genes of the four codon occur-
rence probabilities PGGA(t),PGGC (t),PGGG(t) and PGGT (t), and their
probability sum PGly(t) of glycine in the time interval [0,5] with
the model Tt and the substitution configuration cs1 (substitution
rates equal to 1 for the codon site 1 and equal to 0 for the codon
sites 2 and 3), chosen as example. Similarly, Fig. 15 represents the
evolution curves in bacterial genes of the four codon occurrence
probabilities PGGA(t), PGGC(t), PGGG(t) and PGGT(t), and their prob-
ability sum PGly(t) of glycine in the time interval [0,5] with the
model TECt and the substitution–insertion configuration csi1 (sub-
stitution rates equal to 1 for the codon site 1 and equal to 0 for
the codon sites 2 and 3, and codon insertion rate according to Eq.
(6.1)). Overall, with the substitution model Tt and cs1, the five prob-
abilitiesPGGA(t),PGGC (t),PGGG(t),PGGT (t) andPGly(t) decrease with
time t up to a horizontal asymptote (Fig. 14). In contrast, with the
substitution–insertion model TECt and csi1, these five probabilities
PGGA(t), PGGC(t), PGGG(t), PGGT(t) and PGly(t) increase, after a mini-

mum for PGGC(t), with time t and tend to a higher limit (not shown
in Fig. 15).

Fig. 16 summarizes evolution of the occurrence probabilities
PGly(t) and PGly(t) of glycine in bacterial genes with the substitution
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with I1 the identity matrix of size (4,4). Therefore, by definition of
the Kronecker sum,⎛

⎜ 0 cn−s+1 an−s+1 bn−s+1
⎞
⎟

E. Benard et al. / BioS

nd substitution–insertion models Tt and TECt, respectively. Evo-
utionary meaning of curves can be analyzed per evolution process
r per motif site.

.3.1. Evolution process comparison
The occurrence probability of glycine in bacterial genes at any

ime t is greater under substitution–insertion (model TECt) than
nder “substitution only” (model Tt), i.e. PGly(t) > PGly(t) for each
ouple of configurations (csj, csij), 1≤ j≤3 (Fig. 16), the difference
esulting from the additional insertion process as shown previously
or the couple (cs1, csi1) (Figs. 14 and 15).

.3.2. Motif site comparison
Under “substitution only” (model Tt and cs), the occurrence

robabilityPGly(t) of glycine in bacterial genes for time t in [0, 5] has
he lowest value with the 1st codon site and the highest value with
he 2nd codon site (Fig. 16). Under substitution–insertion (model
ECt and csi), PGly(t) in bacterial genes for time t in [0,0.6] has a
imilar probability behavior per site to “substitution only”, but for
ime t in [0.6, 5], PGly(t) has the highest value with the 3rd codon
ite (Fig. 16).

. Conclusion

The GETEC model developed here is a model of gene evolution
ased on substitution, insertion and deletion of genetic motifs. It
epresents a significant mathematical step for unifying two classes
f evolution models which have been developed separately for
0 years: the models of substitution, insertion and deletion of
ucleotides and the models of symmetric substitution of genetic
otifs (see Introduction). It allows the analysis of genetic motif

volution without alignment or phylogenetic inference. The math-
matical construction of the GETEC model has no relation with the
athematical formulation of alignment and phylogenetic meth-

ds. Indeed, the alignment methods (global, local, etc.) rely on a
istance or similarity associated to residue costs, the phylogenetic
ethods are commonly based on parsimony, maximum likelihood

ML), MCMC-based Bayesian inference and distance matrix while
he GETEC model is based on a probabilistic differential equation.
hus, the GETEC model is an alternative to the alignment and phylo-
enetic methods for studying gene and genome evolution as it can
nalyze evolution of genetic motifs in two time directions (past to
resent and present to past).

So far, the GETEC model is not able to derive expressions of
he genetic motif occurrence probabilities as a function of time or
equence length with insertion, deletion and asymmetric instan-
aneous substitution probability matrices M = [mij]1≤i,j≤K

where
he substitution probability Pr(j→ i) = mij of residue j into residue
differs from the substitution probability Pr(i→ j) = mji of residue
into residue j. Asymmetric substitution matrices constitute an

nteresting modelling tool for analyzing asymmetric substitution
ates which may occur more frequently in some genomes. The
DISL−HKY model (Lèbre and Michel, 2012) allows to derive
ucleotide occurrence probabilities as function of time or sequence

ength with insertion, deletion and asymmetric instantaneous sub-
titution probability matrices M, e.g. with the classical substitution
atrix HKY (Hasegawa et al., 1985). However, its extension to

enetic motif occurrence probabilities is an open mathematical
roblem.

The research software GETEC we have developed allows the
omputation of the analytical solutions of this new model and

ts particular cases: models TECt (Transformation Expansion Con-
raction) at time t, TECl (Transformation Expansion Contraction)
t sequence length l, Tt (Transformation) at time t, ECt (Expansion
ontraction) at time t and ECl (Expansion Contraction) at sequence
s 135 (2015) 15–34 31

length l. It is freely accessible at http://icube-bioinfo.u-strasbg.
fr/webMathematica/GETEC/ or via the web site http://dpt-info.u-
strasbg.fr/∼michel/. It allows biologists and bioinformaticians to
develop their own gene evolution models. The evolution analy-
sis of nucleotides can now be extended to the evolution study of
genetic motifs in two ways: (i) motifs on a given site in a set of
sequences, e.g. the dinucleotides in the splice sites, the TATA box,
etc., (ii) motifs in one or several sequences (content), e.g. codons in
genes, amino acids, etc. In future, we will apply the GETEC model
to study evolution of circular codes and bijective genetic codes
(Michel, 2014).
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Appendix A.

A.1. Proof of Proposition 5

Proof. From Eq. (2.7), the substitution rate matrix As for motifs of
size s, with 1≤ s≤n, can be decomposed into a sum of two matrices
as follows

As =

⎛
⎜⎜⎜⎜⎝

As−1 cn−s+1Is−1 an−s+1Is−1 bn−s+1Is−1

cn−s+1Is−1 As−1 bn−s+1Is−1 an−s+1Is−1

an−s+1Is−1 bn−s+1Is−1 As−1 cn−s+1Is−1

bn−s+1Is−1 an−s+1Is−1 cn−s+1Is−1 As−1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 cn−s+1 an−s+1 bn−s+1

cn−s+1 0 bn−s+1 an−s+1

an−s+1 bn−s+1 0 cn−s+1

bn−s+1 an−s+1 cn−s+1 0

⎞
⎟⎟⎟⎟⎠⊗ Is−1

+

⎛
⎜⎜⎜⎜⎝

As−1

As−1

As−1

As−1

⎞
⎟⎟⎟⎟⎠

where the diagonal block matrix with As−1 on the main diagonal is
a matrix of size (4s−1, 4s−1). Then,

As =

⎛
⎜⎜⎜⎜⎝

0 cn−s+1 an−s+1 bn−s+1

cn−s+1 0 bn−s+1 an−s+1

an−s+1 bn−s+1 0 cn−s+1

b a c 0

⎞
⎟⎟⎟⎟⎠⊗ Is−1 + I1 ⊗ As−1
As =
⎜⎜⎜⎝

cn−s+1 0 bn−s+1 an−s+1

an−s+1 bn−s+1 0 cn−s+1

bn−s+1 an−s+1 cn−s+1 0

⎟⎟⎟⎠⊕ As−1. (A.1)

http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
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oreover,

Nn−s+1 =

⎛
⎜⎜⎜⎜⎝

0 cn−s+1 an−s+1 bn−s+1

cn−s+1 0 bn−s+1 an−s+1

an−s+1 bn−s+1 0 cn−s+1

bn−s+1 an−s+1 cn−s+1 0

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

dn−s+1 0 0 0

0 dn−s+1 0 0

0 0 dn−s+1 0

0 0 0 dn−s+1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 cn−s+1 an−s+1 bn−s+1

cn−s+1 0 bn−s+1 an−s+1

an−s+1 bn−s+1 0 cn−s+1

bn−s+1 an−s+1 cn−s+1 0

⎞
⎟⎟⎟⎟⎠+ dn−s+1 × I1

ith dn−s+1 =− (an−s+1 + bn−s+1 + cn−s+1). Then, As (Eq. (A.1)) can be
xpressed as function of Ns as follows

s = (Nn−s+1 − dn−s+1 × I1)⊕ As−1.

hus,

An = ⊕n
s=1 (Ns − ds × I1)+ A0 × In

= ⊕n
s=1Ns −⊕n

s=1 (ds × I1)+ A0 × In

= ⊕n
s=1Ns −

n∑
s=1

ds × In + A0 × In

= ⊕n
s=1Ns

s A0 = −
∑n

s=1 (as + bs + cs) =
∑n

s=1ds. The recursive construction
f the motif substitution rate matrix An can be written as a
ronecker sum of the nucleotide substitution rate matrices Ns asso-
iated with each site s (1≤ s≤n) of the motifs of size n.�

.2. Construction of the dinucleotide substitution matrix with the

ronecker operators

Construction using Eq. (2.10) of the dinucleotide substitution
atrix A2 (16,16) with the Kronecker operators applied to two
atrices N1 and N2 of size (4,4) associated to the nucleotide sub-

titution matrices at dinucleotide sites 1 and 2, respectively.

1 ⊕ N2 =

⎛
⎜⎜⎜⎜⎝

d1 c1 a1 b1

c1 d1 b1 a1

a1 b1 d1 c1

b1 a1 c1 d1

⎞
⎟⎟⎟⎟⎠⊕

⎛
⎜⎜⎜⎜⎝

d2 c2 a2 b2

c2 d2 b2 a2

a2 b2 d2 c2

b2 a2 c2 d2

⎞
⎟⎟⎟⎟⎠

ith d1 = − (a1 + b1 + c1) and d2 = − (a2 + b2 + c2). Then,
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N1 ⊕ N2 =

⎛
⎜⎜⎜⎜⎝

d1 c1 a1 b1

c1 d1 b1 a1

a1 b1 d1 c1

b1 a1 c1 d1

⎞
⎟⎟⎟⎟⎠⊗

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠⊗

⎛
⎜⎜⎜⎜⎝

d2 c2 a2 b2

c2 d2 b2 a2

a2 b2 d2 c2

b2 a2 c2 d2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

d1I1 c1I1 a1I1 b1I1

c1I1 d1I1 b1I1 a1I1

a1I1 b1I1 d1I1 c1I1

b1I1 a1I1 c1I1 d1I1

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

N2 0 0 0

0 N2 0 0

0 0 N2 0

0 0 0 N2

⎞
⎟⎟⎟⎟⎠

where I1 is the identity matrix of size (4, 4).
Then,

N1 ⊕ N2 =

⎛
⎜⎜⎜⎜⎝

d1I1 + N2 c1I1 a1I1 b1I1

c1I1 d1I1 + N2 b1I1 a1I1

a1I1 b1I1 d1I1 + N2 c1I1

b1I1 a1I1 c1I1 d1I1 + N2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c2 a2 b2 c1 0 0 0 a1 0 0 0 b1 0 0 0

c2 d b2 a2 0 c1 0 0 0 a1 0 0 0 b1 0 0

a2 b2 d c2 0 0 c1 0 0 0 a1 0 0 0 b1 0

b2 a2 c2 d 0 0 0 c1 0 0 0 a1 0 0 0 b1

c1 0 0 0 d c2 a2 b2 b1 0 0 0 a1 0 0 0

0 c1 0 0 c2 d b2 a2 0 b1 0 0 0 a1 0 0

0 0 c1 0 a2 b2 d c2 0 0 b1 0 0 0 a1 0

0 0 0 c1 b2 a2 c2 d 0 0 0 b1 0 0 0 a1

a1 0 0 0 b1 0 0 0 d c2 a2 b2 c1 0 0 0

0 a1 0 0 0 b1 0 0 c2 d b2 a2 0 c1 0 0

0 0 a1 0 0 0 b1 0 a2 b2 d c2 0 0 c1 0

0 0 0 a1 0 0 0 b1 b2 a2 c2 d 0 0 0 c1

b1 0 0 0 a1 0 0 0 c1 0 0 0 d c2 a2 b2

0 b1 0 0 0 a1 0 0 0 c1 0 0 c2 d b2 a2

0 0 b1 0 0 0 a1 0 0 0 c1 0 a2 b2 d c2

0 0 0 b1 0 0 0 a1 0 0 0 c1 b2 a2 c2 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A2.

with d = − (a1 + b1 + c1 + a2 + b2 + c2).

Appendix B. Occurrence probability of a given genetic
motif i with the models TECl, Tt, ECt and ECl

Model TECl (Transformation Expansion Contraction) at
sequence length l. From Eq. (3.3), the occurrence probability
Pi(l) of a given genetic motif i at sequence length l is

Pi(l) =
(

4n∑ 1
Ok[i, ]

)
·R
k=1
r + 1− �k

+
4n∑

k=1

Ok[i, ] ·
(

P(l0)− 1
r + 1− �k

R
)(

l

l0

)− r+1−�k
r−d

.
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odel Tt (Transformation) at time t. From Eq. (3.4), the occurrence
robability Pi(t) of a given genetic motif i at time t is

i(t) =
(

4n∑
k=1

Ok[i, ]e−(1−�k)t

)
·P(0).

odel ECt (Expansion Contraction) at time t. From Eq. (3.5), the
ccurrence probability Pi(t) of a given genetic motif i at time t is

i(t) = R[i]
r
+
(

Pi(0)− R[i]
r

)
e−rt .

odel ECl (Expansion Contraction) at sequence length l. From Eq.
3.6), the occurrence probability Pi(l) of a given motif i at sequence
ength l is

i(l) =
R[i]

r
+
(

Pi(l0)− R[i]
r

)(
l

l0

)− r
r−d

.

ppendix C. Codon usage in bacterial genes

See Table 1.

able 1
odon usage (%) in bacterial genes (7,851,762 genes, 2,481,566,882 trinucleotides,

rom Table 2a in Michel, 2015). It is used for defining the initial vectors P(0) = P(0)
f codon occurrence probabilities at time t = 0 in the models Tt (Transformation; Eq.
3.4)) and TECt (Transformation Expansion Contraction; Eq. (3.2)).

Codon i Pi(0) Codon i Pi(0) Codon i Pi(0) Codon i Pi(0)

AAA 2.87 CAA 1.61 GAA 3.47 TAA 0.00
AAC 1.79 CAC 1.05 GAC 2.63 TAC 1.32
AAG 1.97 CAG 2.18 GAG 2.62 TAG 0.00
AAT 1.93 CAT 1.06 GAT 2.80 TAT 1.62
ACA 1.00 CCA 0.77 GCA 1.69 TCA 0.77
ACC 2.12 CCC 1.08 GCC 3.54 TCC 0.99
ACG 1.39 CCG 1.88 GCG 3.06 TCG 1.10
ACT 0.90 CCT 0.81 GCT 1.60 TCT 0.86
AGA 0.54 CGA 0.42 GGA 1.23 TGA 0.01
AGC 1.39 CGC 2.25 GGC 3.35 TGC 0.56
AGG 0.32 CGG 1.08 GGG 1.22 TGG 1.25
AGT 0.81 CGT 1.10 GGT 1.76 TGT 0.38
ATA 0.89 CTA 0.56 GTA 1.08 TTA 1.64
ATC 2.71 CTC 1.73 GTC 2.04 TTC 1.94
ATG 2.34 CTG 3.66 GTG 2.58 TTG 1.44
ATT 2.43 CTT 1.28 GTT 1.52 TTT 2.01
ppendix D. Evolution of glycine in bacterial genes

See Table 2.

able 2
ccurrence probabilities PGly(t) and PGly(t) of glycine in bacterial genes at time t in

he models Tt (Transformation; Eq. (3.4)) and TECt (Transformation Expansion Con-
raction; Eq. (3.2)), respectively, with the six configurations csj and csij: substitution
onfigurations cs1 (substitution rates equal to 1 for the codon site 1 and equal to 0
or the codon sites 2 and 3), cs2 (substitution rates equal to 1 for the codon site 2 and
qual to 0 for the codon sites 1 and 3) and cs3 (substitution rates equal to 1 for the
odon site 3 and equal to 0 for the codon sites 1 and 2), and substitution–insertion
onfigurations csi1, csi2 and csi3 defined similarly to cs1, cs2 and cs3, respectively,
nd with a codon insertion rate according to Eq. (6.1).

Model Configuration Solution

Tt cs1 PGly(t) = 0.0441859+ 0.0313821e−4t/3

Tt cs2 PGly(t) = 0.0904434− 0.0148754e−4t/3

Tt cs3 PGly(t) = 0.075568+ 1.73472× 10−18e−4t/3

TECt csi1 PGly(t) = 0.283582−0.00219995e−67t/48 −0.205814e−t/16

TECt csi2 PGly(t) = 0.283582−0.0484575e−67t/48 −0.159557e−t/16

TECt csi3 PGly(t) = 1 +1.73472×10−18e−67t/48 −0.924432e−t/16
s 135 (2015) 15–34 33
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