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We propose here the GETEC (Genome Evolution by Transformation, Expansion and Contraction) model of
gene evolution based on substitution, insertion and deletion of genetic motifs. The GETEC model unifies
two classes of evolution models: models of substitution, insertion and deletion of nucleotides as function
of time (Lebre and Michel, 2010) and sequence length (Lébre and Michel, 2012), and models of symmetric
substitution of genetic motifs as function of time (Benard and Michel, 2011). Evolution of genetic motifs
based on substitution, insertion and deletion is modeled by a differential equation whose analytical solu-
tions give an expression of the genetic motif occurrence probabilities as a function of time or sequence
length, as well as in direct time direction (past-present) or inverse time direction (present-past). Evolu-
tion models with “substitution only”, i.e. without insertion and deletion, and with “insertion and deletion
only”, i.e. without substitution, are particular cases of the GETEC model. We have also developed a research
software for computing the analytical solutions of the GETEC model. It is freely accessible at http://icube-
bioinfo.u-strasbg.fr/webMathematica/GETEC/ or via the web site http://dpt-info.u-strasbg.fr/~michel/.
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1. Introduction

Substitution, insertion and deletion of nucleotides are important
molecular evolution processes. A major challenge for understand-
ing genome and gene evolution is the mathematical analysis of
these three processes.

1.1. Substitution models

Stochastic models of evolution were initially developed to study
the substitution rates of nucleotides (adenine A, cytosine C, gua-
nine G, thymine T). Typically, the substitution process is described
by a differential equation defined by a constant rate substitu-
tion matrix (of size (4,4)) and whose analytical solutions give an
expression of the nucleotide occurrence probabilities as function
of time. The first substitution models were based on symmetric
substitution matrices with one formal parameter for all nucleotide
substitution types (Jukes and Cantor, 1969), two formal parame-
ters for nucleotide transitions and transversions (Kimura, 1980)
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and three formal parameters for transitions and the two types
of transversions (Kimura, 1981). These substitution models were
later generalized to asymmetric substitution matrices (Felsenstein,
1981; Takahata and Kimura, 1981; Hasegawa et al., 1985; Tavaré,
1986; Tamura and Nei, 1993; Yang, 1994; Felsenstein and Churchill,
1996) with an equilibrium distribution different from 1/4 for all
nucleotides.

During the last 25 years, parallel to the growth in complex-
ity of nucleotide substitution matrices, we introduced substitution
matrices for genetic motifs, i.e. matrices of sizes (16,16) for dinu-
cleotides, (64,64) for trinucleotides, etc., and obtained the analytical
solutions of the associated differential equations in various cases.
They were expressed as a mean number of random substitutions
per base site or as function of time with several formal parame-
ters: trinucleotide matrix on the alphabet {R, Y} (R={A, G}, Y={C,
T}) (Arques and Michel, 1993), dinucleotide matrix on the alpha-
bet {A, C, G, T} (Arqués and Michel, 1995) and with 2 x 3 =6 formal
parameters (Michel, 2007c), trinucleotide matrix on the alphabet
{A, C, G, T} with 3 x 1=3 formal parameters (Arqueés et al., 1998,
1999), 3 x 2=6 formal parameters (Frey and Michel, 2006) and
3 x3=9 formal parameters (Michel, 2007a; Benard and Michel,
2009). The development of these models, i.e. the determination
of analytical solutions of the differential equations, required sev-
eral years, mainly due to two facts: (i) the analytical expression of
eigenvalues and eigenvectors of motif substitution matrices can-
not be computed in a straightforward way and required some


dx.doi.org/10.1016/j.biosystems.2015.05.006
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2015.05.006&domain=pdf
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
http://dpt-info.u-strasbg.fr/~michel/
mailto:emmanuel.benard@tuebingen.mpg.de
mailto:slebre@unistra.fr
mailto:c.michel@unistra.fr
dx.doi.org/10.1016/j.biosystems.2015.05.006

16 E. Benard et al. / BioSystems 135 (2015) 15-34

tedious algebra manipulation, in particular linear combination of
the determinant and block-matrix factorization (Tian and Styan,
2001); and (ii) the limited power of formal calculus, e.g. Math-
ematica, at that time. This problem has recently been solved
by using Kronecker operators (sum and product) which allowed
us to generalize the 3-parameter symmetric substitution matrix
(Kimura, 1981) to substitution matrices for motifs of any (finite)
size (Benard and Michel, 2011). Motif substitution matrices with
constant formal parameters were also generalized to time depen-
dent parameters (Bahi and Michel, 2004), then later to chaotic
constant parameters (Bahi and Michel, 2008) and finally to chaotic
time dependent parameters (Bahi and Michel, 2009). Notably, in
the particular case of 3-letter motifs, these approaches can be used
for codon substitution models (see Anisimova and Kosiol, 2009, for
areview).

1.2. Substitution, insertion, deletion models

In addition, some molecular evolution models were extended to
the insertion and deletion of residues (nucleotides, amino acids) as
well as residue substitution. These substitution-insertion-deletion
(SID) models can be divided into three classes. A pioneering
paper by Thorne et al. (1991) proposed a time-reversible Markov
model for insertions and deletions (termed the TKF91 model). This
SID model represents sequence evolution in two steps. First, the
sequence is subjected to an insertion-deletion process which is
homogeneous over all sites in the sequence. Second, conditional on
the result of the insertion-deletion process, a substitution process
is applied to the two sequences. The total process is time-reversible
whenever the substitution process is. Some drawbacks of the pre-
liminary TKF91 model were improved by the same authors with the
TKF92 version of the model (Thorne et al., 1992). Later, the origi-
nal SID models were refined in many ways, for instance by Metzler
(2003) and Miklos et al. (2004) (see e.g. Miklos et al., 2009, for a
review). A second class of SID models was introduced by McGuire
et al. (2001) who defined a Markov model by extending the F84
substitution matrix (Felsenstein and Churchill, 1996) of size four
comprising the four nucleotides to a substitution matrix of size
five with one additional line and one additional column for the gap
character involved in the alignment. Then, an insertion is described
by the substitution of a gap by a nucleotide whereas a deletion
amounts to the substitution of a nucleotide by a gap. The inser-
tion rate is proportional to the F84 substitution matrix equilibrium
distribution. A third class of SID models was introduced by Rivas
(2005) with a non-reversible evolution model which extends the
model of McGuire et al. (2001) for the evolution of sequences of
residues in any alphabet of size K, i.e. for any substitution matrix.
The insertion rates are defined by explicit parameters and the dele-
tion rate is uniform for all residues. In the particular case where the
insertion rate is proportional to the substitution matrix equilibrium
distribution, an analytical expression of the substitution probabili-
ties P(i, j) of residue i by residue j over time t can be derived (Rivas
and Eddy, 2008). However, even if the insertion process is inde-
pendent of the substitution process, the substitution and deletion
processes are not independent (detailed in Section 1 in Lebre and
Michel, 2012).

More recently, we have developed a dynamic evolution model
(called IDIS model) inspired by a concept in population dynamics
(Malthus, 1798) where the three processes of substitution, inser-
tion and deletion of nucleotides are independent of each other
(Lébre and Michel, 2010, 2012). This model is defined by a differen-
tial equation whose analytical solution gives an expression of the
sequence content vector P(t) at evolution time t (Lébre and Michel,
2010) or P(I) at sequence length [ (Lébre and Michel, 2012) for any
diagonalizable substitution matrix M of nucleotides.

1.3. GETEC model

The molecular evolution models we have developed over
the last 25 years, i.e. substitution models of motifs as well as
substitution-insertion-deletion models of nucleotides (summa-
rized in Fig. 1), have several interesting mathematical properties
compared to some other evolution models in this research field:
(i) they rely on a real physical process of sequence evolution, in
other words, the analytical expressions of the sequence content
at time t are identical (by numerical approximations) to the val-
ues obtained by simulating sequence evolution under substitution,
insertion and deletion; thus, they allow a realistic interpretation of
the model parameters (evolution time t, sequence length [ and rates
of substitution, insertion and deletion); (ii) they enable the math-
ematical analysis of the sequence content curves along time with
local/global maxima or minima, increasing or decreasing curves,
crossing curves, asymptotic behavior, etc.; (iii) they provide a
description of sequence content evolution and in particular the
evolution of motif content inside the sequence, unlike the phy-
logenetic approaches for tree reconstruction; and (iv) they allow
to introduce models of “primitive” genes or “primitive” motifs of
nucleotides or amino acids, to study substitution rates, to analyze
the residue occurrence probabilities in the natural evolution time
direction (from past to present or from present to future) or the
inverse direction (from present to past).

We propose here to generalize the evolution model for motif
substitution (Benard and Michel, 2011) to an evolution model for
motif substitution-insertion-deletion using the IDIS model (Lébre
and Michel, 2010, 2012). The generalized model, called GETEC
(Genome Evolution by Transformation, Expansion and Contrac-
tion), is based on substitution, insertion and deletion of genetic
motifs of any (finite) size. The three evolution processes are inde-
pendent of each other (following the IDIS model assumptions) and
the motif substitution matrix extends the classical 3-parameter
symmetric substitution matrix (Kimura, 1981). The GETEC model
yields an analytical expression of the vector P(t) of motif content in
the sequence at evolution time t or the vector P(I) of motif content at
sequence length I as function of the substitution parameters (three
parameters (as, bs, ¢s) per site s ranging from 1 to the motif length),
a vector R of the motif insertion rates, the total insertion rate r, a
deletion rate d and the vector P (ty) of initial motif content in the
sequence at evolution time ¢, or the vector P (ng) of initial motif
content at sequence length ny. We have also developed a research
software for computing online the analytical solutions of the GETEC
model associated with a chosen set of parameters. It is freely acces-
sible at http://icube-bioinfo.u-strasbg.fr/webMathematica/GETEC/
or via the web site http://dpt-info.u-strasbg.fr/~michel/. It allows
biologists and bioinformaticians to develop their own gene evolu-
tion models by studying evolution of genetic motifs, both in the
direct evolution time direction (past-present) and the inverse evo-
lution time direction (present—past). To our knowledge, the model
GETEC and its computational software have no equivalent in this
evolutionary field.

This paper is organized as follows. Section 2 presents
first a new and comprehensive formulation of the
substitution-insertion-deletion models for nucleotides initi-
ated in Lebre and Michel (2010, 2012), and second the substitution
model for motifs (Benard and Michel, 2011) with here a new
and simplified proof for the recursive construction of a motif
substitution matrix. Section 3 describes the construction of the
GETEC model which allows the substitution, insertion and deletion
of genetic motifs. The analytical solutions are given for the GETEC
model at time t and sequence length I, and for particular cases
of the GETEC model: “substitution only” model at time t and
“insertion-deletion only” model at time t and sequence length L
The relationship between time t and sequence length l in the GETEC
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Gene Evolution (time t, sequence length /) by
Transformation, Expansion, Contraction TEC(t,/)
(BLM 2014)
T(t) Chaotic T(t) TE(f) TEC())
Trinucleotides Motifs < Motifs Motifs
3 parameters (BM 2011) (BLM 2014) (BLM 2014)
(BaM 2008, 2009)
T(t) Dependent TE(/) and TC(/)
Trinucleotides Motifs
3 parameters (BLM 2014)
(BaM 2004)
T(x) T(t) T(?) (1)
Trinucleotides < Trinucleotides ¢ Trinucleotides ¢ Trinucleotides
per site x, {R,Y} 3 parameters 6 parameters 9 parameters
(AM 1993) (AFaM98;AFaMaM,99) (FM 2006) (M 07a,b; BM 09)
T(x) (1)
Dinucleotides |¢— Dinucleotides
per site x 6 parameters
(AM 1995) (M 2007c) \ y
TE(f) TEC(/)
Nucleotides Nucleotides
(LM 2010) (LM 2012)

Fig. 1. Substitution models of motifs and substitution-insertion-deletion models of nucleotides. The hierarchy of models is given from top (more general models) to bottom
(particular models). The bottom “row” corresponds to the nucleotide evolution models, the rows above to dinucleotide and trinucleotide evolution models and upper rows

feature motif evolution models.

model is presented. Section 4 describes the research software
GETEC which computes the analytical solutions of the GETEC model
online. Section 5 provides the detailed procedures of the GETEC
software to retrieve the classical formulas of nucleotide substitu-
tion matrices with one formal parameter (Jukes and Cantor, 1969)
and two formal parameters (Kimura, 1980). Section 6 provides
an example of biological application to an evolution study of the
amino acid glycine in bacterial genes.

2. Two classes of evolution models

2.1. Substitution-insertion-deletion models for nucleotides
(Lébre and Michel, 2010, 2012)

We propose here a new and global formulation of the
substitution-insertion-deletion models for nucleotides as function
of time and sequence length, called IDIS (Insertion and Deletion
Independent of Substitution) models initiated in Lébre and Michel
(2010, 2012).

The IDIS model is defined by explicit parameters for the insertion
rate r; of each residue i and the deletion rate d. The insertion rates
and the deletion rate are independent of each other and also inde-
pendent of the substitution parameters. Let us consider an alphabet
of K residues. For example, K=4 for the set of nucleotides {A, C, G,
T}, K=20 for the set of amino-acids, K=2 for the set of purine and
pyrimidine {R, Y}.For all 1 <i <K, let p;(t) be the occurrence proba-
bility of residue i at time t > O per “residue site” in the sequence and
P(t) = [pi(t)]1<i<x the column vector of size K made of the proba-
bilities p;(t) forall 1 <i<K.

The IDIS model superimposes a substitution process and an
insertion-deletion process. By assuming that the substitution and
the insertion-deletion processes are independent, i.e. a substitu-
tion event does not alter the probability of an insertion-deletion
event and reciprocally, the derivative P'(t) of the residue occurrence

probability at time t is the result of the instantaneous variation due
to substitution and insertion-deletion,

P(t)=(M—1)-P(t)+ (-rP(t)+R) (2.1)

Substitution Insertion-Deletion

—A-P(t)+R

where A=M — (1+1)I, M=[Pr(j — i)]1 <<k is the substitution proba-
bility matrix, R = [r;]; ;g is the vector of the residue insertion rates
per site and r=> 1jr; >0 is the total insertion rate, ¥1<i<K,
r; > 0. Explanation of Eq. (2.1) is briefly recalled below (see detail in
Lébre and Michel, 2010).

(i) Substitution term in Eq. (2.1). The change of the residue
occurrence probability due to substitution is governed by the

classical matrix differential equation (Michel, 2007a)
P'(t) =M. P(t)— P(t)

=(M-1)-P(t)

(2.2)

where M = [mij]1<i,j<1< is the substitution probability matrix
with element m;; =Pr(j— i) in row i and column j referring to
the substitution probability of residue j into residue i, matrix I
is the identity matrix of size K and the symbol - is the matrix
product.

Remark 1. The matrix M =[my],_;;  is the instanta-
neous substitution probability matrix whose element my;
in row i and column j refers to the substitution proba-
bility m;=Pr(j—1i) of residue j into residue i. Thus, the
substitution probability matrix M is stochastic in column.
Indeed, for all 1<j<K, the elements of matrix M satisfy
> 1<i<kMij=Y 1<i<k Pr(j—i)=1. The substitution probability
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matrix M is the transpose matrix of the classical substitu-
tion matrix 7 = [Pr(i — j)]1 < j<x which is stochastic in line (e.g.
Kimura, 1980, 1981), i.e. j; =Pr(i — j) = m;;.

(ii) Insertion-deletion term in Eq. (2.1). The insertion-deletion
process is modeled by explicit parameters which are set inde-
pendently from the substitution parameters: r; is the insertion
rate per site of each residue i, V1 <i<K, r;>0, and d is the
deletion rate for all residues, d > 0. Let n;(t) be the occurrence
number of residue i in the biological sequence at time t and
n(t)= Z15i5,(ni(t) be the total number of residues at time t. By
definition, a sequence has at least one residue, i.e. n(t) > 1. From
a concept in population dynamics (Malthus, 1798), the growth
rate nj(t) = % of residue i at time t due to insertion is equal
to r; x n(t). Similarly, the growth rate ni(t) of residue i at time t
due to deletion is d x n;(t). Thus, the growth rate ni(t) resulting

from the insertion-deletion process is, for all 1 <i <K,
ni(t) = ry x n(t) — d x ny(t). (2.3)

The derivative P'(t) of the occurrence probability of residue i at
time t can be written

po =5 (o)

(rin(t) — dny(t))n(t) — ny(t) Z mi(t)

1<j<K

n(t)

By replacing n}f(t) using Eq. (2.3), we obtain (see detail in Lebre
and Michel, 2010)

Z 1j | pi(t).

1<j<k

pit)=ri—

With the total insertion rate r=>1j7;>0, the change of
the residue occurrence probability due to insertion-deletion
is explained by the matrix differential equation

P'(t)= —rP(t)+R. (2.4)
A general solution of Eq. (2.1) containing substitution Eq. (2.2)
and insertion—-deletion Eq. (2.4) is derived when the substitution
probability matrix M can be diagonalized with real eigenvalues
(Proposition 1). It is well known that the substitution matrices of
reversible models are diagonalizable with real eigenvalues (Aldous
and Fill, 2002) but this is not an exclusive condition as substitution
matrices of non-reversible models can also be diagonalized with
eigenvalues (e.g. Exercises of Chapter 1 in Kelly, 1979).

Proposition 1. When the substitution probability matrix M can be
diagonalized with real eigenvalues (Ay ) ;<. an analytical solution of
the IDIS model defined by Eq. (2.1) is derived. Let Q be an associated
eigenvector matrix of M, the kth column of Q being an eigenvector for
eigenvalue Ay. Then, for any (non-zero) residue insertion rate vector
R =[ri]1<j<x such that V1 <i<K, r; >0, and the total insertion rate
r= Z1§,~;,€r,~ >0, the residue occurrence probability P(t) at time t is

P(t)=Q-Dy(t)-Q~"-P(to) + Q-Da(t)-Q 'R (2.5)
Dy (t) = Diag ((e~r+1-Rd(E=t0)), o), Dy(t) =

Diag ((M (1- e—(r+1—Ak)(t—to))) 1<k<K> and P(tg) =

[Pi(to)]1<i<x Is the initial residue occurrence probability at time
to.

where

Proof. By extending Eq. (2.11) in Lébre and Michel (2010) to any
initial time ty. O

From Eq. (2.5), we derive in Proposition 2 a general formula giv-
ing an analytical expression of the residue occurrence probability
as a function of time t or sequence length [ by introducing a function
h(x, xo) which is equal to h(x, xg)=e~(t~o) for evolution time t and

to h(x, xg) = (%) = for sequence length [.

Proposition 2. When the substitution probability matrix M can
be diagonalized with real eigenvalues (Ay); -, for any (non-zero)
residue insertion rate vector R = [r1;]; ik V1<i<K, r;>0, and the
total insertion rate r=>1.ir;>0, deletion rate d>0 and ini-
tial residue occurrence probability P(ty) = [pi(fo)];<i<x at time to,
the residue occurrence probability P(x) as function of a variable x
representing time x=t or sequence length x=1 with the following
convention (x, Xo, h(x, X)) = (t, to, e~(t=10)) for time expression and

(x, X0, h(x, xg)) = (l, lo, (Ié)rd) for sequence length expression

is

K
P(x) = (Zr-ﬂl—kkok> R

k=1

K
1 r+1-X
+ IE Oy - (P(xo) s AkR) h(x, x0) (2.6)
k=1

where the matrices (O ), <<k 0f size K x K are defined from the eigen-
vector matrix Q of matrix M by

O =Q- 1 (1)"-Q7"
with1, = (8,",{) =(0,...,0,1,0,...,0), avector having 1 in kth row
and 0 otherwise, and (1;,)", its transpose vector.

Proof.

(i) Case x=t. P(t) is obtained after some algebraic manipulation of
Eq. (2.5) (see also Eq. (2.13) in Lébre and Michel, 2010, for the
particular case ty=0).

(ii) Case x=1. P(l) is obtained by deriving from Eq. (2.3)
n(t) =Y, M(t)=(r—d)n(t) which leads to e=(t-to)=

1 1

(M)_m = (é)_m (see also Eq. (10) in Lébre and Michel,

n(tp)
2012, for the particular case ty=0).

O

The general formula (2.6) allows to derive the residue occur-
rence probability P(t) at time t and P(I) at sequence length [ both
in the direct (t>tg, [>lg) or inverse (t<tg, [<lg) direction of evolu-
tion. In the direct evolution direction, P(t) and P(l) converge to the
residue equilibrium distribution when t and [ increase (Egs. (4.7)
and (4.9) in Lebre and Michel, 2010, and Proposition 3 in Léebre
and Michel, 2012). In the inverse evolution direction, P(t) and P(I)
do not converge when t and [ increase, and the only constraint to
be respected is that P(t) and P(l) remain probability vectors. This
condition becomes not verified when a residue probability has a
negative value.

Remark 2. The sum of the matrices {Ok}1< is Zle 0,=0-0°1=

I. Indeed, for all i,j, S ,0uli.jl1 = S ,Qli, k]-Q~'[k.j] is the
term in row i and column j of the matrix product Q- Q1.

Remark 3. The non-zero condition for the vector R of inser-
tion rates ensures that r=215i51<ri >0. Thus, the denominator of
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the ratio ﬁ is different from zero as the eigenvalues of the
K

stochastic matrix M satisfies A, <1,V 1 <k <K If the insertion rate
vector Ris null, then the residue occurrence probability P(t) satisfies
P(t)=Q-D1(t)- Q1 P(to) with D;(t) = Diag ((e(1-M)t=t0)), ;)
as in the “substitution only” model (Michel, 2007a). o

Remark4. Asinallthe currentinsertion-deletion models for gene
evolution, the deletion rate d; of each residue i is equal to d. It is
classically assumed that there is no distinction among residue for
deletion. Moreover, the derivation of an analytical expression is not
ensured with specific deletion rate d; for each residue i.

Particular cases such as the “substitution only” model
(Proposition 3) and the “insertion-deletion only” model
(Proposition 4) can be derived from the general formula (2.6).

Proposition 3. “Substitution only” model. The residue occurrence
probability P(t) at time t is equal to

K
P(t) = Zoke*(Flk)(f*to) -P(to)
k=1

where (L)1 <x<x are real eigenvalues of the substitution probability
matrix M and matrices (Oy); - of size Kx K are defined by Oy =
Q- 1,-(1)" - Q1 with Q the eigenvector matrix of matrix M, and 1;, =
(8,-’k) =(0,...,0,1,0,...,0), a vector having 1 in kth row and 0

otherwise, and (1), its transpose vector.

Proposition 4. “Insertion—-deletion only” model. The residue occur-
rence probability P(x) at time x=t or sequence length x=1 with the
following convention (x, Xo, h(x, X)) = (t, to, e~(t=10)) for time expres-

_ 1
sion and (x, Xo, h(X, Xo)) = (l, lo, (%) 'd> for sequence length

expression is equal to
R R
Pe0 = 3 + (Plxo) - 1 ) hx.x0)'

where R = [ri];-jx, V1 <1 <K,1; > 0, is the residue insertion rate
vector, =" 1i<kl; > 0 is the total insertion rate and d > 0 is the dele-
tion rate.

2.2. Substitution models for motifs (Benard and Michel, 2011)

A Kronecker property was identified for constructing symmet-
ric substitution matrices for genetic motifs of size n containing
up to three substitution parameters per motif site and for solv-
ing their eigenelements analytically. It was found by Benard and
Michel (2011) after a detailed analysis of the dinucleotide matrix
& (Fig. 1 in Michel, 2007c) and the trinucleotide matrix § (Fig. B.1
in Michel, 2007b). It allows to derive analytical solutions giving the
occurrence probabilities of genetic motifs of size n at time t with
3-parameter symmetric substitution matrices. Thus, it extends the
classical 3-parameter symmetric substitution model of nucleotides
(Kimura, 1981) to any genetic motif of size n.

We propose here a new and simplified proof for the recursive
construction of a motif substitution matrix A, by applying the Kro-
necker operators to nucleotide substitution matrices Ns associated
to each site s of genetic motifs of size n.

Let s be the nucleotide site of a genetic motif of sizen, 1 <s<n.
For a given site s, let as, bs and cs be the parameters of transi-
tions A «<— G and C «— T, transversions [ A «~— T and C «— G and
transversions Il A<— C and G «— T, respectively. For example,
when considering a dinucleotide w = 11, then ay, b; and c; are
the transitions, transversions I and transversions II in the 1st site
I; of w, respectively, and a,, b, and ¢, are the transitions, transver-
sions I and transversions Il in the 2nd site I, of w, respectively. Thus,
a motif of size n has 3n substitution parameters. Let us denote by

Ap =M, — I of size (4", 4") the symmetric substitution rate matrix
of motifs of size n where Mj, is the instantaneous substitution prob-
ability matrix for motifs of length n and I, is the identity matrix
of size (4", 4") (see Eq. (2.2)). The columns and lines of A; sum
to 0. Matrix A, is a block matrix which is classically constructed
recursively by varying s=n to s=1 as follows (Michel, 2007b,c)

As_q Cn—st1ls—1  Auosyils—1 bnosp1ls—
Cnos+1ls-1 As1 bn_si1ls—1 apn_si1ls—q
As = (2.7)
An_si1ls—1 bp_sy1ls—1 As_q Cn—s+1ls-1
bn_siilso1 @nosyilso1 Cnosials—a As_1

where I;_; is the identity matrix of size (45-1,4°1) with Ip=1,
As_1 is the recursive matrix of size (45*1 , 45*1) with Ag =
—2'51:1 (as + bs +¢s) and as, bs, ¢s, 1 <s<n, are the substitution
parameters for the sth motif site.

As the matrix A, is real and symmetric, A, is diagonalizable,
i.e.An=Qn-Dy- Q,ﬂ where Dj, is the spectral matrix of A; and Q;
is its associated eigenvector matrix. This property will allow the
occurrence probability P(x) of residues in Eq. (2.6) to be extended
to genetic motifs.

Let N;, 1 <s <n, be the nucleotide substitution rate matrix of size
(4,4) of a site s of a motif of size n

ds ¢ as bs

¢ ds bs as

Ny =
as bs ds cs
bs as cs ds
with ds = — (as + bs + ¢5). As the matrix Ns is real and symmetric,
N is diagonalizable forall 1 <s<n
Ns=Q Ss-Q7!
where the nucleotide spectral matrix Ss of N; is
0 0 0 0
0 —2(as+bs) 0 0
Ss = (2.8)
0 0 —2(as +cs) 0
0 0 0 —2(bs + cs)

and its associated nucleotide eigenvector matrix Q is

1 1 1 1

1 1 -1 -1
= 2.9
Q 1 -1 -1 1 (2.9)

1 -1 1 -1
Remark 5. For the substitution rate matrix of nucleotides

(n=1),A; =N; =Q;-D1-Q;' =Q-S;-Q " leading to D; =S; and
Q1 =Q

Remark6. Q'=1Q.

Proposition 5. The spectral matrix D, and the eigenvector matrix
Qy, to be deduced from Ss and Q, are respectively

Dy = @2:155
QJ‘l = ®?=]Q

(o0 et et (1) et

where the operators @ and ® are the Kronecker sum and the Kronecker
product, respectively (defined e.g. in Laub (2005)). Thus, the motif sub-
stitution rate matrix A can be directly determined from the Kronecker
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sum of the n nucleotide spectral matrices Sg and the Kronecker product
of the n nucleotide eigenvector matrix Q as follows

An=®0,Q-0;S- Q.
Moreover,

An = ®"_Ns. (2.10)

Appendix A gives the proof of Proposition 5 and an explicit
example of construction of a dinucleotide substitution matrix with
the Kronecker operators, i.e. with the Kronecker sum & and the
Kronecker product ® which are rarely used in the bioinformatics
research field.

3. GETEC model

The GETEC (Genome Evolution by Transformation Expansion
Contraction) model introduced here generalizes the motif substitu-
tion model (Section 2.2) to a motif substitution-insertion-deletion
model. To our knowledge, it is the first biomathematical model
of gene evolution in this research field analyzing transformation,
expansion and contraction of genetic motifs during evolution time,
and moreover, in both directions, direct (past-present) and inverse
(present-past).

In the subsections below, we give two Propositions 6 and 7
for constructing the GETEC model. Then, we derive the analytical
solutions from Propositions 6 and 7: model TECt (Transformation
Expansion Contraction) at time t and model TECI (Transformation
Expansion Contraction) at sequence length I, and for its particu-
lar cases: “substitution only” model Tt (Transformation) at time
t, “insertion—deletion only” model ECt (Expansion Contraction) at
time t and “insertion-deletion only” model ECI (Expansion Contrac-
tion) at sequence length I. All these models are implemented in the
research software GETEC (Section 4).

3.1. Construction of the GETEC model

Proposition 6. Let us denote by My, = A + I, the instantaneous sub-
stitution probability matrix for motifs of length n where A, is the
symmetric substitution rate matrix for n-letter motifs (Eq. (2.7)) and
I, is the identity matrix of size (4", 4"). Then, the substitution prob-
ability matrix My, is diagonalizable with spectral matrix Dy + I, and
eigenvectors matrix Qn such that D, = ®7_, Ss and Qn = ®7_; Q where
Ss is the 3-parameter symmetric substitution matrix associated with
site s (Eq. (2.8)) and Q is the eigenvectors matrix associated with any
3-parameter symmetric substitution matrix (Eq. (2.9)).

Proof. From Proposition 5, the motif substitution rate matrix A,
is diagonalizable with real eigenvalues and decomposes as A, =
Qn-Dyp- Q,,‘1 where Dy, is the diagonal spectral matrix of A; and Qy
is its associated eigenvectors matrix. Then, the substitution proba-
bility matrix M, satisfies

Mn =An+1Iy
=Qu-Dn-Q;' +1
=QuDn- Q' +Qu I Q!
=Qu(Dn+1n)- Q'
where D,, = @gzlss and Q, = ®’51:1Q results from Proposition 5. O

Proposition 7. The GETEC model for substitution, insertion and dele-
tion of n-letter genetic motifs with symmetric substitution probability
matrix My defined in Proposition 6, n-letter genetic motifinsertion rate
vector R = [1]{ <j<4n WithV1 <i<4",1; > 0 and deletion rate d satisfies

Eq. (2.6) giving the occurrence probability of genetic motifs of size n as
function of time t and sequence length | with

)‘k =1 +Dn[k, k]
(3.1)

1
®"_1Q -1 (1) - ®r,Q

Ok =z

where Dy = (&0 ;Ss) , Ss is the 3-parameter symmetric substitution
matrix associated with site s (Eq. (2.8)) and Q is the eigenvectors matrix
associated with any 3-parameter symmetric substitution matrix (Eq.

(2.9)).

3.2. Analytical solutions of the GETEC model

We give here the new analytical solutions which are derived
from the GETEC model: TECt (Transformation Expansion Contrac-
tion) at time t and TECI (Transformation Expansion Contraction) at
sequence length [, and the particular cases: Tt (Transformation) at
time t, ECt (Expansion Contraction) at time t and ECl (Expansion
Contraction) at sequence length L.

3.2.1. Model TECt (Transformation Expansion Contraction) at
time t

Using Eq.(2.6) and the relations (3.1), the occurrence probability
P(t) of genetic motifs of size n at time t with the initial condition
P(0) at time tg=0is

4n

1
Py = Zk rri a0 ) R
=1

4”
1
. _ —(r+1=Xp)t
+kz:0k (P(O) ——" R) o1 (3.2)
=1

where R = [r;];.;4n is the vector of n-letter genetic motif insertion
ratewithV1l <i<4",r; >0,r = 215154” r; is the total genetic motif
insertion rate with r>0 and for all 1 <k <4"

1
O = 77 @1 Q- 1 (1) -®14Q

with 1, = (8;) =(0,...,0,1,0,...
row and 0 otherwise and

M=1+ (@?:155) [k, KT,

.,0)7, a vector having 1 in kth

with
0 0 0 0
0 —2(as+ bs) 0 0
S =
0 0 —2(as + ¢cs) 0
0 0 0 —2(bs +cs)
and
11 1 1
1 1 -1 -1
Q=11 1 1 1
1 -1 1 -1

defined in Egs. (2.8) and (2.9).

The time inversion proposition (Lébre and Michel, 2010, Sec-
tion 3.3) allows the evolution time direction to be inverted for
the substitution-insertion-deletion model. If t>0 then the evo-
lution direction is direct else inverse. From a computational point
of view, the analytical formulas in the inverse evolution direction
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(present-past) can be deduced from the direct evolution direction
(past-present) in Eq. (3.2) by replacing t by —t.

From Eq. (3.2), the occurrence probability P;(t) of a chosen
genetic motif i at time t, implemented in the GETEC software, is
easily obtained by

4”.
P(E) = (ZH]l_Mok[i, 1) R

k=1

4”
. 1
+Zok[lv ] (P(O) - mR) ei(r+17)"‘)[.
k=1

3.2.2. Model TECI (Transformation Expansion Contraction) at
sequence length |

Using Eq.(2.6) and the relations (3.1), the occurrence probability
P(l) of genetic motifs of size n at sequence length [ with the initial
condition P(lg) at sequence length [y is

4”
P(l) = (Zml—xko"> R

k=1

r+1-Ay

where Ay, Ok, R and r are defined in Eq. (3.2) and d is the deletion
rate.

Remark 7. The length [y cannot be equal to 0O, in contrast to the
time ;.

If (r —d)> 0 then the sequence length [ increases else decreases.

The occurrence probabilities of a given genetic motif i with the
TECI model and the particular cases of the GETEC model described
below in Section 3.3, implemented in the GETEC software, are given
in Appendix B.

The substitution probability matrix M=[Pr(j— i)]1<;j<x. the
insertion rates R = [r;];.;-x and the deletion rate d are specific
parameters of the GETEC model which can be determined from
genomic data extracted, e.g. from databases, using these analyti-
cal expressions. For example, a best fit curve minimizing the error
RSS (Residual Sum of Squares) can be estimated from genomic data,
such as the GC content as function of the genome length [ (see Lebre
and Michel, 2013, Section 7).

3.3. Particular cases of the GETEC model

3.3.1. “Substitution only” model Tt (Transformation) at time t
The occurrence probability P(t) of genetic motifs of size n at time
t with the initial condition P(0) is

4n
Pt) = <Zoke—<1—kk>f> -P(0) (34)
k=1

where Ay and Oy, are defined in Eq. (3.2).

Proof. In absence of insertion, then r=0 and vector R is null. Eq.
(3.2) leads to Eq. (3.4) immediately. O

If t > 0 then the evolution direction is direct else inverse.

3.3.2. “Insertion-deletion only” models ECt and ECl

3.3.2.1. Model ECt (Expansion Contraction)at time t. The occurrence
probability P(t) of genetic motifs of size n at time t with the initial
condition P(0)is

P(t) = § + (P(O) - §) et (3.5)

where R and r are defined in Eq. (3.2).

Proof. The absence of substitution is associated to a substitution
matrix equal to the identity matrix. Then, for all 1<k <K, A;=1.
1

1 _ R .
Hence, s il From Remark 2, the sum of the matrices {Ok }k,

is Zf:10k =Q-Q~ ! =1. Consequently, Eq. (3.2) leads to Eq. (3.5).
O

If t > 0 then the evolution direction is direct else inverse.

3.3.2.2. Model ECI (Expansion Contraction) at sequence length 1. The
occurrence probability P(I) of genetic motifs of size n at sequence
length [ with the initial condition P(ly) is

P(l) = ? + (P(lo) - 5) (i)_ﬁ (3.6)

r lo
where R and r are defined in Eq. (3.2).

Proof. Similar to the proof with the model ECt applied to Eq. (3.3).
O

If (r —d) >0 then the sequence length [ increases else decreases.

Remark 8. The Kronecker operators are absent in the models ECt
and ECL.

The analytical solutions of the models TECt at time t and TECI at
sequence length [, the “substitution only” model Tt at time t and the
“insertion-deletion only” models ECt at time t and ECI at sequence
length [, all in both directions (direct and inverse), are implemented
in the GETEC software. Thus, five classes of analytical formulas of
genetic motif evolution are available to the biological community
for analyzing their own gene evolution problems.

3.4. Relation between time t and sequence length 1 in the GETEC
model

From the growth rate nj(t) of residue i at time ¢ resulting from
the insertion-deletion process (Eq. (2.3)), the number [=n(t), [> 1,
of residues in the sequence at time t is

vt > 0,1 =lpert
where [j is the sequence length at time t=0. Thus,

_Inl—-1Inly
S (r=d)

In an insertion-deletion process with dominant insertion, i.e.
(r—d)>0, then Inl>Inly and the sequence length I increases. In
contrast, in an insertion—deletion process with dominant deletion,
i.e. (r—d)<0, then Inl<Inly and the sequence length I decreases.

4. Development of the research software GETEC

We present here the different functionalities of the research
software GETEC (Genome Evolution by Transformation Expansion
Contraction) freely accessible at http://icube-bioinfo.u-strasbg.fr/
webMathematica/GETEC/ or via the web site http://dpt-info.u-
strasbg.fr/~michel/ (Fig. 2). It is a major extension of the research
software SEGM (Stochastic Evolution of Genetic Motifs) (Benard
and Michel, 2011). To our knowledge, it is to date the only com-
putational biological software in this evolution field. Thus, a brief
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Model TEC at time t:
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Analytical Solutions

Model TEC at sequence length I:
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Contraction

Evolution Plots
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Analytical Solutions

Model T at time t:

Evolution Plots

Transformation
Formal

Model EC at time t:

Evolution Plots

Expansion
Contraction
Formal
Analytical Solutions

Model EC at sequence length I:

Expansion Evolution Plots

Contraction
Formal
Analytical Solutions

il 0l |
|

Fig. 2. Home page of the research software GETEC. Evolution Plots functionalities and Formal Analytical Solutions functionalities are available for the five classes of evolution
models TECt, TECI, Tt, ECt and ECI.
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1. Motif size

Dinucleotides (2) v

2. Motif choice

motif GT v

3. Output format

Standard v

Results

Formal analytical solution for the motif GT with 3 substitution parameters per motif site (Kimura) at time t (in past-present direction):

[4] - pIS] - pI6] - p[7] - p[8] + P[] + p[10] + p[11] + p[12] + p[13] + p[14] + p[15] + p[16] + (r[1] + r{2] + r[3] + r[4] + 1

2D , (r{1] + r{2] + r[3] + r[4] - r[S] - r[6] - r[7] - r[8] + r[8] + r[10] + r[11] + r[12] - r{13] - r{14] - f[15] - F[16])/(r + 2

D) + (p[1] - pl2] - PI3] + pI4] - PIS] + PIE] + I

p[8] + pIS] - p[10] - p[11] + p[12] - p[13] + p[14] + p[15] - p[16]

The terms p(i), 1 = i< 16 correspond to the initial occurrence probabilties for the 16 motifs.

The terms r(i), 1 i< 16 correspond to the insertion rates for the 16 motifs.

The term r corresponds to the sum of the insertion rates for the 16 motifs.

The terms a(i), b(i), c(i), 1 £i= 2 correspond to the substitution parameters for each motif site i.

Fig. 3. Screenshot of the Formal Analytical Solutions interface for the model TECt. Example with the dinucleotide GT in Standard output format.

description of the GETEC functionalities is given here for the com-
puter user.

4.1. Gene evolution models available in the GETEC software

Five gene evolution models are proposed in the GETEC soft-
ware to compute evolution of occurrence probabilities of genetic
motifs. The most general models are the substitution, insertion and
deletion models TECt (Transformation Expansion Contraction; Eq.
(3.2)) at time t and TECI (Transformation Expansion Contraction;
Eq. (3.3)) at sequence length L. The particular models are the “sub-
stitution only” model Tt (Transformation; Eq. (3.4)) at time t and
the “insertion-deletion only” models ECt (Expansion Contraction;
Eq. (3.5)) at time t and ECI (Expansion Contraction; Eq. (3.6)) at
sequence length I. For the five models TECt, TECI, Tt, ECt and EC,
formal and numerical analytical solutions and evolution plots are
available in the Evolution Plots functionality and the general for-
mal analytical solutions are given in the Formal Analytical Solutions
functionality.

4.2. Size of genetic motifs

The computation complexity (time and space) of the analyti-
cal solutions depend on the gene evolution model and the motif
size. For the general models TECt and TECI, the genetic motif sizes
allowed are length 1, i.e. the four genetic motifs {4, ..., T}, to 4, i.e.

the 256 genetic motifs {AAAA, ..., TTTT}. For the particular models
Tt, ECt and ECI, the genetic motifs can have a size up to 5, i.e. the
1024 genetic motifs {AAAAA, . . ., TTTTT}. This motif limitation is not
related to the mathematical model but to the GETEC software which
is currently hosted on a simple PC with a Core i7-4770 at 3.4 GHz
and 8 Go RAM.

4.3. Formal Analytical Solutions functionality

The Formal Analytical Solutions functionality proposes the gen-
eral formal analytical solution of one particular genetic motif for
the models TECt, Tt and ECt at time t >0 (in the direct evolution
direction), and for the models TECI and ECI at sequence length [ > [y
when (r — d) > 0. An example with the dinucleotide GT for the model
TECt is given in Fig. 3.

For each model, three options permit to obtain the general for-
mal analytical solutions: choice of the motif size n; choice of the
genetic motif among the 4" possible motifs; and choice of the out-
put format (Standard, C, Fortran or TeX) for the solution which is
displayed in the Results interface and can be saved in a text file.

4.4. Evolution Plots functionality

The Evolution Plots functionality allows for the five models
TECt, TECI, Tt, ECt and ECI to compute the analytical occurrence
probabilities of genetic motifs and plot their evolution at time ¢
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1. Choose the motif size

Dinucleotides (2) v

2. Upload the initial occurrence probabilities and insertion rates file

The sum of the 16 initial occurrence probabilties of motifs of size 2 must be equalto 1.
The 16 insertion rates must be = 0 and their sum must be = 0.

Upload a text file containing the 16 initial occurrence probabilities and insertion rates for motifs of size 2:

Parcourir_

Example of a valid text file containing 16 initial occurrence probabilties of dinucleotides available here

Fig. 4. Screenshot of the Evolution Plots interface for the model TECt: selection of the genetic motif size (1-4) and upload of the parameter file containing the initial motif

occurrence probabilities, the motif insertion rates and the deletion rate.

or sequence length I. An example for the model TECt is shown in
Fig. 4.

4.4.1. Initial motif occurrence probabilities, motif insertion rates
and deletion rate

The first user step consists in selecting the genetic motif size n
and uploading a parameter file containing the initial motif occur-
rence probabilities, the motif insertion rates and the deletion rate.
An example file of initial dinucleotide occurrence probabilities,
dinucleotide insertion rates and deletion rate for the model TECI
is presented in Fig. 5.

This file must contain 4" lines, i.e. one line per motif of size n.
Whatever the model chosen, the two first elements of each line k,
1 <k <4", are the type and the initial occurrence probability of the
kth motif of size n in lexicographical order. These 4" initial motif
occurrence probabilities in the five models TECt, TECI, Tt, ECt and
ECl are the elements of the vectors P(0) in Eq. (3.2), P(lp) in Eq. (3.3),
P(0)inEq.(3.4), P(0)inEq.(3.5)and P(lp)in Eq. (3.6), respectively.
In the four models TECt, TECI, ECt and ECI, the two next elements
of a line k are the type and the insertion rate of the kth motif of
size n. These 4" motif insertion rates in the four models TECt, TECI,
ECt and ECI are the elements of the vector R in Eqgs. (3.2), (3.3),
(3.5)and (3.6), respectively. In the two models TECl and ECI, the last
two elements of the first line are the symbol “d” and the deletion
rate. This deletion rate in the two models TECI and ECl is the term

PORA 1/5 rAA 0.1 d 0.1
POAC O rAC 2/235
POAG 0.2 1rAG 0.5

Fig. 5. Three first lines of an example parameter file of initial dinucleotide occur-
rence probabilities, dinucleotide insertion rates and deletion rate for the model TECI.
Element separator is a tabulation. Values can be rational, decimal or both.

d in Eqgs. (3.3) and (3.6), respectively. Note that for each line the
element separator is a tabulation. A link to a pattern parameter file
is available in the Evolution Plots Upload interface for each model
and motif size (line above the submit button in Fig. 4).

According to the model chosen, different validity conditions on
the initial motif occurrence probabilities, motif insertion rates and
deletion rate are given (Fig. 4).

Remark 9. Initial motif occurrence probabilities, substitution,
insertion and deletion parameters, and time value can be given in
decimal or rational format or both. Exact analytical solutions are
obtained when all the values are rational.

Remark 10. The deletion process, i.e. the deletion rate d, is not
involved in the three models TECt (Eq. (3.2)), Tt (Eq. (3.4)) and ECt
(Eq. (3.5)). Thus, with these three models, there is no deletion rate
in the parameter file.

The values of the parameter file, after its upload, are verified by
GETEC, e.g. a probability value must be decimal or rational in the
interval [0,1], the sum of probabilities must be equal to 1, the inser-
tion and deletion values must be positive, etc. If errors are detected,
descriptive messages are displayed and the user is invited to upload
a new parameter file. In the absence of error, the main interface
of the Evolution Plots functionality is displayed with the differ-
ent functionalities listed below according to the selected model
(Fig. 6).

4.4.2. Functionalities for the models TECt, Tt and ECt at time t
4.4.2.1. Time direction (models TECt, Tt, ECt). The computation of
the analytical occurrence probabilities P(t) (Eq. (3.2)), P(t) (Eq.
(3.4)) and P(t) (Eq. (3.5)) at time t can be carried out in direct
(past-present) or inverse (present-past) time directions (Fig. 6).
By default, the analytical solutions are computed in direct time
direction.
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Upload new initial occurrence probabilities and insertion rates?

Uploaded file info:

/7

v Initial occurrence probabilities and insertion rates file valid

1. Evolutionary time direction:

Direct (past -> present) ~

2. Number of substitution parameters per motif site 1 < x < 2:
3 parameters:
w afx]: 1 transition rate (A—G = C—T)
= b[x]: 1 transversion | rate (A—T = C—G)
= c[x]: 1 transversion Il rate (A—C = G—T)
2 parameters:
» u[x]=a[x]: 1 transition rate (A—G = C—T)
= v[x]/2=b[x]=c[x]: 1 transversion rate (A—T = A—C = C—G = G-T)
1 parameter:

» p[x]/3=a[x]=b[x]=c[x]: 1 substitution rate (A—~C = A—>G =A—-T=C—>G=CoT=G-T)

3 parameters v

3. Substitution parameters:

Enter values for the substitution parameters.
Non decimal or rational values will be replaced by the name of the corresponding parameter.

All the substitution parameters must be decimal or rational to get plots.
All the substitution parameters and their sum must be =2 0 and < 1.

Site 1/ ap43{ 0.2 b1} 0.1 1] 0.05

Ste2 .1/ 03 | byl 015 | 2] 0.2

Substitution parameters info:

Parameters sum = 1.

Fig. 6. Main interface of the Evolution Plots functionality for the model TECt: (1) choice of the evolution time direction; (2) selection of the number of substitution parameters
per motif site; and (3) input values of substitution parameters (decimal or rational format or both).
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4. Choice of the probabilities to study and plot

Choose up to 4 analytical solutions.
By default, only the analytical solution of the motif AA is displayed and plotted.

motif AA v  motifAC v |-— v | v

5. Choice of the analytical solutions output format
The analytical solutions can be displayed in 4 formats: Standard, C, Fortran and TeX.
By default, the analytical solutions are displayed in Standard format.

Standard v

6. Time interval for plots (optional)

0%t min <t max
tmin:| 0 tmax:| 5

7. Y-axis scale (optional).

Y-axis scale for evolution plots

Automatic (y-axis interval rescaled) v

8. Time value for numerical solutions (optional)
ost

t|3

Fig. 7. Main interface of the Evolution Plots functionality for the model TECt: (4)
choice of the genetic motifs; (5) selection of the output format; (6) time interval for
plots (optional); (7) y-axis scale (optional); and (8) time value (optional).

4.4.2.2. Number of substitution parameters per site (models TECt, Tt).
The number of substitution parameters per motif site s, 1 <s<n,
can be chosen (Fig. 6).

The 3-parameter substitution model (Kimura, 1981) distin-
guishes the three types of substitution for each motif site s:
transitions as (A < G and C < T), transversions I bs (A «<— T and
C<— G) and transversions Il ¢; (A <— C and G «<— T). This most
general substitution model is chosen by default.

The particular substitution models of the 3-parameter model
can also be selected. The 2-parameter substitution model (Kimura,
1980) has transitions us = as (A < Gand C <— T) and transversions
Vs/2 = bs = ¢s (A «— C,A < T,C «— Gand G < T) for each motif
site s. The 1-parameter substitution model (Jukes and Cantor, 1969)
has substitutions ps/3 = as = bs = ¢; for each motif site s.

4.4.2.3. Values of substitution parameters (models TECt, Tt). The val-
ues of substitution parameters can be set formal, rational or decimal
or any combination type (Fig. 6). They must be positive and their

Results

ProbtAA(t) m

0 23007 0 ASTN7E/E>
(0.830071 - 0.457025/

0.46411/E7

ProbtAC(t) m

02086

sum must be less than or equal to 1, otherwise descriptive error
messages are displayed. By default, they are left formal.

4.4.2.4. Genetic motifs (models TECt, Tt, ECt). Evolution of up to four
genetic motifs can be studied simultaneously (Fig. 7). By default,
only one genetic motif is selected, the motif A" = A. . .A for the cho-

n
sen size n.

4.4.2.5. Output format (models TECt, Tt, ECt). The analytical occur-
rence probabilities can be displayed in four different formats to
facilitate their integration in external user-programs: Standard
(human-readable), C, Fortran and TeX (Fig. 7). By default, the Stan-
dard format is selected (Fig. 8).

4.4.2.6. Optional functionalities for plots and numerical solutions
(models TECt, Tt, ECt). When all the model parameters are non-
formal, two evolution plots are displayed as function of time: a plot
drawing the evolution curves of the studied genetic motifs, i.e. con-
taining up to four curves, and a plot drawing the evolution curve of
their sum (see an example in Fig. 9).

(i) Time interval for plots (Fig. 7): the parameters t;, and tmax of
the time interval [tyn, tmax] can be chosen. They must always
be positive in the direct and inverse time directions. By default,
plots are drawn in the time interval [¢yin, tmax] = [0, 5]

(ii) Scale of y-axis for plots (Fig. 7): the vertical zoom can be
selected: full validity range or automatic rescale.

(iii) Time value (Fig. 7): a particular numerical value for the time
t> 0 gives the numerical solutions of the occurrence probabil-
ities of the studied genetic motifs and their probability sum.

4.4.3. Functionalities for the models TECI and ECI at sequence
length 1

4.4.3.1. Initial sequence length (models TECI, ECl). The analytical
occurrence probabilities P(l) (Eq. (3.3)) and P(l) (Eq. (3.6)) at
sequence length [ are functions of the initial sequence length I
which can be formal or a strictly positive integer. By default, the
initial sequence length [y is left formal.

4.4.3.2. Number of substitution parameters per site (model TECI).
Similar to the models TECt and Tt (see Section 4.4.2.2).

4.4.3.3. Values of substitution parameters (model TECl). Similar to
the models TECt and Tt (see Section 4.4.2.3).

4.4.3.4. Genetic motifs (models TECI, ECI). Similar to the models
TECt, Tt and ECt (see Section 4.4.2.4).

Fig. 8. Analytical solutions with the model TECt for the dinucleotides AA and AC in Standard output format.
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in the sequence length interval [lyin, Imax] = [1, 10].

(ii) Scale of y-axis for plots: similar to the models TECt, Tt and ECt
(see Section 4.4.2.6).

(iii) Sequence length value: a particular integer value for the
sequence length [>0 gives the numerical solutions of the
occurrence probabilities of the studied genetic motifs and their
probability sum.
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We provide the detailed procedures of the research software
GETEC to retrieve the classical formulas of the 1-parameter sub-
stitution model (Jukes and Cantor, 1969) and the 2-parameter
substitution model (Kimura, 1980). The functionality Evolution
Plots of the model Tt (Transformation; Eq. (3.4)) at time t allows
these classical analytical solutions to be retrieved easily.

5.1. Analytical solutions of the 2-parameter substitution model
(Kimura, 1980) using the research software GETEC

The 2-parameter substitution model (Kimura, 1980) is based on
a symmetric substitution matrix with two formal parameters for
the nucleotide transitions and transversions (Section 4.4.2.2).

5.1.1. First user interface of the model Tt
The following parameters must be selected:

1. Choose the motif size: Nucleotides (1).

2. Upload the initial occurrence probability file: the file
ProbOTtL1.txt (Fig. 10) must contain an initial nucleotide

occurrence probability equal to 1, e.g. P4(0) = 1, and thus, the

three other initial nucleotide occurrence probabilities are equal
to 0, i.e. Pc(0) = P¢(0) = Pr(0) = 0.

Fig.9. Plots with the model TECt drawing the evolution curves for the dinucleotides
AA and AC (up) and the evolution curve of their sum (bottom).

4.4.3.5. Output format (models TECI, ECI). Similar to the models
TECt, Tt and ECt (see Section 4.4.2.5).

4.4.3.6. Optional functionalities for plots and numerical solutions
(models TECI, ECl). When all the model parameters are non-formal,

two evolution plots are displayed as function of sequence length:
a plot drawing the evolution curves of the studied genetic motifs,

After having pressed the submit button, a second user interface
is available.

5.1.2. Second user interface of the model Tt
The following parameters must be selected:

1. Evolutionary time direction: Direct (past -> present). The user
has two possible ways to solve this problem.
(i) With the model Tt at three parameters:

2. Number of substitution parameters per motif site: 3 parameters.
3. Substitution parameters: a[1]: a, b[1]: band v[1]: b.
(ii) With the model Tt at two parameters:

2. Number of substitution parameters per motif site: 2 parameters.
3. Substitution parameters: u[1]: a and v[1]: 2*b.

Fig. 10. File ProbOTtL1.txt of initial occurrence probabilities of nucleotides of the
model Tt (Transformation) at time t.

i.e. containing up to four curves, and a plot drawing the evolution
curve of their sum.

27
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Results

Analytical solutions (Standard format):

Probia) (AT | (1+ E4P 4 gEZ@* DYy

ProbtC(t) (1-E%PY4

ProbtG(t) m (1+ E'4*b*t ) 2/E2*(a + b)*t)/4

ProbtT(t) m (1-E4P4

Fig. 11. The classical analytical solutions of the 2-parameter substitution model
(Kimura, 1980; Eq. (1.10) in Yang, 2006) retrieved by the research software GETEC.

Note that the formal writing “v[1]: 2b” is also possible. Note also
that the formal writing “v[1]: 2*v” or “v[1]: 2v” is not allowed as a
Mathematica recursion is generated.

Remark 11. For the 2-parameter substitution model (Kimura,
1980), the parameters are defined as follows: transitions us=as
(A«— G and C«—T) and transversions vs/2 = bs = ¢; (A<— C,
A «— T,C < Gand G <— T) for each motifsite sin order to express
this model has a particular case of 3-parameter substitution model
(Kimura, 1981) (see Section 4.4.2.2). Thus, in order to retrieve the
formulas of the 2-parameter substitution model with the model Tt
at two parameters, transversions must be multiplied by 2.

The end of the procedure is identical for the model Tt at three
and two parameters.

4. Choice of the probabilities to study and plot: motif A motif C
motif G motif T.
5. Choice of the analytical solutions output format: Standard.

The submit button leads to the following results (Fig. 11) which
are the classical analytical solutions of the 2-parameter substitution
model (Kimura, 1980; Eq. (1.10) in Yang, 2006). Note that Mathe-
matica puts some positive exponential terms in denominator.

5.2. Analytical solutions of the 1-parameter substitution model
(Jukes and Cantor, 1969) using the research software GETEC

The 1-parameter substitution model (Jukes and Cantor, 1969) is
based on a symmetric substitution matrix with one formal param-
eter for all nucleotide substitution types (Section 4.4.2.2).

5.2.1. First user interface of the model Tt
The procedure is identical to the first user interface of the model
Tt in Section 5.1.1.

5.2.2. Second user interface of the model Tt

The procedure is similar to the second user interface of the
model Tt in Section 5.1.2 with three possible ways to solve this
problem.

Results
Analytical solutions (Standard format):

ProbtA(t) I (1 +3EY Y4

ProbtC(t) SAVE (1 - E-4*a*t)/4
ProbtG(t) SAVE - E-4*a*t)/4
ProbtT(t) SAVE A- E-4*a*t)/4

Fig. 12. The classical analytical solutions of the 1-parameter substitution model
(Jukes and Cantor, 1969; Eq. (1.3) in Yang, 2006) retrieved by the research software
GETEC.

(i) With the model Tt at three parameters:
2. Number of substitution parameters per motif site: 3 param-
eters.
3. Substitution parameters: a[1]: a, b[1]: aand v[1]: a.
(ii) With the model Tt at two parameters:
2. Number of substitution parameters per motif site: 2 param-
eters.
3. Substitution parameters: u[1]: a and v[1]: 2*a.
(iii) With the model Tt at one parameter:
2. Number of substitution parameters per motif site: 1 param-
eter.
3. Substitution parameters: p[1]: 3*a.

1parameter v

3. Substitution parameters

Enter values for the substitution parameters.
Non decimsl! or rations! values will be replaced by the nsme of the corresponding parameter.

All the substitution parameters must be decimal or rational to get plots.
All the substitution parameters and their sum mustbe 20and < 1.

S a1
Stel pi0 |

S [
ite 2 P21 1 ‘

Site 3
0 |
Substitution parameters info:

Parameters sum =1

4. Choice of the probabilities to study and plot

Choose up to 4 analytical solutions.
By default, only the analytical solution of the motif AAA is displayed and plotted.

motif GGA v| motif GGC v | «motif GGG v| motif GGT v

Fig. 13. Partial screenshot of the Evolution Plots functionality of the GETEC software
for the models Tt and TECt showing the substitution parameter settings cs, and csiy,
respectively: 1-parameter substitution model (top of the figure), substitution rates
equal to 1 for the site 2 and equal to O for the sites 1 and 3. The bottom of the figure
shows the selection of the four codons GGA, GGC, GGG and GGT coding the amino
acid glycine.
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Fig. 14. Evolution curves in bacterial genes of the four codon occurrence proba-
bilities Psca(t), Pocc(t), Pocs(t) and Peer(t) (top figure) and their probability sum
Paiy(t) of glycine (bottom figure) in the time interval [0,5] with the model Tt and the
substitution configuration cs; (substitution rates equal to 1 for the codon site 1 and
equal to O for the codon sites 2 and 3).

The submit button leads to the following results (Fig. 12)
which are the classical analytical solutions of the 1-parameter
substitution model (Jukes and Cantor, 1969; Eq. (1.3) in Yang,
2006).

Plots:

- Comparison plot
{ProbtGGA(t), ProbtGGC(t), Probt

GGGlt), ProbtGGT(t)}

0.015

- Sum plot

ProbtGGA(t) + ProbtGGC(t) + ProbtGGG(t) + ProbtGGTI(t)
ProbtX{

F

0.11F /

0.08 |

Fig. 15. Evolution curves in bacterial genes of the four codon occurrence probabili-
ties Pgga(t), Pooe(t), Poco(t) and Pegr(t) (top figure) and their probability sum Py (t)
of glycine (bottom figure) in the time interval [0,5] with the model TECt and the
substitution-insertion configuration csi; (substitution rates equal to 1 for the codon
site 1 and equal to O for the codon sites 2 and 3, and codon insertion rate according
to Eq. (6.1)).

6. A biological application: evolution of the amino acid
glycine in bacterial genes

The research software GETEC allows evolution of genetic motifs
to be studied. Thus, it is a general approach as several databases of
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Fig.16. Evolution curves in bacterial genes of the occurrence probabilities P, (t) and Py (t) of glycine in the time interval [0,5] with the models Tt (substitution configurations

cs1, ¢Sz and cs3) and TECt (substitution-insertion configurations csiy, csi; and csis).

genetic motifs are available and many software have been devel-
oped for identifying genetic motifs, e.g. the MEME Suite (Bailey
et al., 2009). As an example of biological application with the
GETEC software, we propose here an evolution study of glycine
and its four encoded codons GGA, GGC, GGG and GGT, in bac-
terial genes. The main purpose of this example is to provide a
sketch of the consequences of adding an insertion process beside
a site-specific substitution process on the evolution of glycine and
its four encoded codons. Thus, the models Tt (Transformation) at
time t and TECt (Transformation Expansion Contraction) at time ¢
are used for this application. The occurrence probability Pg(t) of
glycine at time ¢ in the model Tt (Eq. (3.4)) is the sum of occur-
rence probabilities of the four codons coding glycine at time ¢,
i.e. Pgyy(t) = Pooalt) + Peoc(t) + Peeo(t) + Peor(t). The occurrence
probability P (t) of glycine at time ¢ in the model TECt (Eq. (3.2))
is defined similarly.

6.1. Codon usage in bacterial genes

The codon usage chosen in this example on a large population
of bacterial genes (7,851,762 genes, 2,481,566,882 trinucleotides,
from Table 2a in Michel, 2015) is given in Appendix C. It is
used for defining the initial vectors P(0) = P(0) of codon occur-
rence probabilities at time t=0 in the models Tt (Eq. (3.4))
and TECt (Eq. (3.2)). Thus, the initial occurrence probability
Peiy(0) = Pgy(0) of glycine at time O in both models Tt and
TECt is equal to Pgpy(0) = Pea(0) + Peac(0) + Pece(0) + Peer(0) =
0.0123 +0.0335+0.0122 + 0.0176 = 0.0756 and is the initial
value of glycine in the plot curves (see the Figs. 14 and 15).

6.2. Parameter settings of the models Tt and TECt

Both models Tt and TECt involve a site-specific substitution
process. For the current example, we choose the 1-parameter sub-
stitution model (Jukes and Cantor, 1969) extended to codons, i.e.
one substitution parameter per codon site. The model TECt also
involves an insertion process. For the current example, we set the
codon-specific insertion rate r; as follows

B { 1/64 ifi e {GGA, GGC, GGG, GGT}

- 6.1
! 0 otherwise (6.1)

Let c¢s (s standing for substitution) and csi (si standing for
substitution-insertion) be the two configurations of the models
Tt and TECt, respectively. Moreover, since the 1-parameter substi-
tution model is chosen, one substitution parameter has to be set

per codon site. We make the codon sites to evolve one at a time
for both configurations. Thus, three parameter settings per config-
uration are defined: (i) for the substitution configuration cs: cs;
(substitution rates equal to 1 for the codon site 1 and equal to O for
the codon sites 2 and 3), cs, (substitution rates equal to 1 for the
codon site 2 and equal to O for the codon sites 1 and 3) and cs3 (sub-
stitution rates equal to 1 for the codon site 3 and equal to O for the
codon sites 1 and 2); (ii) for a substitution-insertion configuration
csi: csiy, csiy and csiz defined similarly to csq, cs; and css3, respec-
tively, and with a codon insertion rate according to Eq. (6.1). Fig. 13
shows the substitution parameter settings cs, and csi, for the mod-
els Tt and TECt, respectively, in the Evolution Plots functionality of
the GETEC software.

6.3. Results

Evolution in bacterial genes of the occurrence probabilities of
glycine and its four encoded codon in the models Tt and TECt
are studied for the six parameter settings cs; and csi;, 1<j<3,
respectively. Appendix D gives the numerical solutions of occur-
rence probabilities Pgy,,(t) and Pg,(t) of glycine in bacterial genes
at time t in the models Tt and TECt, respectively, with the six
parameter settings cs; and csij, respectively. Fig. 14 generated by
the Evolution Plots functionality of the GETEC software represents
the evolution curves in bacterial genes of the four codon occur-
rence probabilities Psca(t), Pooe(t), Pece(t) and Pger(t), and their
probability sum Pg,(t) of glycine in the time interval [0,5] with
the model Tt and the substitution configuration cs; (substitution
rates equal to 1 for the codon site 1 and equal to O for the codon
sites 2 and 3), chosen as example. Similarly, Fig. 15 represents the
evolution curves in bacterial genes of the four codon occurrence
probabilities Pgga(t), Poge(t), Poos(t) and Pger(t), and their prob-
ability sum Pg(t) of glycine in the time interval [0,5] with the
model TECt and the substitution-insertion configuration csi; (sub-
stitution rates equal to 1 for the codon site 1 and equal to 0 for
the codon sites 2 and 3, and codon insertion rate according to Eq.
(6.1)). Overall, with the substitution model Tt and cs1, the five prob-
abilities Pgca(t), Pece(t), Poce(t), Pecr(t) and PGIy(t) decrease with
time t up to a horizontal asymptote (Fig. 14). In contrast, with the
substitution-insertion model TECt and csiy, these five probabilities
PGGA(t)' P(;Gc(t), P(;(;(;(t), Pgcr(t) and PGIy(t) increase, after a mini-
mum for Pgge(t), with time t and tend to a higher limit (not shown
in Fig. 15).

Fig. 16 summarizes evolution of the occurrence probabilities
Peiy(t) and Pg,(t) of glycine in bacterial genes with the substitution
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and substitution-insertion models Tt and TECt, respectively. Evo-
lutionary meaning of curves can be analyzed per evolution process
or per motif site.

6.3.1. Evolution process comparison

The occurrence probability of glycine in bacterial genes at any
time t is greater under substitution-insertion (model TECt) than
under “substitution only” (model Tt), i.e. Pgy,(t) > Pgy(t) for each
couple of configurations (cs;, csi;), 1 <j <3 (Fig. 16), the difference
resulting from the additional insertion process as shown previously
for the couple (cs1, csiq) (Figs. 14 and 15).

6.3.2. Motif site comparison

Under “substitution only” (model Tt and cs), the occurrence
probability Py, (t) of glycine in bacterial genes for time tin [0, 5] has
the lowest value with the 1st codon site and the highest value with
the 2nd codon site (Fig. 16). Under substitution-insertion (model
TECt and csi), Pgy,(t) in bacterial genes for time t in [0,0.6] has a
similar probability behavior per site to “substitution only”, but for
time t in [0.6, 5], Pgyy(t) has the highest value with the 3rd codon
site (Fig. 16).

7. Conclusion

The GETEC model developed here is a model of gene evolution
based on substitution, insertion and deletion of genetic motifs. It
represents a significant mathematical step for unifying two classes
of evolution models which have been developed separately for
20 years: the models of substitution, insertion and deletion of
nucleotides and the models of symmetric substitution of genetic
motifs (see Introduction). It allows the analysis of genetic motif
evolution without alignment or phylogenetic inference. The math-
ematical construction of the GETEC model has no relation with the
mathematical formulation of alignment and phylogenetic meth-
ods. Indeed, the alignment methods (global, local, etc.) rely on a
distance or similarity associated to residue costs, the phylogenetic
methods are commonly based on parsimony, maximum likelihood
(ML), MCMC-based Bayesian inference and distance matrix while
the GETEC model is based on a probabilistic differential equation.
Thus, the GETEC model is an alternative to the alignment and phylo-
genetic methods for studying gene and genome evolution as it can
analyze evolution of genetic motifs in two time directions (past to
present and present to past).

So far, the GETEC model is not able to derive expressions of
the genetic motif occurrence probabilities as a function of time or
sequence length with insertion, deletion and asymmetric instan-
taneous substitution probability matrices M = [mii]1<i,j<1< where
the substitution probability Pr(j — i)=m;; of residue j into residue
i differs from the substitution probability Pr(i — j)=m;; of residue
i into residue j. Asymmetric substitution matrices constitute an
interesting modelling tool for analyzing asymmetric substitution
rates which may occur more frequently in some genomes. The
IDISL — HKY model (Lébre and Michel, 2012) allows to derive
nucleotide occurrence probabilities as function of time or sequence
length with insertion, deletion and asymmetric instantaneous sub-
stitution probability matrices M, e.g. with the classical substitution
matrix HKY (Hasegawa et al., 1985). However, its extension to
genetic motif occurrence probabilities is an open mathematical
problem.

The research software GETEC we have developed allows the
computation of the analytical solutions of this new model and
its particular cases: models TECt (Transformation Expansion Con-
traction) at time t, TECI (Transformation Expansion Contraction)
at sequence length [, Tt (Transformation) at time t, ECt (Expansion
Contraction) at time t and ECI (Expansion Contraction) at sequence

length [ It is freely accessible at http://icube-bioinfo.u-strasbg.
fr/webMathematica/GETEC/ or via the web site http://dpt-info.u-
strasbg.fr/~michel/. It allows biologists and bioinformaticians to
develop their own gene evolution models. The evolution analy-
sis of nucleotides can now be extended to the evolution study of
genetic motifs in two ways: (i) motifs on a given site in a set of
sequences, e.g. the dinucleotides in the splice sites, the TATA box,
etc., (ii) motifs in one or several sequences (content), e.g. codons in
genes, amino acids, etc. In future, we will apply the GETEC model
to study evolution of circular codes and bijective genetic codes
(Michel, 2014).
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Appendix A.
A.1. Proof of Proposition 5
Proof. From Eq. (2.7), the substitution rate matrix As for motifs of

size s, with 1 <s <n, can be decomposed into a sum of two matrices
as follows

As_q Cnostils—1 Gnosprls—1 bn_sils—
Cn-st+1ls-1 As_1 bn_si1ilso1 an_si1ls_q
As =
An_syils—1 bn_sy1ls—1 As_q Cn-s+1ls-1
bn_siils-1 ansyils—1 Cnosilsa As_1
0 Cnos¢1 On-si1 ba_sia
Cn—s+1 0 bn_sy1 Gn_si
= ®Is 1
Un_sy1 bn_si 0 Cn—s+1
bn_sy1 Gnosi1 Caosi 0
As—l
As—l
+
As—]
As—]

where the diagonal block matrix with A;_; on the main diagonal is
a matrix of size (45-1, 45-1). Then,

0 Cnosy1 On-si1 bnosi
Cn—s+1 0 bpn_si1 @n_si
As = ®ls1+1h ®As 1
an_sy1 bn_si 0 Cn—s+1
bn_si1 Gnosi1 Caosi 0

with I; the identity matrix of size (4,4). Therefore, by definition of
the Kronecker sum,

0 Cnosy1 On-st1 bnosi
Cn—s+1 0 bn_si1 Gn_si
As = D As_1. (A1)
an_sy1 bn_si 0 Cn—s+1
bn_si1 Gnosi1 Caosi 0
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Moreover,
0 Cnos¢1 On-sy1 bn_sia
Cn—s+1 0 bn_si1 An_si1
Nn—s+1 =
Un_sy1 bn_sia 0 Cn—s+1
bn_si1 Gn-si1 Cn—s+1 0
dn—s+1 0 0 0
0 dn—s+1 0 0
+
0 0 dn—s+1 0
0 0 0 dn—s+1
0 Cn—s+1 On—st1 bn_si1
Cnsy1 O bn_sy1 @n_si
= +dn_si1 x 1
Gn_st1 bpsy1 O Cn—s+1
bpsi1 nosy1 Cnosp1 O

with dy_s+1 = — (An_s+1 + bp_s+1 + Cn_s+1)- Then, As (Eq. (A.1)) can be
expressed as function of Ny as follows

As = (Np_sp1 — dn_s1 x 1) ® As_1.
Thus,

An =@, (Ns—ds x ;) +Ag x I

=@ Ns— @, (ds xI1)+Ag x I

n
=@ N =Y ds x Iy +Ag x I
s=1
= Ns

asAg=-Y 1, (as+bs+cs) =1  ds. The recursive construction
of the motif substitution rate matrix A, can be written as a
Kronecker sum of the nucleotide substitution rate matrices Ng asso-
ciated with each site s (1 <s < n) of the motifs of size n.C

A.2. Construction of the dinucleotide substitution matrix with the
Kronecker operators

Construction using Eq. (2.10) of the dinucleotide substitution
matrix A; (16,16) with the Kronecker operators applied to two
matrices N; and N, of size (4,4) associated to the nucleotide sub-
stitution matrices at dinucleotide sites 1 and 2, respectively.

di ¢4 a1 by d ¢ a b

a di b o ¢ dy by a
N] [$3) N2 = [$3)

ap by di ¢ a by dy o

b] a d] b2 a G dz

withdy = —(a; + by +¢1)and dy = —(az + by + ¢3). Then,

di @ a by

¢ di by @
N] EBNz = [
ap by di ¢

O O O =
o O = O
o = O O
- O O O

by a1 ¢ dy

d ¢ ax b

1000
0100 c dy by @
+ 0010 ® a by, dy o
0 001 by @ o dy
dily ol ail; bl N, 0 0 ©
cily dily by a1l 0 N, 0 O
B aly by dilh ah " 0 0 N, O
bilh a1l ¢y dily 0 0 0 Ny

where I; is the identity matrix of size (4, 4).

Then,
dili + N, cih aily b1l
a1l d111 + Ny b]I1 a1
Ni@® N, =
arly b4 dili + N, aly

b1l a1 c1lq dil1 + Ny

d ¢ ao bp ¢ 0 0 0 a¢ 0 0O O by 0O 0 O
¢ d by a3g 0 ¢¢ 0 0 O a O O O by O O
a b, d ¢ 0 0 ¢¢ 0 0 O a¢ O O O by O
b, a; 0 0 0g 0O O a 0 O 0 b
d ¢ ap bp b 0 0 0 au 0O 0 O

d
0

0 ¢t 0 0 ¢ d by a
0

0
0 0 ¢ a b, d ¢ 0 0 by 0 0 O a O
0 0 O ¢ by ag o d 0 0 O by 0 0 0 a
"l @ 00 0b 000 deoaboa o0 o0 o0 =

0 az 0 0 O by 0 O ¢ d by ap 0 ¢¢ 0 O
0 0 az 0 O O by 0 a by d ¢t 0 0 ¢ O
0 0 0 ag 0 O O by by a 0 0 0

d ¢ a; by

d
by 0 0 0 gy 0O O 0 ¢g O O O
0 by 0 0 0 agz 0O 0 O ¢g¢ O O

0

0 0 b] 0 0 0 a 0 0 0 1 az bz d C2

0 0 0 b

o

0 0 a 0 0 0 C1 bz a d

Withd=7(a1 +by 4+ +02+b2+C2).

Appendix B. Occurrence probability of a given genetic
motif i with the models TECI, Tt, ECt and ECI

Model TEC!I (Transformation Expansion Contraction) at
sequence length I From Eq. (3.3), the occurrence probability
P;(1) of a given genetic motif i at sequence length [ is

4n

1 .
Pi(l) = ;mok[l»] ‘R
=1

r+1-Ay

ol (- ) (1)
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Model Tt (Transformation) at time t. From Eq. (3.4), the occurrence
probability P;(t) of a given genetic motifi at time t is

4"
Pile) = D Ouli, Je"4t | - P(0),

k=1

Model ECt (Expansion Contraction) at time t. From Eq. (3.5), the
occurrence probability P;(t) of a given genetic motif i at time t is

Py R, (P,-(O) - @) e,

r r
Model ECI (Expansion Contraction) at sequence length [. From Eq.
(3.6), the occurrence probability P;(l) of a given motifi at sequence
length [ is

P =" (P - B (%)*

Appendix C. Codon usage in bacterial genes
See Table 1.

Table 1

Codon usage (%) in bacterial genes (7,851,762 genes, 2,481,566,882 trinucleotides,
from Table 2a in Michel, 2015). It is used for defining the initial vectors P(0) = P(0)
of codon occurrence probabilities at time t=0 in the models Tt (Transformation; Eq.
(3.4)) and TECt (Transformation Expansion Contraction; Eq. (3.2)).

Codon i Pi(0) Codon i Pi(0) Codon i Pi(0) Codon i Pi(0)
AAA 2.87 CAA 1.61 GAA 347 TAA 0.00
AAC 1.79 CAC 1.05 GAC 2.63 TAC 1.32
AAG 1.97 CAG 2.18 GAG 2.62 TAG 0.00
AAT 1.93 CAT 1.06 GAT 2.80 TAT 1.62
ACA 1.00 CCA 0.77 GCA 1.69 TCA 0.77
ACC 2.12 CccC 1.08 GCC 3.54 TCC 0.99
ACG 1.39 CCG 1.88 GCG 3.06 TCG 1.10
ACT 0.90 CCT 0.81 GCT 1.60 TCT 0.86
AGA 0.54 CGA 0.42 GGA 1.23 TGA 0.01
AGC 1.39 CGC 2.25 GGC 335 TGC 0.56
AGG 0.32 CGG 1.08 GGG 1.22 TGG 1.25
AGT 0.81 CGT 1.10 GGT 1.76 TGT 0.38
ATA 0.89 CTA 0.56 GTA 1.08 TTA 1.64
ATC 2.71 CTC 1.73 GTC 2.04 TTC 1.94
ATG 2.34 CTG 3.66 GTG 2.58 TTG 1.44
ATT 243 CTT 1.28 GTT 1.52 TIT 2.01

Appendix D. Evolution of glycine in bacterial genes
See Table 2.

Table 2

Occurrence probabilities Pgy(t) and Pg,(t) of glycine in bacterial genes at time t in
the models Tt (Transformation; Eq. (3.4)) and TECt (Transformation Expansion Con-
traction; Eq. (3.2)), respectively, with the six configurations cs; and csi;: substitution
configurations cs; (substitution rates equal to 1 for the codon site 1 and equal to 0
for the codon sites 2 and 3), cs, (substitution rates equal to 1 for the codon site 2 and
equal to O for the codon sites 1 and 3) and cs3 (substitution rates equal to 1 for the
codon site 3 and equal to O for the codon sites 1 and 2), and substitution-insertion
configurations csiy, csi; and csi3 defined similarly to csq, cs; and css, respectively,
and with a codon insertion rate according to Eq. (6.1).

Model Configuration Solution

Tt s Pey(t) = 0.0441859 + 0.0313821e 4/

Tt sy Pery(t) = 0.0904434 — 0.0148754e /3

Tt cs3 Pery(t) = 0.075568 + 1.73472 x 107 '8e-4/3

TECt csiy Pgyy(£)=0.283582 — 0.00219995e 671148 _ 0.205814e /16
TECt csiy Pgyy(t)=0.283582 — 0.0484575¢~67148 — 0.159557¢~1/16
TECt csis Pery(t)=1+1.73472 x 10-18¢-67048 _0.924432¢-1/16
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