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We begin here a combinatorial study of dinucleotide circular codes. A word written on a circle is called circular. A set of
dinucleotides is a circular code if all circular words constructed with this set have a unique decomposition. Propositions based
on a letter necklace allow to determine the 24 maximum dinucleotide circular codes (of 6 elements). A partition property is also
identi�ed with eight self-complementary maximum dinucleotide circular codes and two classes of eight maximum dinucleotide
circular codes in bijective correspondence by the complementarity map.

1. Introduction

We continue our study of the combinatorial properties of
circular codes in genes, that is, on the nucleotide alphabet
𝒜𝒜4 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴. A dinucleotide is a word of two letters
(diletter) on 𝒜𝒜4. A trinucleotide is a word of three letters
(triletter) on 𝒜𝒜4. e two sets of 16 dinucleotides and 64
trinucleotides are codes in the sense of language theory but
not circular codes [1, 2]. In order to have an intuitivemeaning
of these notions, codes are written on a straight line, while
circular codes are written on a circle, but, in both cases,
unique decipherability is required.

Trinucleotide comma-free codes, a very particular case
of trinucleotide circular codes, have been studied for a
long time, see for example, [3–5]. Aer the discovery of a
trinucleotide circular code in genes with strongmathematical
properties [6], circular codes are mathematical objects stud-
ied in combinatorics, theoretical computer science, and the-
oretical biology.is theory underwent a rapid development,
see for example, [7–27].

Trinucleotides are the fundamental words for genes, that
is, the DNA sequences coding the amino acids constitut-
ing the protein sequences. However, dinucleotides are also

words with important biological functions in genomes. Din-
ucleotides are involved in some genome sites, for example,
the splice sites of introns in eukaryotic genomes are based
on the dinucleotides 𝐺𝐺𝐺𝐺 and 𝐴𝐴𝐴𝐴 [28, 29]. Dinucleotides
are also involved in some genome regions, for example,
the dinucleotide 𝐶𝐶𝐶𝐶 in animal and plant genomes allows
a positive or negative control over gene expression [30],
and the dinucleotides 𝐶𝐶𝐶𝐶 [31, 32], 𝐶𝐶𝐶𝐶 [33], and 𝑇𝑇𝑇𝑇 [34]
in eukaryotic genomes occur as concatenated words (𝑙𝑙1𝑙𝑙2)

+,
𝑙𝑙1, 𝑙𝑙2 ∈ 𝒜𝒜4 (called tandem repeats in biology).

We begin here a new combinatorial study concerning
the dinucleotide circular codes. eir number, their list,
and a partition according to the complementarity map are
determined with propositions based on a letter necklace.

2. Preliminaries

e following de�nitions and propositions are classical for
any �nite set of words on any �nite alphabet [1]. We recall
them for dinucleotides, that is, words of length 2 on a 4-letter
alphabet. Let𝒜𝒜4 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 denote the genetic alphabet,
lexicographically ordered by 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴. e set



2 ISRN Biomathematics

of nonempty words (resp., words) on 𝒜𝒜4 is denoted by 𝒜𝒜+
4

(resp., 𝒜𝒜∗
4 ). e set of the 16 words of length 2 (dinucleotides

or diletters) over𝒜𝒜4 is denoted by𝒜𝒜
2
4.e set of the 64 words

of length 3 (trinucleotides or triletters) over𝒜𝒜4 is denoted by
𝒜𝒜3

4.

�e�nition 1. A set 𝑋𝑋 of words in 𝒜𝒜2
4 is a dinucleotide code

if, for each 𝑥𝑥1,… , 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑥1,… , 𝑥𝑥𝑥𝑚𝑚 ∈ 𝑋𝑋, 𝑛𝑛𝑛𝑛𝑛 𝑛 𝑛, the condition
𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑥1 ⋯𝑥𝑥𝑥𝑚𝑚 implies 𝑛𝑛 𝑛𝑛𝑛  and 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑥𝑖𝑖 for 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   .

Dinucleotide codes are read on a straight line.

�e�nition 2. A dinucleotide code 𝑋𝑋 in 𝒜𝒜2
4 is circular if, for

each𝑥𝑥1,… , 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑥1,… , 𝑥𝑥𝑥𝑚𝑚 ∈ 𝑋𝑋, 𝑛𝑛𝑛𝑛𝑛 𝑛 𝑛,𝑝𝑝 𝑝𝑝𝑝 ∗
4 , 𝑠𝑠 𝑠𝑠𝑠

+
4 , the

conditions 𝑠𝑠𝑠𝑠2 ⋯𝑥𝑥𝑛𝑛𝑝𝑝 𝑝𝑝𝑝𝑝 1 ⋯𝑥𝑥𝑥𝑚𝑚 and 𝑥𝑥1 = 𝑝𝑝𝑝𝑝 imply 𝑛𝑛 𝑛𝑛𝑛 ,
𝑝𝑝 𝑝 𝑝𝑝 (empty word), and 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑥𝑖𝑖 for 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   .

Dinucleotide circular codes are read on a circle.

Remark 3. e set𝒜𝒜2
4 is a code but not a circular code.

�e�nition �. Two dinucleotides 𝑥𝑥 and 𝑦𝑦 are conjugate if there
exist two letters 𝑙𝑙1 and 𝑙𝑙2, 𝑙𝑙1, 𝑙𝑙2 ∈ 𝒜𝒜4, such that 𝑥𝑥 𝑥𝑥𝑥 1𝑙𝑙2 and
𝑦𝑦 𝑦𝑦𝑦 2𝑙𝑙1.

Proposition 5 (see [1]). A dinucleotide circular code cannot
contain a word of the form 𝑢𝑢2 with 𝑢𝑢𝑢 𝑢𝑢.

e periodic dinucleotides 𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺, and 𝑇𝑇𝑇𝑇 cannot
be in a dinucleotide circular code.

Proposition 6 (see [1]). A dinucleotide circular code cannot
contain conjugate dinucleotides.

Example 7. e dinucleotides 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 cannot be in the
same circular code.

e set operations complementarity 𝒞𝒞, permutation 𝒫𝒫,
and mirror image ̃de�ned later are involutions.

�e�nition �. e nucleotide complementarity map 𝒞𝒞 𝒞
𝒜𝒜4 → 𝒜𝒜4 is de�ned by 𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 , 𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 ,𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 ,
and𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 .

�e�nition 9. e dinucleotide complementarity map 𝒞𝒞 𝒞
𝒜𝒜2

4 → 𝒜𝒜2
4 is de�ned by𝒞𝒞𝒞𝒞𝒞1𝑙𝑙2) = 𝒞𝒞𝒞𝒞𝒞2)𝒞𝒞𝒞𝒞𝒞1) for all 𝑙𝑙1, 𝑙𝑙2 ∈

𝒜𝒜4.

Example 10. 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞𝒞𝒞 .

�e�nition 11. e complementary dinucleotide set 𝒞𝒞𝒞𝒞𝒞𝒞
of a dinucleotide set 𝑋𝑋 is the set obtained by applying the
dinucleotide complementarity map𝒞𝒞 to all the dinucleotides
of𝑋𝑋.

Remark 12. 𝒞𝒞2(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑋𝑋𝑋𝑋𝑋  𝑋𝑋.

�e�nition 13. A dinucleotide circular code 𝑋𝑋 is self-
complementary if, for each 𝑥𝑥 𝑥𝑥𝑥 ,𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 .

�e�nition 1�. e (le) dinucleotide circular permutation
map 𝒫𝒫 𝒫𝒫𝒫 2

4 → 𝒜𝒜2
4 permutes circularly each dinucleotide

𝒫𝒫𝒫𝒫𝒫1𝑙𝑙2) = 𝑙𝑙2𝑙𝑙1, 𝑙𝑙1, 𝑙𝑙2 ∈ 𝒜𝒜4.

�e�nition 15. e permuted dinucleotide set 𝒫𝒫𝒫𝒫𝒫𝒫 of a
dinucleotide set𝑋𝑋 is the set obtained by applying the circular
permutation map𝒫𝒫 to all the dinucleotides of𝑋𝑋.

Remark 16. 𝒫𝒫2(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑋𝑋𝑋𝑋𝑋  𝑋𝑋.

�e�nition 17. e mirror image of a dinucleotide 𝑥𝑥 𝑥𝑥𝑥 1𝑙𝑙2 is
󵰑󵰑𝑥𝑥 𝑥𝑥𝑥 2𝑙𝑙1, 𝑙𝑙1, 𝑙𝑙2 ∈ 𝒜𝒜4.

�e�nition 1�. emirror image 󵰒󵰒𝑋𝑋 of a dinucleotide set𝑋𝑋 is
the set of the mirror images of all the dinucleotides of𝑋𝑋.

Remark 19. 󵰒󵰒󵰒󵰒𝑋𝑋 𝑋 𝑋𝑋.

Remark 20. For a dinucleotide 𝑥𝑥 and for a dinucleotide set𝑋𝑋,
we have𝒫𝒫𝒫𝒫𝒫𝒫𝒫  󵰑󵰑𝑥𝑥 and𝒫𝒫𝒫𝒫𝒫𝒫𝒫  󵰒󵰒𝑋𝑋.

Proposition 21 (see [27]). A dinucleotide code𝑋𝑋 is circular if
and only if the dinucleotide code 󵰒󵰒𝑋𝑋 is circular.

Proposition 22. A dinucleotide code 𝑋𝑋 is circular if and only
if the permuted dinucleotide code𝒫𝒫𝒫𝒫𝒫𝒫 is circular.

Proof. By Proposition 21 and Remark 20.

Remark 23. Proposition 22 is not true with trinucleotides [6].

3. Results

In this paper, we identify the subsets of𝒜𝒜2
4 which are circular

codes. Based on a letter necklace, we prove a necessary and
sufficient condition for a set of dinucleotides to be a circular
code.

�e�nition 2�. Let 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3,… , 𝑙𝑙𝑛𝑛, 𝑙𝑙𝑛𝑛𝑛𝑛 be letters in 𝒜𝒜4. One
says that the ordered sequence 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3,… , 𝑙𝑙𝑛𝑛, 𝑙𝑙𝑛𝑛𝑛𝑛 is a
(𝑛𝑛 𝑛𝑛𝑛 -necklace for a subset 𝑋𝑋 𝑋 𝑋𝑋2

4 if each dinu-
cleotide 𝑙𝑙1𝑙𝑙2, 𝑙𝑙2𝑙𝑙3,… , 𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 belongs to𝑋𝑋.

Proposition 25. Let 𝑋𝑋 be a subset of 𝒜𝒜2
4. e following

conditions are equivalent:

(1) 𝑋𝑋 is circular code,

(2) 𝑋𝑋 has no 5-necklace.

Proof. (1) → (2). Let𝑋𝑋 be a circular code. We have to prove
that 𝑋𝑋 has no 5-necklace. Suppose, by way of contradiction,
that 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 is a 5-necklace for 𝑋𝑋. As 𝒜𝒜4 contains four
letters, for some 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    𝑖, 𝑖𝑖 𝑖 𝑖𝑖, we have that 𝑙𝑙𝑖𝑖 = 𝑙𝑙𝑗𝑗.
Remark that the maximum value of 𝑗𝑗 𝑗 𝑗𝑗 is 4.
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(i) If 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗, then 𝑋𝑋 has a periodic dinucleotide 𝛼𝛼𝛼𝛼.
(Contradiction with Proposition 5.)

(ii) If 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗, then 𝑋𝑋 has two conjugated dinucleotides
𝛼𝛼𝛼𝛼 and 𝛽𝛽𝛽𝛽. Contradiction with Proposition 6.

(iii) If 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗, then either 𝑙𝑙1 = 𝑙𝑙4 or 𝑙𝑙2 = 𝑙𝑙5.
(iiia) If 𝑙𝑙1 = 𝑙𝑙4, the 5-necklace 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 is 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙1, 𝑙𝑙5.

So, 𝑙𝑙1𝑙𝑙2, 𝑙𝑙2𝑙𝑙3, 𝑙𝑙3𝑙𝑙1, 𝑙𝑙1𝑙𝑙5 ∈ 𝑋𝑋. Consider the sequence
𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3. Put 𝑥𝑥1 = 𝑙𝑙1𝑙𝑙2, 𝑥𝑥2 = 𝑙𝑙3𝑙𝑙1, 𝑥𝑥3 =
𝑙𝑙2𝑙𝑙3, 𝑥𝑥𝑥1 = 𝑙𝑙2𝑙𝑙3, 𝑥𝑥𝑥2 = 𝑙𝑙1𝑙𝑙2, 𝑥𝑥𝑥3 = 𝑙𝑙3𝑙𝑙1. Note that
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥𝑥1, 𝑥𝑥𝑥2, 𝑥𝑥𝑥3 belong to 𝑋𝑋. Now, the following
relations hold: 𝑙𝑙2𝑙𝑙3𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙1 = 𝑙𝑙2 ⋅ 𝑙𝑙3𝑙𝑙1 ⋅ 𝑙𝑙2𝑙𝑙3 ⋅ 𝑙𝑙1 =
𝑙𝑙2𝑥𝑥2𝑥𝑥3𝑙𝑙1 = 𝑥𝑥𝑥1𝑥𝑥𝑥2𝑥𝑥𝑥3 and 𝑙𝑙1𝑙𝑙2 = 𝑥𝑥1. (Contradiction with
the assumption that𝑋𝑋 is a circular code.)

(iiib) e case of 𝑙𝑙2 = 𝑙𝑙5 is analogous.
(iv) If 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗, then 𝑙𝑙1 = 𝑙𝑙5, and the 5-necklace

𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 is 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙1. So, 𝑙𝑙1𝑙𝑙2, 𝑙𝑙2𝑙𝑙3, 𝑙𝑙3𝑙𝑙4, 𝑙𝑙4𝑙𝑙1 ∈
𝑋𝑋. Consider the sequence 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙1. Put 𝑥𝑥1 =
𝑙𝑙1𝑙𝑙2, 𝑥𝑥2 = 𝑙𝑙3𝑙𝑙4, 𝑥𝑥𝑥1 = 𝑙𝑙2𝑙𝑙3, 𝑥𝑥𝑥2 = 𝑙𝑙4𝑙𝑙1. Note that
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥𝑥1, 𝑥𝑥𝑥2 belong to𝑋𝑋. Now, the following relations
hold: 𝑙𝑙2𝑙𝑙3𝑙𝑙4𝑙𝑙1 = 𝑙𝑙2 ⋅ 𝑙𝑙3𝑙𝑙4 ⋅ 𝑙𝑙1 = 𝑙𝑙2𝑥𝑥2𝑙𝑙1 = 𝑥𝑥𝑥1𝑥𝑥𝑥2 and
𝑙𝑙1𝑙𝑙2 = 𝑥𝑥1. Contradiction with the assumption that 𝑋𝑋
is a circular code.

(2) → (1) Let 𝑋𝑋 be without 5-necklace and suppose, by
way of contradiction, that 𝑋𝑋 is not a circular code. As 𝑋𝑋 is
a uniform code, there exist 𝑥𝑥1,… , 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑥1,… , 𝑥𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋, 𝑛𝑛 𝑛
1, 𝑝𝑝1, 𝑠𝑠1 ∈ 𝒜𝒜+

4 , such that 𝑠𝑠1𝑥𝑥2 ⋯𝑥𝑥𝑛𝑛𝑝𝑝1 = 𝑥𝑥𝑥1 ⋯𝑥𝑥𝑥𝑛𝑛 and 𝑥𝑥1 =
𝑝𝑝1𝑠𝑠1. Moreover, as all the elements of 𝑋𝑋 have a length of 2,
there exist 𝑝𝑝2,… , 𝑝𝑝𝑛𝑛, 𝑠𝑠2,… , 𝑠𝑠𝑛𝑛 ∈ 𝒜𝒜, such that 𝑝𝑝2𝑠𝑠2 = 𝑥𝑥2,…,
𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑠𝑠𝑛𝑛 = 𝑥𝑥𝑛𝑛 and 𝑠𝑠1𝑝𝑝2 = 𝑥𝑥𝑥1, 𝑠𝑠2𝑝𝑝3 = 𝑥𝑥𝑥2,…,
𝑠𝑠𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛 = 𝑥𝑥𝑥𝑛𝑛𝑛𝑛, 𝑠𝑠𝑛𝑛𝑝𝑝1 = 𝑥𝑥𝑥𝑛𝑛. Now

if 𝑛𝑛 𝑛 𝑛, then 𝑝𝑝1, 𝑠𝑠1, 𝑝𝑝2, 𝑠𝑠2, 𝑝𝑝3 is a 5-necklace,
if 𝑛𝑛 𝑛𝑛 , then 𝑝𝑝1, 𝑠𝑠1, 𝑝𝑝2, 𝑠𝑠2, 𝑝𝑝1 is a 5-necklace,
if 𝑛𝑛 𝑛𝑛 , then 𝑝𝑝1, 𝑠𝑠1, 𝑝𝑝1, 𝑠𝑠1, 𝑝𝑝1 is a 5-necklace.
In any case, there is a 5-necklace. Contradiction.

If a dinucleotide set𝑋𝑋 is a circular code, then there exists
no word of 𝑋𝑋 with two different decompositions of their
products written on a circle.

Example 26. Consider the set X containing only the dinu-
cleotides 𝐴𝐴𝐴𝐴 and 𝐺𝐺𝐺𝐺. Let 𝑥𝑥1𝑥𝑥2𝑥𝑥3,… , 𝑥𝑥𝑛𝑛 be any sequence
with𝑥𝑥𝑖𝑖 = 𝐴𝐴𝐴𝐴 or𝑥𝑥𝑖𝑖 = 𝐺𝐺𝐺𝐺.As𝑋𝑋does not contain𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶,𝑇𝑇𝑇𝑇
and 𝑇𝑇𝑇𝑇, the sequence 𝑥𝑥1𝑥𝑥2𝑥𝑥3,… , 𝑥𝑥𝑛𝑛 cannot have a double
decomposition on a circle. e set 𝑋𝑋 has no 5-necklace as, if
𝑙𝑙5 is 𝐶𝐶 (resp., 𝑇𝑇) then 𝑙𝑙4 must be 𝐴𝐴 (resp., 𝐺𝐺), but 𝐴𝐴 (resp.,
G) is never a suffix in𝑋𝑋.ere are sets with six dinucleotides
which are circular codes. For example, any sequence with the
set of dinucleotides 𝑥𝑥1 = 𝐴𝐴𝐴𝐴, 𝑥𝑥2 = 𝐴𝐴𝐴𝐴, 𝑥𝑥3 = 𝐴𝐴𝐴𝐴, 𝑥𝑥𝑥1 =𝐶𝐶𝐶𝐶 ,
𝑥𝑥𝑥2 =𝐶𝐶𝐶𝐶 , 𝑥𝑥𝑥3 = 𝐺𝐺𝐺𝐺 has no double decomposition on a circle.

More generally, write the sequence 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5, 𝑙𝑙6 of𝒜𝒜4
on a circle. If 𝑥𝑥1 = 𝑙𝑙1𝑙𝑙2, 𝑥𝑥2 = 𝑙𝑙3𝑙𝑙4, 𝑥𝑥3 = 𝑙𝑙5𝑙𝑙6, 𝑥𝑥𝑥1 = 𝑙𝑙2𝑙𝑙3,
𝑥𝑥𝑥2 = 𝑙𝑙4𝑙𝑙5, 𝑥𝑥𝑥3 = 𝑙𝑙6𝑙𝑙1 belong to a set 𝑌𝑌, then 𝑌𝑌 cannot be
a circular code because the sequence 𝑙𝑙1𝑙𝑙2𝑙𝑙3𝑙𝑙4𝑙𝑙5𝑙𝑙6 can be read

in two ways: 𝑥𝑥1𝑥𝑥2𝑥𝑥3 (with 𝑙𝑙1 as the �rst letter) and 𝑥𝑥𝑥1𝑥𝑥𝑥2𝑥𝑥𝑥3
(with 𝑙𝑙2 as the �rst letter). ere is a double reading of the
sequence 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5, 𝑙𝑙6 (corresponding to a double reading
of the sequence 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5, 𝑙𝑙6, 𝑙𝑙1). In this case, 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 is
a 5-necklace for 𝑌𝑌.

Example 27. If 𝑥𝑥1 = 𝑙𝑙1𝑙𝑙2 = 𝐴𝐴𝐴𝐴, 𝑥𝑥2 = 𝑙𝑙3𝑙𝑙4 = 𝐺𝐺𝐺𝐺, 𝑥𝑥3 =
𝑙𝑙5𝑙𝑙6 = 𝐴𝐴𝐴𝐴, 𝑥𝑥𝑥1 = 𝑙𝑙2𝑙𝑙3 =𝐶𝐶𝐶𝐶 , 𝑥𝑥𝑥2 = 𝑙𝑙4𝑙𝑙5 =𝑇𝑇𝑇𝑇 , 𝑥𝑥𝑥3 =
𝑙𝑙5𝑙𝑙6 = 𝐺𝐺𝐺𝐺 are dinucleotides of 𝑌𝑌, we have the following
relations:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  1𝑥𝑥2𝑥𝑥3,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    1𝑥𝑥𝑥2𝑥𝑥𝑥3 =𝐶𝐶𝐶𝐶 2𝑥𝑥3𝐴𝐴 and𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 1. So, 𝑌𝑌 is not
a dinucleotide circular code (also a consequence of the fact
that 𝑌𝑌 contains two conjugate dinucleotides 𝐴𝐴𝐴𝐴 and 𝐺𝐺𝐺𝐺).

Proposition 28. A dinucleotide circular code has at most 6
elements.

Proof. ere are 16 dinucleotides. Four dinucleotides are
periodic: 𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺, and 𝑇𝑇𝑇𝑇. e remaining 12 dinu-
cleotides are partitioned in six conjugation classes: {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, {𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴, {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , and {𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺𝐺𝐺.
By Proposition 6, a dinucleotide circular code has at most
one dinucleotide in each of these conjugation classes. So, a
dinucleotide circular code has at most 6 elements.

Proposition 29. Let (𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖 𝑖𝑖𝑖 be a permutation of
(𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  . If

𝑋𝑋 𝑋 󶁁󶁁𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖󶁑󶁑 , (1)

then𝑋𝑋 is a dinucleotide circular code.

Proof. Suppose, by way of contradiction, that 𝑋𝑋 is not a
dinucleotide circular code, and let 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 be a 5-
necklace of 𝑋𝑋. Note that, with the exception of 𝑙𝑙1, the other
letters 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4, 𝑙𝑙5 composing the necklace must be a suffix of
a dinucleotide of𝑋𝑋.

Claim 1. For 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼    , 𝑙𝑙𝛼𝛼 ≠ 𝑖𝑖.

Proof of Claim 1. By inspection, 𝑖𝑖 is never a suffix of a
dinucleotide of𝑋𝑋.

Claim 2. For 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼   , 𝑙𝑙𝛼𝛼 ≠ 𝑗𝑗.

Proof of Claim 2. By inspection, 𝑗𝑗 is a suffix only of 𝑖𝑖𝑖𝑖. For
𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼   , if 𝑙𝑙𝛼𝛼 = 𝑗𝑗, then 𝑙𝑙𝛼𝛼𝛼𝛼 =𝑖𝑖  which is impossible by
Claim 1.

Claim 3. For each 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼  , 𝑙𝑙𝛼𝛼 ≠ ℎ.

Proof of Claim 3. By inspection, ℎ is a suffix only of 𝑖𝑖𝑖 and 𝑗𝑗𝑗.
Suppose, by way of contradiction, that 𝑙𝑙5 =ℎ . en, 𝑙𝑙4 =𝑖𝑖  or
𝑙𝑙4 = 𝑗𝑗. If 𝑙𝑙4 =𝑖𝑖 , we are in contradiction with Claim 1 and if
𝑙𝑙4 = 𝑗𝑗, we are in contradiction with Claim 2. Suppose, by way
of contradiction, that 𝑙𝑙4 =ℎ . en, 𝑙𝑙3 =𝑖𝑖  or 𝑙𝑙3 = 𝑗𝑗. If 𝑙𝑙3 =𝑖𝑖 ,
we are in contradiction with Claim 1 and if 𝑙𝑙3 = 𝑗𝑗, we are in
contradiction with Claim 2.
Claim 4. 𝑙𝑙5 ≠ 𝑘𝑘.
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Proof of Claim 4. By inspection, 𝑘𝑘 is a suffix only of 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, and
ℎ𝑘𝑘. Suppose, by way of contradiction, that 𝑙𝑙5 = 𝑘𝑘. en, 𝑙𝑙4 =
𝑖𝑖, 𝑙𝑙4 = 𝑗𝑗, or 𝑙𝑙4 = ℎ. In the �rst case, we are in contradiction
with Claim 1; in the second case, we are in contradiction with
Claim 2; and in the third case, we are in contradiction with
Claim 3.

By Claims 1, 2, 3, and 4, we have 𝑙𝑙5 ≠ 𝑖𝑖𝑖𝑖𝑖 5 ≠ 𝑗𝑗𝑗𝑗𝑗 5 ≠ ℎ, 𝑙𝑙5 ≠ 𝑘𝑘,
and so, 𝑋𝑋 has no 5-necklace. Consequently, 𝑋𝑋 is a dinu-
cleotide circular code.

�e�nition 3�. A maximum dinucleotide circular code is a
dinucleotide circular code having 6 elements.

Remark 31. In Proposition 29, we have considered an arbi-
trary permutation (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 of (𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴, and we have
proved that a maximum dinucleotide circular code corre-
sponds to it. As the number of possible permutations is 24, the
number of maximum dinucleotide circular codes is at least
24, and we will prove hereaer that it is exactly 24.

In the maximum dinucleotide circular code 𝑋𝑋 𝑋
{𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 (Proposition 29), the letter 𝑖𝑖 has three
occurrences in pre�x of dinucleotides of 𝑋𝑋 (shortly in pre�x
of 𝑋𝑋), the letter 𝑗𝑗 has two occurrences in pre�x of 𝑋𝑋, and ℎ
has one occurrence in pre�x of 𝑋𝑋. e letter 𝑘𝑘 never occurs
in pre�x of 𝑋𝑋. is is a general fact, in the sense that in each
maximum dinucleotide circular code𝑋𝑋 there is a letter, say 𝑖𝑖,
with three occurrence in pre�x of 𝑋𝑋, and a letter, say 𝑗𝑗, with
two occurrences in pre�x of 𝑋𝑋, and a letter, say ℎ, with one
occurrence in pre�x of 𝑋𝑋, while the remaining letter, say 𝑘𝑘,
never occurs in pre�x of𝑋𝑋.

We will prove formally this general fact. In the sequel, a
set of 4 nonnegative numbers having a sum equal to 6 is called
a 4-partition of 6. By “set” we rather mean a “multiset” as
some numbers can be equal, for example, {2, 2, 2, 0}. �e�ne
𝑙𝑙𝐴𝐴 (resp., 𝑙𝑙𝐶𝐶, 𝑙𝑙𝐺𝐺, 𝑙𝑙𝑇𝑇) as the number of occurrences of 𝐴𝐴 (resp.,
𝐶𝐶, 𝐺𝐺, 𝑇𝑇) in pre�x of a maximum dinucleotide circular code
𝑋𝑋.

Lemma 32. If 𝑋𝑋 is a maximum dinucleotide circular code,
then {𝑙𝑙𝐴𝐴, 𝑙𝑙𝐶𝐶, 𝑙𝑙𝐺𝐺, 𝑙𝑙𝑇𝑇} is a 4-partition of 6.

Proof . By Proposition 28.

Lemma 33. In any dinucleotide circular code, one has 𝑙𝑙𝐴𝐴 ≤
3, 𝑙𝑙𝐶𝐶 ≤ 3, 𝑙𝑙𝐺𝐺 ≤ 3, 𝑙𝑙𝑇𝑇 ≤ 3.

Proof. e alphabet 𝒜𝒜4 contains four letters, and a din-
ucleotide circular code cannot contain periodic dinu-
cleotides.

Example 34. For 𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋      , the 4-partition
{𝑙𝑙𝑖𝑖, 𝑙𝑙𝑗𝑗, 𝑙𝑙ℎ, 𝑙𝑙𝑘𝑘} = {𝑙𝑙𝐴𝐴, 𝑙𝑙𝐶𝐶, 𝑙𝑙𝐺𝐺, 𝑙𝑙𝑇𝑇} of 6 is {3, 2, 1, 0}.

e following lemma will prove that the unique possible
4-partition {𝑙𝑙𝐴𝐴, 𝑙𝑙𝐶𝐶, 𝑙𝑙𝐺𝐺, 𝑙𝑙𝑇𝑇} for a maximum dinucleotide circu-
lar code is {3, 2, 1, 0}.

Lemma 35. For each maximum dinucleotide circular code𝑋𝑋,
there exists a permutation 𝜋𝜋 of {𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 such that 𝜋𝜋𝜋𝜋𝜋𝜋 has

three occurrences in pre�x of 𝑋𝑋, 𝜋𝜋𝜋𝜋𝜋𝜋 has two occurrences in
pre�x of 𝑋𝑋, 𝜋𝜋𝜋𝜋𝜋𝜋 has one occurrence in pre�x of 𝑋𝑋, and 𝜋𝜋𝜋𝜋𝜋𝜋
has no occurrence in pre�x of𝑋𝑋.

Proof. Putting the values 𝑙𝑙𝐴𝐴, 𝑙𝑙𝐶𝐶, 𝑙𝑙𝐺𝐺, 𝑙𝑙𝑇𝑇 in nonincreasing order,
by Lemma 33, we have to consider only the following cases:
{3, 3, 0, 0}, {3, 2, 1, 0}, {3, 1, 1, 1}, {2, 2, 2, 0}, and {2, 2, 1, 1}.

Case {3, 3, 0, 0}. Let 𝑖𝑖 be the letter with three occurrences in
pre�x of𝑋𝑋. Let 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   be the three other letters of {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴.
We have 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖.Without loss of generality, suppose that
𝑗𝑗 has three occurrences in pre�x of𝑋𝑋. Necessarily one of the
two dinucleotides 𝑗𝑗𝑗𝑗 and 𝑗𝑗𝑗𝑗must be in𝑋𝑋. But, in the �rst case,
we are in contradiction with Proposition 6, and in the second
case, we are in contradiction with Proposition 5.

So, the case {3, 3, 0, 0} is impossible.

Case {3, 1, 1, 1}. Let 𝑖𝑖 be the letter with three occurrences in
pre�x of𝑋𝑋. Let 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   be the three other letters of {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴.
en, we have 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖; otherwise,
we are in contradiction with Propositions 5 and 6.

Now, suppose that in 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  , the same letter, say
𝑗𝑗 without loss of generality, has two occurrences in suffix
of 𝑋𝑋, that is, ℎ𝑗𝑗𝑗𝑗𝑗 𝑗𝑗 𝑗𝑗𝑗 . e letter 𝑗𝑗 cannot be a pre�x
of 𝑋𝑋. Indeed, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , 𝑗𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   are in contradiction
with Proposition 6, and 𝑗𝑗𝑗𝑗 𝑗𝑗𝑗  is in contradiction with
Proposition 5.

So, in 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  , the letters 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   must have only
one occurrence in suffix of 𝑋𝑋. Without loss of generality, we
have 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  𝑗𝑗 𝑗𝑗𝑗 . But, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 is a 5-necklace for 𝑋𝑋. By
Proposition 25, we are in contradiction.

So, the case {3, 1, 1, 1} is impossible.

Case {2, 2, 2, 0}. Let 𝑖𝑖 be one of the three letters with two
occurrences in pre�x of 𝑋𝑋. Let 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   the three other letters
of {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴. Without loss of generality, we have 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖𝑖.
With the two other letters having two occurrences in pre�x of
𝑋𝑋, we have three possibilities {𝑗𝑗𝑗𝑗𝑗 , {𝑗𝑗𝑗𝑗𝑗𝑗 , {ℎ, 𝑘𝑘𝑘.

Case {𝑗𝑗𝑗𝑗𝑗 . By Propositions 6 and 5, 𝑗𝑗𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    , but
𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑖 𝑖𝑖. As 𝑗𝑗𝑗𝑗𝑗 𝑗𝑗 are conjugate, we are in
contradiction with Proposition 6.

Case {𝑗𝑗𝑗𝑗𝑗𝑗 . By Propositions 6 and 5, 𝑗𝑗𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 𝑗𝑗𝑗 , but 𝑗𝑗𝑗𝑗 𝑗𝑗𝑗𝑗𝑗
𝑋𝑋. As 𝑘𝑘𝑘𝑘𝑘𝑘𝑘   (otherwise, we are in contradiction with
Proposition 6), the two dinucleotides with 𝑘𝑘 in pre�x of 𝑋𝑋
must be 𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘 and, consequently, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖𝑖𝑖𝑖  𝑖 𝑖𝑖.
But, 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is a 5-necklace for 𝑋𝑋. By Proposition 25, we are in
contradiction.

Case {ℎ, 𝑘𝑘𝑘. By Propositions 6 and 5, ℎ𝑖𝑖𝑖𝑖𝑖  𝑖 𝑖𝑖, but ℎ𝑗𝑗𝑗𝑗𝑗𝑗𝑗 
𝑋𝑋. As 𝑘𝑘𝑘𝑘𝑘𝑘   (otherwise, we are in contradiction with
Proposition 6), the two dinucleotides with 𝑘𝑘 in pre�x of 𝑋𝑋
must be 𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘𝑘 and, consequently, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖 𝑖𝑖.
But, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a 5-necklace for𝑋𝑋. By Proposition 25, we are in
contradiction.

So, the case {2, 2, 2, 0} is impossible.

Case {2, 2, 1, 1}. Let 𝑖𝑖 be one of the two letters with two
occurrences in pre�x of𝑋𝑋. Let 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   be the three other letters
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of {𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴. Without loss of generality, we have 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖𝑖.
Consider the following cases:

(i) 𝑗𝑗 has two occurrences in pre�x of 𝑋𝑋, and ℎ and 𝑘𝑘
have one occurrence in pre�x of 𝑋𝑋. By Propositions
6 and 5, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖, and ℎ𝑘𝑘 is the unique
possible dinucleotide of 𝑋𝑋 with ℎ in pre�x of 𝑋𝑋. By
Propositions 6 and 5, 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘. If 𝑘𝑘𝑘𝑘𝑘𝑘𝑘   then
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a 5-necklace of 𝑋𝑋, and by Proposition 25, we
are in contradiction. So, 𝑘𝑘 cannot be a pre�x of 𝑋𝑋.
Contradiction.

(ii) ℎ has two occurrences in pre�x of 𝑋𝑋, and 𝑗𝑗 and 𝑘𝑘
have one occurrence in pre�x of 𝑋𝑋. By Propositions
6 and 5, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖𝑖, and 𝑗𝑗𝑗𝑗 is the unique
possible dinucleotide of 𝑋𝑋 with 𝑗𝑗 in pre�x of 𝑋𝑋.
By Propositions 6 and 5, 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘 and 𝑘𝑘𝑘𝑘 𝑘
𝑋𝑋 (otherwise, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a 5-necklace for 𝑋𝑋, and by
Proposition 25, we are in contradiction). So, 𝑘𝑘 cannot
be a pre�x in𝑋𝑋. Contradiction.

(iii) 𝑘𝑘 has two occurrences in pre�x of𝑋𝑋, and 𝑗𝑗 and ℎ have
one occurrence in pre�x of 𝑋𝑋. By Propositions 6 and
5, we have three possible cases 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  , 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘  ,
and 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘  .

(iiia) 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  . So, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖. By Propositions 6 and
5, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    , but 𝑗𝑗𝑗𝑗𝑗𝑗  . By Propositions 6 and 5,
ℎ𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   . In the �rst case 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋     ,
and by Proposition 6, we are in contradiction. In the
second case, 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋     . But, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
is a 5-necklace for 𝑋𝑋. By Proposition 25, we are in
contradiction.

(iiib) 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘  . So, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖 𝑖 𝑖𝑖. By Propositions 6
and 5, ℎ𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑖𝑖, but ℎ𝑗𝑗𝑗𝑗𝑗  . By Propositions
6 and 5, 𝑗𝑗𝑗𝑗 is the unique possible dinucleotide of 𝑋𝑋
with pre�x 𝑗𝑗. So, 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋     . But, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
is a 5-necklace for 𝑋𝑋. By Proposition 25, we are in
contradiction.

(iiic) 𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘  . So, 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖 𝑖 𝑖𝑖. By Propositions 6
and 5, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    , but 𝑗𝑗𝑗𝑗𝑗𝑗  . By Propositions 6
and 5, ℎ𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑖𝑖, but ℎ𝑗𝑗𝑗𝑗𝑗  . As ℎ𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    are
conjugate, we are in contradiction with Proposition 6.
So, the case {2, 2, 1, 1} is also impossible.

Only the 4-partition {3, 2, 1, 0} is realized by
{𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖. It corresponds to the permutation
(𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 of (𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴. In other words, the permutation,
whose existence is proved, is 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  , 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  , 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  ,
and 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  .

Proposition 36. ere are 24 maximum dinucleotide circular
codes.

Proof. By Proposition 29, each permutation (𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 of
(𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 is associated with a maximum dinucleotide cir-
cular code {𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖. As there are 24 permutations,
the number of maximum dinucleotide circular codes is at
least 24.

Now, let𝑋𝑋 be a maximum dinucleotide circular code. By
Lemma 35, its 4-partition must be {3, 2, 1, 0}. Let 𝑖𝑖 (resp., 𝑗𝑗,

ℎ, 𝑘𝑘) be the letter of 𝒜𝒜4 having 3 (resp., 2, 1, 0) occurrences
in pre�x of 𝑋𝑋. As 𝑖𝑖 has three occurrences in pre�x of 𝑋𝑋,
we must have 𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖. As 𝑗𝑗 has two occurrences in
pre�x of 𝑋𝑋, and as 𝑖𝑖𝑖𝑖 is already in 𝑋𝑋, we must also have
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   . Finally, as ℎ has only one occurrence in pre�x
of𝑋𝑋, and as 𝑖𝑖𝑖 and 𝑗𝑗𝑗 are already in𝑋𝑋, we must have ℎ𝑘𝑘 𝑘𝑘𝑘 .
Consequently, 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋     , and 𝑋𝑋 is one of the
24 maximum circular codes already considered. us, the
number of maximum dinucleotide circular codes is exactly
24.

A computer calculus con�rms that there are exactly 24
maximum dinucleotide circular codes (Table 1).

ere are eight self-complementary maximum dinu-
cleotide circular codes: 𝑋𝑋1, 𝑋𝑋4, 𝑋𝑋10, 𝑋𝑋11, 𝑋𝑋14, 𝑋𝑋15, 𝑋𝑋21,
and 𝑋𝑋24 (Table 1). e 16 remaining ones are partitioned in
two classes of eight maximum dinucleotide circular codes in
bijective correspondence by the complementarity map (Table
1).

Proposition 37. If 𝑋𝑋 is a maximum dinucleotide circular
code, then𝒞𝒞𝒞𝒞𝒞𝒞 is also a maximum dinucleotide circular code.

Proof . By inspection (Table 1).

Proposition 38. If 𝑋𝑋 is a maximum dinucleotide circular
code, then

𝒫𝒫(𝒞𝒞 (𝑋𝑋)) = 𝒞𝒞 (𝒫𝒫 (𝑋𝑋)) . (2)

Proof. By inspection (Table 1).

is proposition is not true with maximum trinucleotide
circular codes, see for example, [6].

4. Conclusion

is new combinatorial study of circular codes in genes
has proved that there are exactly 24 maximum dinucleotide
circular codes on the 4-letter genetic alphabet {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴.
ey are listed in Table 1. Propositions 22, 37, and 38 lead
to interesting properties with dinucleotide circular codes
in DNA. Indeed, they ensure that several maximum dinu-
cleotide circular codes can exist in the two strands of the
DNA double helix simultaneously. Indeed, a maximum din-
ucleotide circular code𝑋𝑋 in a given strand 𝑠𝑠 of DNA implies
that its complementary set 𝒞𝒞𝒞𝒞𝒞𝒞 in the complementary
strand𝒞𝒞𝒞𝒞𝒞𝒞 of DNA is also a maximum dinucleotide circular
code (Proposition 37) and according to two possibilities:
𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞   or 𝒞𝒞𝒞𝒞𝒞𝒞𝒞  𝒞𝒞 with 𝑌𝑌𝑌𝑌𝑌 (Table 1). Furthermore,
its permuted set 𝒫𝒫𝒫𝒫𝒫𝒫 in 𝑠𝑠, obtained by a frameshi of one
letter of𝑋𝑋 in 𝑠𝑠, is also a maximum dinucleotide circular code
(Proposition 22). Finally, its complementary permuted set
𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 in 𝒞𝒞𝒞𝒞𝒞𝒞 is also a maximum dinucleotide circular
code (Proposition 38).

Chemical modi�cation of nucleotides is ubiquitous in
RNA and DNA. So far, a total of 1�7 modi�ed nucleotides,
for which chemical structures have been assigned, have been
reported in RNA (see the RNA �odi�cation Database at
http://rna-mdb.cas.albany.edu/RNAmods/ [35]). e largest
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T 1: e 24maximum dinucleotide circular codes and their properties.

Symbol Dinucleotide circular code 𝒞𝒞 𝒫𝒫 𝒫𝒫𝒫𝒫
𝑋𝑋1 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞1) = 𝑋𝑋1 𝒫𝒫𝒫𝒫𝒫1) = 𝑋𝑋24 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫1)) = 𝑋𝑋24

𝑋𝑋2 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞2) = 𝑋𝑋13 𝒫𝒫𝒫𝒫𝒫2) = 𝑋𝑋23 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫2)) = 𝑋𝑋12

𝑋𝑋3 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞3) = 𝑋𝑋17 𝒫𝒫𝒫𝒫𝒫3) = 𝑋𝑋22 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫3)) = 𝑋𝑋8

𝑋𝑋4 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞4) = 𝑋𝑋4 𝒫𝒫𝒫𝒫𝒫4) = 𝑋𝑋21 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫4)) = 𝑋𝑋21

𝑋𝑋5 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞5) = 𝑋𝑋9 𝒫𝒫𝒫𝒫𝒫5) = 𝑋𝑋20 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫5)) = 𝑋𝑋16

𝑋𝑋6 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞6) = 𝑋𝑋18 𝒫𝒫𝒫𝒫𝒫6) = 𝑋𝑋19 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫6)) = 𝑋𝑋7

𝑋𝑋7 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞7) = 𝑋𝑋19 𝒫𝒫𝒫𝒫𝒫7) = 𝑋𝑋18 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫7)) = 𝑋𝑋6

𝑋𝑋8 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞8) = 𝑋𝑋22 𝒫𝒫𝒫𝒫𝒫8) = 𝑋𝑋17 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫8)) = 𝑋𝑋3

𝑋𝑋9 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞9) = 𝑋𝑋5 𝒫𝒫𝒫𝒫𝒫9) = 𝑋𝑋16 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫9)) = 𝑋𝑋20

𝑋𝑋10 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞10) = 𝑋𝑋10 𝒫𝒫𝒫𝒫𝒫10) = 𝑋𝑋15 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫10)) = 𝑋𝑋15

𝑋𝑋11 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞11) = 𝑋𝑋11 𝒫𝒫𝒫𝒫𝒫11) = 𝑋𝑋14 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫11)) = 𝑋𝑋14

𝑋𝑋12 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞12) = 𝑋𝑋23 𝒫𝒫𝒫𝒫𝒫12) = 𝑋𝑋13 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫12)) = 𝑋𝑋2

𝑋𝑋13 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞13) = 𝑋𝑋2 𝒫𝒫𝒫𝒫𝒫13) = 𝑋𝑋12 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫13)) = 𝑋𝑋23

𝑋𝑋14 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞14) = 𝑋𝑋14 𝒫𝒫𝒫𝒫𝒫14) = 𝑋𝑋11 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫14)) = 𝑋𝑋11

𝑋𝑋15 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞15) = 𝑋𝑋15 𝒫𝒫𝒫𝒫𝒫15) = 𝑋𝑋10 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫15)) = 𝑋𝑋10

𝑋𝑋16 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞16) = 𝑋𝑋20 𝒫𝒫𝒫𝒫𝒫16) = 𝑋𝑋9 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫16)) = 𝑋𝑋5

𝑋𝑋17 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞17) = 𝑋𝑋3 𝒫𝒫𝒫𝒫𝒫17) = 𝑋𝑋8 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫17)) = 𝑋𝑋22

𝑋𝑋18 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 𝒞𝒞𝒞𝒞𝒞18) = 𝑋𝑋6 𝒫𝒫𝒫𝒫𝒫18) = 𝑋𝑋7 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫18)) = 𝑋𝑋19

𝑋𝑋19 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 } 𝒞𝒞𝒞𝒞𝒞19) = 𝑋𝑋7 𝒫𝒫𝒫𝒫𝒫19) = 𝑋𝑋6 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫19)) = 𝑋𝑋18

𝑋𝑋20 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  } 𝒞𝒞𝒞𝒞𝒞20) = 𝑋𝑋16 𝒫𝒫𝒫𝒫𝒫20) = 𝑋𝑋5 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫20)) = 𝑋𝑋9

𝑋𝑋21 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   } 𝒞𝒞𝒞𝒞𝒞21) = 𝑋𝑋21 𝒫𝒫𝒫𝒫𝒫21) = 𝑋𝑋4 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫21)) = 𝑋𝑋4

𝑋𝑋22 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 } 𝒞𝒞𝒞𝒞𝒞22) = 𝑋𝑋8 𝒫𝒫𝒫𝒫𝒫22) = 𝑋𝑋3 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫22)) = 𝑋𝑋17

𝑋𝑋23 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  } 𝒞𝒞𝒞𝒞𝒞23) = 𝑋𝑋12 𝒫𝒫𝒫𝒫𝒫23) = 𝑋𝑋2 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫23)) = 𝑋𝑋13

𝑋𝑋24 {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   } 𝒞𝒞𝒞𝒞𝒞24) = 𝑋𝑋24 𝒫𝒫𝒫𝒫𝒫24) = 𝑋𝑋1 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫24)) = 𝑋𝑋1

T 2: Amino acids coded by the trinucleotides 𝑑𝑑𝑑𝑑 in the the
standard genetic code where 𝑑𝑑 𝑑 𝑑𝑑2

4 and 𝑙𝑙 being any letter of𝒜𝒜4.

Amino acid Trinucleotides 𝑑𝑑𝑑𝑑
Ala (𝐴𝐴) 𝐺𝐺𝐺𝐺𝐺𝐺
Arg (𝑅𝑅) 𝐶𝐶𝐶𝐶𝐶𝐶
Gly (𝐺𝐺) 𝐺𝐺𝐺𝐺𝐺𝐺
Leu (𝐿𝐿) 𝐶𝐶𝐶𝐶𝐶𝐶
Pro (𝑃𝑃) 𝐶𝐶𝐶𝐶𝐶𝐶
r (𝑇𝑇) 𝐴𝐴𝐴𝐴𝐴𝐴
Ser (𝑆𝑆) 𝑇𝑇𝑇𝑇𝑇𝑇
Val (𝑉𝑉) 𝐺𝐺𝐺𝐺𝐺𝐺

number, that is, 81, with the greatest structural diver-
sity, is found in tRNA, with 30 in rRNA, 12 in mRNA,
and 13 in other RNA species, most notably snRNA. e
four nucleotides can be chemically modi�ed, for exam-
ple, methyladenosine, dimethyladenosine, trimethyladeno-
sine, methylcytidine, dimethylcytidine, thiocytidine, methyl-
guanosine, dimethylguanosine, trimethylguanosine, methy-
luridine, dimethyluridine, thiouridine, pseudouridine, dihy-
drouridine, but also inosine, lysidine, wybutosine, wyosine,
queuosine, and archaeosine. In DNA, the cytosine in the
𝐶𝐶𝐶𝐶 dinucleotide, involved in gene regulation, can have two
chemical forms (methylcytosine, hydroxymethylcytosine).
is chemical change allows to store additional information,

thus expanding the alphabet {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 by two letters.us,
the generalization of dinucleotide circular code propositions
over larger alphabets is very interesting and should be
investigated.

Dinucleotide circular codes may be involved in retrieval
of the modulo 2 frame in genomes, for example, in the
dinucleotide repeats.

Dinucleotide circular codes may also have a biological
function in the coding process of amino acids. In the standard
genetic code, eight amino acidsAla (𝐴𝐴),Arg (𝑅𝑅),Gly (𝐺𝐺), Leu
(𝐿𝐿), Pro (𝑃𝑃), r (𝑇𝑇), Ser (𝑆𝑆), and Val (𝑉𝑉) are coded by sets
of trinucleotides involving dinucleotides. Indeed, for each of
these eight amino acids, there exists a dinucleotide 𝑑𝑑 𝑑 𝑑𝑑2

4
such that all the trinucleotides of the form 𝑑𝑑𝑑𝑑 (where 𝑙𝑙 is any
letter of𝒜𝒜4) code the same amino acid (Table 2).

Now, Gly (𝐺𝐺) and Pro (𝑃𝑃) cannot be coded by a din-
ucleotide circular code as their dinucleotides are periodic
{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Moreover, Ala (𝐴𝐴) and Arg (𝑅𝑅) cannot be coded
simultaneously by a dinucleotide circular code as their
dinucleotides are conjugate {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and similarly for Leu
(𝐿𝐿) and Ser (𝑆𝑆) with the conjugate dinucleotides {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 .
On the other hand, as any subset of a maximum dinucleotide
circular code is also a dinucleotide circular code, the follow-
ing properties exist.

(i) e four amino acids Arg (R), Leu (L), r (T), and
Val (V) can be coded by the dinucleotide circular code
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{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 which is a proper subset of the
maximum dinucleotide circular code𝑋𝑋1 (Table 1).

(ii) e four amino acids Ala (A), Leu (L), r (T), and
Val (V) can be coded by the dinucleotide circular code
{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 which is a proper subset of the
maximum dinucleotide circular code𝑋𝑋4 (Table 1).

(iii) e four amino acidsAla (A), Ser (S),r (T), andVal
(V) can be coded by the dinucleotide circular code
{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 which is a proper subset of the
maximum dinucleotide circular code𝑋𝑋5 (Table 1).

ese results contribute to the research �eld analysing the
mathematical properties of genetic codes.
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