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Trinucleotide comma-free codes and trinucleotide circular codes are two important classes
of codes in code theory and theoretical biology. A trinucleotide circular code containing
exactly 20 elements is called here a 20-trinucleotide circular code. In this paper, solving
a combinatorial problem of hard computational complexity, we extend and improve our
results of C.J. Michel, G. Pirillo, and M.A. Pirillo (2008) [14] concerning the small class
of 528 self-complementary 20-trinucleotide circular codes, to the complete class of the
20-trinucleotide circular codes which contains 12,964,440 elements. A surprising relation
with the symmetric group Σ4 appears but it remains unexplained so far.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We continue our study of the combinatorial properties of trinucleotide circular codes. A trinucleotide is a word of three
letters (triletter) on the genetic alphabet {A, C, G, T }. For 50 years, codes, comma-free codes and circular codes have been
mathematical objects studied in theoretical biology, mainly to understand the structure and the origin of the genetic code
as well as the reading frame (construction) of genes, e.g. [5–7]. In order to have an intuitive meaning of these notions, codes
are written on a straight line while comma-free codes and circular codes are written on a circle, but in both cases, unique
decipherability is required.

The genetic code based on 64 trinucleotides is a code in the sense of language theory, more precisely a uniform code [4],
but not a circular code [10] (see Remark 2 below). Before the discovery of the genetic code, Crick et al. [5] proposed
a maximal comma-free code of 20 trinucleotides for coding the 20 amino acids. In 1996, a maximal circular code X0 of 20
trinucleotides was identified statistically on a large gene population of eukaryotes and also on a large gene population of
prokaryotes [1]:

X0 = {A AC, A AT , ACC, AT C, AT T , C AG, C T C, C T G, G A A, G AC

G AG, G AT , GCC, GGC, GGT , GT A, GT C, GT T , T AC, T T C}.
This code X0 has remarkable properties. For example, X0 is self-complementary: 10 trinucleotides are complementary to the
10 other trinucleotides, e.g. A AC is complementary to GT T , A AT to AT T , etc. The two sets of 20 trinucleotides, called X1
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and X2, obtained by a simple shift operation of X0, one and two letters respectively, are also maximal circular codes [1]. This
surprising result, still mysterious, was discussed in research works in mathematics/computer science and theoretical biology,
e.g. [9,3,2,18,8,15,12,11,17]. Therefore, the mathematical study of trinucleotide circular codes is particularly important in
theoretical biology as well as in code theory.

In this paper, a trinucleotide circular code containing exactly 20 elements is called a 20-trinucleotide circular code.
Recently, we described varieties of 20-trinucleotide comma-free codes [13]. Then, we proposed a hierarchy relation based

on chains of inclusions between comma-free codes and circular codes. More precisely, all the trinucleotide codes in this
hierarchy are circular, the strongest ones being comma-free [14]. In particular, we studied the case of the small class of the
self-complementary 20-trinucleotide circular codes of cardinality 528. Here, we generalize our hierarchy relation to the case
of the entire class of the 20-trinucleotide circular codes of cardinality 12,964,440. Moreover, we identify some interesting
equalities (Proposition 8).

In other words, solving a combinatorial problem of hard computational complexity, we extend and improve here our
particular results of [14] to the class of all (maximal) 20-trinucleotide circular codes. Finally, we point out that Proposition 9
allows a computational calculus in order to determine the numbers of all (maximal) 20-trinucleotide circular codes in the
different classes of the identified mathematical hierarchy.

2. Preliminaries

We refer the reader to [4] for the classical notions of an alphabet, empty word, length, factor, proper factor, prefix, proper
prefix, suffix, proper suffix. Let A denote a finite alphabet and let A∗ denote the set of all words over A. Given a subset X
of A∗ , Xn is the set of the words over A which are the product of n words from X , i.e. Xn = {x1x2 · · · xn | xi ∈ X}.

There is a correspondence between the genetic and language-theoretic concepts. The letters (or nucleotides or bases) de-
fine the genetic alphabet A4 = {A, C, G, T }. The set of non-empty words (resp. words) over A4 is denoted by A+

4 (resp. A∗
4).

The set of the 16 words of length 2 (or dinucleotides or diletters) is denoted by A2
4. The set of the 64 words of length 3

(or trinucleotides or triletters) is denoted by A3
4. The total order over the alphabet A4 is A < C < G < T . Consequently, A+

4
is lexicographically ordered: given two words u, v ∈ A+

4 , u is smaller than v in lexicographical order, written u < v , if and
only if either u is a proper prefix of v or there exist x, y ∈ A4, x < y, and r, s, t ∈ A∗

4 so that u = rxs and v = ryt .

2.1. Two genetic maps

Definition 1. The complementary map C : A+
4 → A+

4 is defined by C(A) = T , C(T ) = A, C(C) = G and C(G) = C and by
C(uv) = C(v)C(u) for all u, v ∈ A+

4 . For example, C(A AC) = GT T . This map C is associated to the property of the com-
plementary and antiparallel (one DNA strand chemically oriented in a 5′ − 3′ direction and the other DNA strand, in the
opposite 3′ − 5′ direction) double helix. This map on words is naturally extended to word sets: a complementary trinu-
cleotide set is obtained by applying the complementary map C to all its trinucleotides.

Moreover, the map C is involutional, i.e. for each trinucleotide set X , X = C(C(X)). More precisely, the map C is an
involutional antiisomorphism.

Definition 2. The circular permutation map P : A3
4 → A3

4 permutes circularly each trinucleotide l1l2l3 as follows P (l1l2l3) =
l2l3l1. For example, P (A AC) = AC A. The kth iterate of P is denoted P k . This map on words is also naturally extended to
word sets: a permuted trinucleotide set is obtained by applying the circular permutation map P to all its trinucleotides.

Remark 1. Two trinucleotides u and v are conjugate if there exist two words s and t such that u = st and v = ts. Therefore,
if u and v satisfy P k(u) = v for some k, then u and v are conjugate.

2.2. Codes, trinucleotide comma-free codes and trinucleotide circular codes

Definition 3. Code: A set X of words is a code if, for each x1, . . . , xn, x′
1, . . . , x′

m ∈ X , n,m � 1, the condition x1 · · · xn =
x′

1 · · · x′
m implies n = m and xi = x′

i for i = 1, . . . ,n.

The set A3
4 itself is a code. More precisely, it is a uniform code [4]. Consequently, any non-empty subset of A3

4 is a code
called a trinucleotide code in this paper.

Definition 4. Trinucleotide comma-free code: A trinucleotide code X is comma-free if, for each y ∈ X and u, v ∈ A∗
4 such

that uyv = x1 · · · xn with x1, . . . , xn ∈ X , n � 1, it holds that u, v ∈ X∗ .

Several varieties of trinucleotide comma-free codes were described in [13].
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Definition 5. Trinucleotide circular code: A trinucleotide code X is circular if, for each x1, . . . , xn, x′
1, . . . , x′

m ∈ X , n,m � 1,
p ∈ A∗

4, s ∈ A+
4 , the conditions sx2 · · · xn p = x′

1 · · · x′
m and x1 = ps imply n = m, p = ε (empty word) and xi = x′

i for i =
1, . . . ,n.

Remark 2. A3
4 is obviously not a circular code and even less a comma-free code (see also Propositions 1 and 2 below).

Definition 6. Self-complementary code: A trinucleotide code X is self-complementary if, for each x ∈ X , C(x) ∈ X .

Definition 7. C3 self-complementary code: A trinucleotide code X is C3 self-complementary if X , P (X) and P 2(X) are
circular codes satisfying the following properties: X = C(X) (self-complementary) and C(P (X)) = P 2(X).

Definition 8. Maximal code: A trinucleotide circular code X ∈ A3
4 is maximal if for each x ∈ A3

4, x /∈ X , X ∪ {x} is not a
trinucleotide circular code.

The following lemma is very well known and is used several times in the paper.

Lemma 1. For any letter α,β,γ and for any trinucleotide circular code X, then ααα /∈ X and the set {αβγ ,βγ α,γ αβ}∩ X contains
at most one element and exactly one when X has 20 elements.

Remark 3. The conjugation class of the trinucleotide A A A has only one element: A A A itself. Obviously, this property is
also true for the trinucleotides CCC, GGG, T T T . Otherwise, each other trinucleotide belongs to a conjugation class having
exactly three trinucleotides. Consequently, the non-periodic trinucleotides, i.e. A3

4 \ {A A A, CCC, GGG, T T T }, are partitioned
into exactly 20 classes. Finally, any trinucleotide circular code X with 20 words is maximal.

The set X0 of 20 trinucleotides identified in the gene populations of both eukaryotes and prokaryotes is a maximal C3

self-complementary circular code [1].

2.3. Necklaces

We recall the following definitions and some previous results. We denote by l1, l2, . . . , ln−1, ln, . . . the letters in A4, by
d1,d2, . . . ,dn−1,dn, . . . the diletters in A2

4, and by n an integer satisfying n � 2.

Definition 9. Letter Diletter Necklaces (LDN): We say that the ordered sequence l1,d1, l2,d2, . . . ,dn−1, ln,dn is an nLDN for
a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2,d2l3, . . . ,dn−1ln ∈ X .

Definition 10. Letter Diletter Continued Necklaces (LDC N): We say that the ordered sequence l1,d1, l2,d2, . . . ,dn−1, ln,

dn, ln+1 is an (n + 1)LDC N for a subset X ⊂ A3
4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2,d2l3, . . . ,dn−1ln,dnln+1 ∈ X .

Definition 11. Diletter Letter Necklaces (DLN): We say that the ordered sequence d1, l1,d2, l2, . . . , ln−1,dn, ln is an nDLN for
a subset X ⊂ A3

4 if d1l1,d2l2, . . . ,dnln ∈ X and l1d2, l2d3, . . . , ln−1dn ∈ X .

Definition 12. Diletter Letter Continued Necklaces (DLC N): We say that the ordered sequence d1, l1,d2, l2, . . . , ln−1,dn,

ln,dn+1 is an (n + 1)DLC N for a subset X ⊂ A3
4 if d1l1,d2l2, . . . ,dnln ∈ X and l1d2, l2d3, . . . , ln−1dn, lndn+1 ∈ X .

Proposition 1. (See [16].) Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a circular code.
(ii) X has no 5LDC N.

Proposition 2. (See [13].) Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a comma-free code.
(ii) X has no 2LDN and no 2DLN.

Definition 13. Let X be a trinucleotide code. For any integer n ∈ {2,3,4,5}, we say that X belongs to the class CnLDN if X
has no nLDN and that X belongs to the class CnDLN if X has no nDLN . Similarly, for any integer n ∈ {3,4,5}, we say that
X belongs to the class CnLDC N if X has no nLDC N and that X belongs to the class CnDLC N if X has no nDLC N .
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Notation 1. For any integer n ∈ {2,3,4,5}, In = CnLDN ∩CnDLN and Un = CnLDN ∪CnDLN . Similarly, for any integer n ∈ {3,4,5},
InC = CnLDC N ∩ CnDLC N and UnC = CnLDC N ∪ CnDLC N .

Proposition 3. (See [14].) The following chains of inclusions hold:

(i) C2LDN ⊂ C3LDC N ⊂ C3LDN ⊂ C4LDC N ⊂ C4LDN ⊂ C5LDC N ⊂ C5LDN .
(ii) C2DLN ⊂ C3DLC N ⊂ C3DLN ⊂ C4DLC N ⊂ C4DLN ⊂ C5DLC N ⊂ C5DLN .

(iii) C2LDN ⊂ C3DLC N ⊂ C3LDN ⊂ C4DLC N ⊂ C4LDN ⊂ C5DLC N ⊂ C5LDN .
(iv) C2DLN ⊂ C3LDC N ⊂ C3DLN ⊂ C4LDC N ⊂ C4DLN ⊂ C5LDC N ⊂ C5DLN .
(v) I2 ⊂ I3C ⊂ I3 ⊂ I4C ⊂ I4 ⊂ I5C ⊂ I5 .

(vi) U 2 ⊂ U 3C ⊂ U 3 ⊂ U 4C ⊂ U 4 ⊂ U 5C ⊂ U 5 .

Proposition 4. (See [14].) C5LDN = C5LDC N = C5DLN .

Remark 4. By Propositions 1 and 4, C5LDN = C5LDC N = C5DLN is the class of circular codes. Therefore, all the chains of
inclusions of Proposition 3 end with the class of circular codes. By Proposition 2, the chain of inclusions of Proposition 3(v)
begins with I2 which is the class of comma-free codes.

3. Mathematical results

Notation 2. Let X be a trinucleotide code. The mirror code of X , denoted by ˜X , is the set of the mirror images of the
trinucleotides of X . Note that the mirror map is an involution.

Proposition 5. Let X be a trinucleotide code. X is a circular code if and only if ˜X is a circular code.

Proof. By way of contradiction, suppose that X is a circular code and ˜X is not a circular code. Then, there exists a 5LDC N ,
i.e. l1,d1, l2,d2, l3,d3, l4,d4, l5, for ˜X . Consequently, l5,˜d4, l4,˜d3, l3,˜d2, l2,˜d1, l1 is a 5LDC N for X and, by Proposition 1, X is
not a circular code. Contradiction. The other implication is proved by replacing in the proof X with ˜X , and conversely, and
by using the fact that the mirror map is an involution. �
Proposition 6. Let X be a trinucleotide code. For any integer n ∈ {2,3,4,5}, X ∈ CnLDN if and only if ˜X ∈ CnDLN .

Proof. We first prove the implication X ∈ C2LDN ⇒ ˜X ∈ C2DLN . Suppose that X ∈ C2LDN and, by way of contradiction, that
˜X /∈ C2DLN . Then, there exists a 2DLN , i.e. d1, l1,d2, l2, for ˜X . Consequently, l2,˜d2, l1,˜d1 is a 2LDN for X . Contradiction. The
implication ˜X ∈ C2DLN ⇒ X ∈ C2LDN is proved in a similar way. The proofs of the equivalences for n ∈ {3,4,5} use, as in the
previous proposition, the fact that the mirror map is an involution. �
Definition 14. A trinucleotide circular code containing exactly l elements is called an l-trinucleotide circular code.

Remark 5. A 20-trinucleotide circular code is

– maximal (in the sense that it cannot be contained in a trinucleotide circular code with more words);
– maximum (in the sense that no trinucleotide circular code can contain more than 20 elements).

Proposition 7. For 20-trinucleotide circular codes and for any integer n ∈ {2,3,4,5}, |CnLDN | = |CnDLN |.

Proof. We first prove the equality |C2LDN | = |C2DLN |. Consider two codes X and Y , X 
= Y , in (C2LDN − C2DLN). By Proposi-
tion 6, ˜X and ˜Y are circular codes in (C2DLN − C2LDN ) and ˜X 
= ˜Y . So, there is an injective map from (C2LDN − C2DLN ) into
(C2DLN − C2LDN ). In a similar way, we prove that there is also an injective map from (C2DLN − C2LDN ) into (C2LDN − C2DLN ).
Then, there is a bijection between (C2LDN − C2DLN) and (C2DLN − C2LDN ), hence |(C2LDN − C2DLN )| = |(C2DLN − C2LDN )|.
Consequently, |C2LDN | = |(C2LDN − C2DLN )| + |I2| = |(C2DLN − C2LDN )| + |I2| = |C2DLN |. The proofs of the equalities for
n ∈ {3,4,5} are similar. �

The main result of this article is the following one.

Proposition 8. For 20-trinucleotide circular codes, the following chain of inclusions and equalities hold:

I2 ⊂ U 2 = I3C ⊂ U 3C = I3 ⊂ U 3 = I4C ⊂ U 4C = I4 ⊂ U 4 = I5C ⊂ U 5C = I5 = U 5.
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Fig. 1. Necklaces used in proof of I3C ⊂ U 2.

Proof. The inclusions are trivial. We have only to prove the equalities. We begin with U 2 = I3C which is the most difficult
to prove.

Proof of U 2 ⊂ I 3C . If X is a 20-trinucleotide circular code in U 2 then either X is in C2LDN or X is in C2DLN . Suppose that
X is in C2LDN . By Proposition 3(i), we have C2LDN ⊂ C3LDC N and by Proposition 3(iii), we have C2LDN ⊂ C3DLC N . So, X is in
C3LDC N ∩ C3DLC N = I3C . On the other hand, suppose that X is in C2DLN . By Proposition 3(ii), we have C2DLN ⊂ C3DLC N and
by Proposition 3(iv), we have C2DLN ⊂ C3LDC N . So, X is in C3DLC N ∩ C3LDC N = I3C . Hence, in both cases X is in I3C and the
inclusion U 2 ⊂ I3C holds.

Proof of I 3C ⊂ U 2. By way of contradiction, suppose that a 20-trinucleotide circular code X is in I3C but is not in U 2.
Then, for some letters x, y, z, t ∈ A and for some diletters d1,d2,d3,d4 ∈ A2 we have xd1,d1y, yd2 ∈ X and d3z, zd4,d4t ∈ X
(Fig. 1).

Claim 1. {x, y, z, t} = {A, C, G, T }.

Proof of Claim 1. Note that x 
= y. Otherwise, xd1 and d1x (which are conjugate) should both be in X , contradiction according
to Lemma 1.

Note also that z 
= t . Otherwise, zd4 and d4z (which are conjugate) should both be in X , contradiction according to
Lemma 1.

Finally, note that {x, y} ∩ {z, t} = ∅. Otherwise,

– if x = z then d3z, zd1,d1y, yd2 ∈ X , hence X /∈ C3DLC N and so X /∈ I3C , in contradiction with X ∈ I3C ;
– if x = t then d3z, zd4,d4t, td1,d1y, yd2 ∈ X (hence X /∈ C3DLC N and so X /∈ I3C ), in contradiction with X ∈ I3C ;
– if y = z then xd1,d1y, yd4,d4t ∈ X (hence X /∈ C3LDC N and so X /∈ I3C ), in contradiction with X ∈ I3C ;
– if y = t then d3z, zd4,d4t, td2 ∈ X (hence X /∈ C3DLC N and so X /∈ I3C ), in contradiction with X ∈ I3C .

Claim 2. xzt ∈ X.

Proof of Claim 2. As X is a 20-trinucleotide circular code, it must contain at least an element in the conjugacy class of
xzt , according to Lemma 1. If ztx ∈ X then ztx, xd1,d1y, yd2 ∈ X hence X /∈ C3DLC N and so X /∈ I3C , in contradiction with
X ∈ I3C , and if txz ∈ X then d3z, zd4,d4t, txz ∈ X (hence X /∈ C3DLC N and so X /∈ I3C ), in contradiction with X ∈ I3C . So, the
unique element of X in the conjugacy class of xzt is xzt .

Claim 3. xxz ∈ X.

Proof of Claim 3. As X is a 20-trinucleotide circular code, it must contain at least an element in the conjugacy class of
xxz, according to Lemma 1. If xzx ∈ X then xzx, xd1,d1y, yd2 ∈ X hence X /∈ C3DLC N and so X /∈ I3C , in contradiction with
X ∈ I3C , and if zxx ∈ X then zxx, xd1,d1y, yd2 ∈ X (hence X /∈ C3DLC N and so X /∈ I3C ), in contradiction with X ∈ I3C . So,
the unique element of X in the conjugacy class of xxz is xxz.

Claim 4. zyx /∈ X.

Proof of Claim 4. By way of contradiction, suppose that zyx is in X . We have zyx, xd1,d1y, yd2 ∈ X hence X /∈ C3DLC N and
so X /∈ I3C , in contradiction with X ∈ I3C .

Now, we consider the elements in the conjugacy class of zzx and we show that none of them can be in X .

Claim 5. zzx /∈ X.

Proof of Claim 5. In the opposite case, zzx, xd1,d1y, yd2 ∈ X hence X /∈ C3DLC N and so X /∈ I3C , in contradiction with
X ∈ I3C .

Claim 6. zxz /∈ X.
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Fig. 2. Necklaces used in proof of I3 ⊂ U 3C .

Proof of Claim 6. By way of contradiction, suppose that zxz is in X and note that, as X is a 20-trinucleotide circular code,
exactly one element of the conjugacy class of zyx can be in X , according to Lemma 1. By Claim 4, i.e. zyx /∈ X , we have to
consider only two cases:

– yxz ∈ X . By Claim 2, i.e. xzt ∈ X , we have xd1,d1y, yxz, xzt ∈ X hence X /∈ C3LDC N and so X /∈ I3C , in contradiction with
X ∈ I3C ;

– xzy ∈ X . We have d3z, zxz, xzy, yd2 ∈ X (hence X /∈ C3DLC N and so X /∈ I3C ), in contradiction with X ∈ I3C .

So, zxz cannot be in X .

Claim 7. xzz /∈ X.

Proof of Claim 7. By Claim 3, i.e. xxz ∈ X , we have xxz, xzz, zd4,d4t ∈ X hence X /∈ C3LDC N and so X /∈ I3C , in contradiction
with X ∈ I3C . So, xzz cannot be in X .

By Claims 5, 6 and 7, the conjugacy class {zzx, zxz, xzz} has no element in X , in contradiction with the maximality of X
according to Lemma 1.

The inclusion I3C ⊂ U 2 holds leading to the equality U 2 = I3C .
The other equalities in the proposition are less difficult to prove than the equality U 2 = I3C as the Pigeon hole Principle

can be used. For example, let us to prove the equality U 3C = I3. We first prove the inclusion U 3C ⊂ I3 and then the
inclusion I3 ⊂ U 3C .

Proof of U 3C ⊂ I 3. If X is a 20-trinucleotide circular code in U 3C then either X is in C3LDC N or X is in C3DLC N . Suppose
that X is in C3LDC N . By Proposition 3(i), we have C3LDC N ⊂ C3LDN and by Proposition 3(iv), we have C3LDC N ⊂ C3DLN . So,
X is in C3LDN ∩ C3DLN = I3. On the other hand, suppose that X is in C3DLC N . By Proposition 3(ii), we have C3DLC N ⊂ C3DLN

and by Proposition 3(iii), we have C3DLC N ⊂ C3LDN . So, X is in C3DLN ∩ C3LDN = I3. Hence, in both cases X is in I3 and the
inclusion U 3C ⊂ I3 holds.

Proof of I 3 ⊂ U 3C . By way of contradiction, suppose that a 20-trinucleotide circular code X is in I3 but is not in
U 3C . So, for some letters x, y, z, t, t′ ∈ A and for some diletters d1,d2,d3,d4,d5 ∈ A2 we have xd1,d1y, yd2,d2z ∈ X and
d3t, td4,d4t′, t′d5 ∈ X (Fig. 2).

As A contains four letters, we have, by the Pigeon hole Principle, at least two identical letters in {x, y, z, t, t′}.
If the equality holds in {x, y, z} then we have x = y or x = z or y = z. If x = y then xd1 and d1x (which are conjugate)

should both be in X , in contradiction with X ∈ I3. If y = z then yd2 and d2 y (which are conjugate) should both be in X ,
in contradiction with X ∈ I3. If x = z then xd1,d1y, yd2,d2x, xd1 ∈ X hence X /∈ C3LDN and so X /∈ I3, in contradiction with
X ∈ I3.

If the equality holds in {t, t′} then td4,d4t (which are conjugate) should both be in X , in contradiction with X ∈ I3.
Finally, if {x, y, z} ∩ {t, t′} is non-empty then one of the following equalities holds: t = x, t = y, t = z, t′ = x, t′ = y and

t′ = z. Now:

– if t = x then d3x, xd1,d1y, yd2,d2z ∈ X (hence X /∈ C3DLN and so X /∈ I3), in contradiction with X ∈ I3;
– if t = y then xd1,d1y, yd4,d4t′, t′d5 ∈ X (hence X /∈ C3LDN and so X /∈ I3), in contradiction with X ∈ I3;
– if t = z then xd1,d1y, yd2,d2z, zd4,d4t′, t′d5 ∈ X (hence X /∈ C3LDN and so X /∈ I3), in contradiction with X ∈ I3;
– if t′ = x then d3t, td4,d4t′, t′d1,d1y, yd2,d2z ∈ X (hence X /∈ C3DLN and so X /∈ I3), in contradiction with X ∈ I3;
– if t′ = y then d3t, td4,d4t′, t′d2,d2z ∈ X (hence X /∈ C3DLN and so X /∈ I3), in contradiction with X ∈ I3;
– if t′ = z then xd1,d1y, yd2,d2z, zd5 ∈ X (hence X /∈ C3LDN and so X /∈ I3), in contradiction with X ∈ I3.

So, {x, y, z} ∩ {t, t′} is empty. Hence, there are no identical letters in {x, y, z, t, t′}, in contradiction with the fact that A has
exactly four letters. Therefore, the inclusion I3 ⊂ U 3C holds leading to the equality U 3C = I3.

The other equalities are proved in a similar way. �
For a fast computing of the number of 20-trinucleotide circular codes in the different classes CnLDN , CnDLN , In and Un

with n ∈ {2,3,4,5}, and CnLDC N , CnDLC N , InC and UnC with n ∈ {3,4,5}, the following definition of a closed necklace is
now introduced.



C.J. Michel et al. / Information and Computation 212 (2012) 55–63 61
Table 1
Partition of A3

4 \ {A A A, CCC, GGG, T T T } into the 20 conjugacy classes.

D1 = {A AC, AC A, C A A} D2 = {A AG, AG A, G A A}
D3 = {A AT , AT A, T A A} D4 = {ACC, CC A, C AC}
D5 = {AC G, C G A, G AC} D6 = {AC T , C T A, T AC}
D7 = {AGC, GC A, C AG} D8 = {AGG, GG A, G AG}
D9 = {AGT , GT A, T AG} D10 = {AT C, T C A, C AT }
D11 = {AT G, T G A, G AT } D12 = {AT T , T T A, T AT }
D13 = {CC G, C GC, GCC} D14 = {CC T , C T C, T CC}
D15 = {C GG, GGC, GC G} D16 = {C GT , GT C, T C G}
D17 = {C T G, T GC, GC T } D18 = {C T T , T T C, T C T }
D19 = {GGT , GT G, T GG} D20 = {GT T , T T G, T GT }

Definition 15. Letter Diletter Continued Closed Necklaces (LDCC N): We say that the ordered sequence l1,d1, l2,d2, . . . ,

dn−1, ln,dn, ln+1 is an (n + 1)LDCC N for a subset X ⊂ A3
4 if l1d1, l2d2, . . . , lndn ∈ X and d1l2,d2l3, . . . ,dn−1ln,dnln+1 ∈ X and

l1 = ln+1.

Notation 3. An (n + 1)LDCC N l1,d1, l2,d2, . . . ,dn−1, ln,dn, ln+1 is denoted it by [l1,d1, l2,d2, . . . ,dn−1, ln,dn]. Accordingly:

a 2LDCC N , i.e. [l1,d1], has the form l1,d1, l1;
a 3LDCC N , i.e. [l1,d1, l2,d2], has the form l1,d1, l2,d2, l1;
a 4LDCC N , i.e. [l1,d1, l2,d2, l3,d3], has the form l1,d1, l2,d2, l3,d3, l1;
a 5LDCC N , i.e. [l1,d1, l2,d2, l3,d3, l4,d4], has the form l1,d1, l2,d2, l3,d3, l4,d4, l1.

Remark 6. An (n + 1)LDCC N is an (n + 1)LDC N (Definition 10) in which the first and the last letters are identical.

The following proposition gives a relation between a trinucleotide circular code and the closed necklace LDCC N .

Proposition 9. Let X be a trinucleotide circular code. The following conditions are equivalent:

(i) X is a trinucleotide circular code.
(ii) X has no nLDCC N for any integer n ∈ {2,3,4,5}.

Proof. (i) ⇒ (ii). By way of contradiction, suppose that X has some nLDCC N for some integer n ∈ {2,3,4,5}.
If it is a 2LDCC N then l1,d1, l1,d1, l1,d1, l1,d1, l1 is a 5LDC N for X .
If it is a 3LDCC N then l1,d1, l2,d2, l1,d1, l2,d2, l1 is a 5LDC N for X .
If it is a 4LDCC N then l1,d1, l2,d2, l3,d3, l1,d1, l2 is a 5LDC N for X .
If it is a 5LDCC N then l1,d1, l2,d2, l3,d3, l4,d4, l1 is a 5LDC N for X .
In each of these four cases, by Proposition 1, X is not a trinucleotide circular code. Contradiction.
(ii) ⇒ (i). By way of contradiction, suppose that X is not a trinucleotide circular code. By Proposition 1, X has a 5LDC N ,

say l1,d1, l2,d2, l3,d3, l4,d4, l5. As A4 has four letters, then li = l j for some i, j, 1 � i � j � 5.
If j − i = 4 then l1 = l5 and [l1,d1, l2,d2, l3,d3, l4,d4] is a 5LDCC N for X .
If j − i = 3 then [li,di, li+1,di+1, li+2,di+2] is a 4LDCC N for X .
If j − i = 2 then [li,di, li+1,di+1] is a 3LDCC N for X .
If j − i = 1 then [li,di] is a 2LDCC N for X .
In each of these four cases, by Proposition 1, there is a contradiction with (ii). �

4. Computer results

4.1. Number of 20-trinucleotide circular codes

We consider the following partition of A3
4 \ {A A A, CCC, GGG, T T T } into the 20 conjugacy classes (Table 1).

Let the length l of a word set Sl , 1 � l � 20, be the number of its words. In order to determine the number of
20-trinucleotide circular codes (l = 20 words), we have developed an algorithm that constructs trinucleotide sets Sl of
increasing length l such that one and only one trinucleotide is chosen in each class Dl between the three possible ones. All
sets S1 are circular codes (60 codes of length l = 1). Each set Sl is tested according to Proposition 9 verifying that it has no
closed necklace nLDCC N for any integer n ∈ {2,3,4,5}. If a set Sl has no nLDCC N , then it is increased by a trinucleotide
chosen in the next (in lexicographical order) conjugacy class Dl+1. Indeed, if a set Sl is not a circular code then any set Sl′ ,
1 � l < l′ � 20, containing Sl is also not a circular code. This algorithm ends with sets Sl of l = 20 trinucleotides.

The obtained number of 20-trinucleotide circular codes is 12,964,440.
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Table 2
Mathematical hierarchy of 20-trinucleotide circular codes.

C2LDN C3LDC N C3LDN C4LDC N C4LDN C5LDC N C5LDN

α1 α4 α7 α9 α12 α14 α14

C2DLN C3DLC N C3DLN C4DLC N C4DLN C5DLC N C5DLN

α1 α5 α7 α10 α12 α13 α14

I2 I3C I3 I4C I4 I5C I5

α2 α3 α6 α8 α11 α13 α14

U 2 U 3C U 3 U 4C U 4 U 5C U 5

α3 α6 α8 α11 α13 α14 α14

Table 3
Computational hierarchy of 20-trinucleotide circular codes.

C2LDN C3LDC N C3LDN C4LDC N C4LDN C5LDC N C5LDN

1,584 294,912 423,552 5,088,264 5,528,688 12,964,440 12,964,440

C2DLN C3DLC N C3DLN C4DLC N C4DLN C5DLC N C5DLN

1,584 4,920 423,552 578,496 5,528,688 5,940,648 12,964,440

I2 I3C I3 I4C I4 I5C I5

408 2,760 297,072 550,032 5,116,728 5,940,648 12,964,440

U 2 U 3C U 3 U 4C U 4 U 5C U 5

2,760 297,072 550,032 5,116,728 5,940,648 12,964,440 12,964,440

4.2. Mathematical and computational hierarchies of 20-trinucleotide circular codes

According to Proposition 8, the number αi of 20-trinucleotide circular codes in the different classes CnLDN , CnDLN , In

and Un with n ∈ {2,3,4,5}, and CnLDC N , CnDLC N , InC and UnC with n ∈ {3,4,5} must follow the hierarchy given in Table 2.
The computational hierarchy of 20-trinucleotide circular codes is given in Table 3 and agrees perfectly with the mathe-

matical hierarchy.
The numbers of 20-trinucleotide circular codes in the classes from C2LDN to C5LDN , and from C2DLN to C5DLN are

non-decreasing. The classes C2LDN and C2DLN are the first ones which are non-empty. Note that no self-complementary 20-
trinucleotide circular codes are in these two classes C2LDN and C2DLN [14]. According to Proposition 4, the classes C5LDN ,
C5LDC N and C5DLN contain all the 12,964,440 circular codes.

The numbers presented in Table 3 and the others symmetric relations identified (see, for example, Proposition 7) suggest
us that the symmetric group Σ4 can be involved in these problems. So far, its role is not very clear for the authors of this
paper. A suitable mathematical formulation based on this symmetric group Σ4 could simplify the definitions and the proofs
of our results.
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