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a b s t r a c t

We develop here a new class of stochastic models of gene evolution based on residue Insertion–Deletion
Independent from Substitution (IDIS). Indeed, in contrast to all existing evolution models, insertions and
deletions are modeled here by a concept in population dynamics. Therefore, they are not only independent
from each other, but also independent from the substitution process.

After a separate stochastic analysis of the substitution and the insertion–deletion processes, we obtain
a matrix differential equation combining these two processes defining the IDIS model. By deriving a gen-
eral solution, we give an analytical expression of the residue occurrence probability at evolution time t
as a function of a substitution rate matrix, an insertion rate vector, a deletion rate and an initial residue
probability vector. Various mathematical properties of the IDIS model in relation with time t are derived:
time scale, time step, time inversion and sequence length. Particular expressions of the nucleotide occur-
eletion
ime and sequence length
ccurrence probability
ucleotides

rence probability at time t are given for classical substitution rate matrices in various biological contexts:
equal insertion rate, insertion–deletion only and substitution only. All these expressions can be directly
used for biological evolutionary applications.

The IDIS model shows a strongly different stochastic behavior from the classical substitution only
model when compared on a gene dataset. Indeed, by considering three processes of residue insertion,
deletion and substitution independently from each other, it allows a more realistic representation of gene

direc
evolution and opens new

. Introduction

Gene evolution models were initially developed to study the
ubstitution rates of nucleotides (adenine A, cytosine C, guanine
, thymine T). The first gene evolution model was proposed by

ukes and Cantor (1969) with 1-parameter substitution (probabil-
ty ˛ for all nucleotide substitution types). It was generalized to

2-parameter substitution model (Kimura, 1980) (probability �
or the nucleotide transitions A ↔ G and C ↔ T, and probability ˇ
or the nucleotide transversions A ↔ C, A ↔ T, C ↔ G and G ↔ T) and
hen, to a 3-parameter substitution model (Kimura, 1981) (prob-
bility a for transitions, probability b for transversion type A ↔ T
nd C ↔ G, and probability c for transversion type A ↔ C and G ↔ T).
ater, these substitution models were generalized up to nine free

arameters, in particular (Felsenstein, 1981; Takahata and Kimura,
981; Hasegawa et al., 1985; Tavaré, 1986; Tamura and Nei, 1993;
ang, 1994; Felsenstein and Churchill, 1996).

∗ Corresponding author.
E-mail addresses: lebre@dpt-info.u-strasbg.fr (S. Lèbre),

ichel@dpt-info.u-strasbg.fr (C.J. Michel).
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oi:10.1016/j.compbiolchem.2010.09.001
tions and applications in this research field.
© 2010 Elsevier Ltd. All rights reserved.

Over the last 20 years, only very few evolution models
were extended to the insertions and the deletions of residues
(nucleotides, amino acids, etc.) in addition to residue substitutions.
Such models are the topic of current research, in particular in the
context of probabilistic methods for alignment. The first approach,
proposed by Thorne et al. (1991) and commonly called TKF91,
models insertion and deletion as a continuous time birth–death
process governed by explicit parameters for the insertion and dele-
tion rates. Some extensions of the TKF91 model were proposed for
the insertion of fragments of several residues (long indels) (Thorne
et al., 1992; Metzler, 2003; Miklós et al., 2004; see e.g. Miklós et al.,
2009 for a review).

Another class of evolution models with insertion and dele-
tion was introduced by McGuire et al. (2001) as an extension to
the nucleotide substitution model F84 introduced by Felsenstein
and Churchill (1996). A fifth residue referring to the gap char-
acter is added to the four nucleotides and is incorporated in a
Markov model of nucleotide substitution. This model is based on an

extended substitution matrix for the extended alphabet compris-
ing the four nucleotides and the gap character, i.e. a substitution
matrix with one additional line and one additional column. Thus,
an insertion corresponds to the substitution of a gap by a nucleotide
whereas a deletion amounts to the substitution of a nucleotide by

dx.doi.org/10.1016/j.compbiolchem.2010.09.001
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
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gap. The nucleotide insertion probability is proportional to the
ucleotide equilibrium distribution whereas the deletion proba-
ility of any nucleotide is associated with an extra parameter for
he constant gap frequency.

All the insertion–deletion models mentioned above are
eversible, a useful property for inferring unrooted phylogenetic
rees. This reversibility property is also classical with some substi-
ution models. However, for a reversible insertion–deletion model,
ome theoretical constraints must be imposed on the insertion
nd deletion rates which prevents the insertion and deletion pro-
esses to be independent from each other. For example in a
airwise alignment, the reversibility constraint imposes that the
xpected frequencies of insertions and deletions must be identi-
al.

Rivas (2005) and Rivas and Eddy (2008) later generalized the
odel of McGuire et al. (2001) to a non-reversible model by adding

xplicit parameters for the insertion and deletion rates. In the par-
icular case of a reversible substitution matrix and insertion rates
roportional to the nucleotide equilibrium distribution associated
ith the substitution matrix, an analytical expression of the sub-

titution probability over some time t is obtained (Equation (9) in
ivas and Eddy, 2008).

We develop here a new class of non-reversible evolution mod-
ls for residue Insertion–Deletion Independent from Substitution
hich we call IDIS. Based on a continuous Markov process gov-

rned by an instantaneous substitution rate matrix, our IDIS model
onsiders that the insertion and deletion processes are indepen-
ent from each other, as in Rivas (2005) and Rivas and Eddy (2008).
owever, in contrast to the previous approaches by McGuire et
l. (2001), Rivas (2005), and Rivas and Eddy (2008), it is not
ased on the introduction of a gap character for extending the
ubstitution rate matrix. Indeed, the modeling of the insertion
nd deletion processes was inspired by a concept in population
ynamics (Malthus, 2000). Thus, the insertion and deletion pro-
esses are not only independent from each other, but they are
lso independent from the substitution process. Therefore, the IDIS
odel relies on a real physical process of evolution which is based

n substitutions, insertions and deletions in residue sequences
simulated sequence evolution, see Remark 6 for details). After a
eparate analysis of the substitution and the insertion–deletion
rocesses, we define the Insertion–Deletion Independent from
ubstitution (IDIS) model via a matrix differential equation sat-
sfied by the residue occurrence probability at evolution time t.
y deriving the solution of this differential equation, we obtain
n analytical expression for residue occurrence probability at
ime t as a function of the initial residue occurrence probabil-
ty, the insertion and deletion rates, and the eigenvalues and
igenvectors of the instantaneous substitution rate matrix (Eq.
2.13)).

To our knowledge, our approach opens a new theoreti-
al field in gene evolution, mainly by the fact that the three
rocesses of residue insertion, deletion and substitution are inde-
endent from each other, in contrast to all previous evolution
odels. Furthermore, applications of the IDIS model can be var-

ous: sequence alignment and phylogeny, but also in the line
f our previous evolution models during the last 20 years:
odels of ‘primitive’ genes, of ‘primitive’ genetic and amino

cids motifs, study of substitution rates and analysis of residue
ccurrence probabilities in the direct evolution time direction
past-present) or in the inverse one (present-past), e.g. Arquès
nd Michel (1990, 1993, 1995), Michel (2007), and Benard and

ichel (2009). Indeed, contrary to the classical approaches focus-

ng on substitution probability matrix and sequence alignment,
he IDIS model allows us to analyse the behavior of the residue
ccurrence probability along time (in both directions, Section
). In particular, nucleotide probability curves with local/global
y and Chemistry 34 (2010) 259–267

maxima or minima, increasing or decreasing curves, crossing
curves and asymptotic behavior can be observed and studied in
genes.

This paper is organized as follows. In Section 2, we define the
IDIS model for sequence evolution and derive the residue occur-
rence probability at evolution time t under the substitution and
independent insertion–deletion processes. In Section 3, various
mathematical properties of the IDIS model are given in relation
with time t: time scale, time step, time inversion and sequence
length. In Section 4, we derive analytical occurrence probabili-
ties of nucleotides for the IDIS-sym3 model with the 3-parameter
substitution model (Kimura, 1981) and for particular cases: equal
nucleotide insertion rates, insertion–deletion only, substitution
only, IDIS model with 2-parameter (Kimura, 1980) or 1-parameter
(Jukes and Cantor, 1969) substitution rate matrix. Finally, Section
5 shows a comparison of the IDIS model with a substitution only
model on a gene dataset.

2. Mathematical model

We introduce here the IDIS model, a time-continuous stochastic
evolution model for residue Insertion and Deletion Independent
from Substitution. It allows the substitution, the insertion and
the deletion of residues in a biological sequence. In contrast to
the classical substitution–insertion–deletion models, the inser-
tion and deletion rates of each residue are explicit parameters
of the model, i.e. independent from the substitution parameters.
Let us consider an alphabet of K residues. For example, K = 4 for
the set of nucleotides {A, C, G, T}, K = 20 for the set of amino-
acids, K = 2 for the set of purine and pyrimidine {R, Y}. For all
1 ≤ i ≤ K, we denote by Pi(t), the occurrence probability of residue i
at time t ≥ 0 per ‘residue site’ in the sequence. The column vector
P(t) = [Pi(t)]1≤i≤K of size K is made of the probabilities Pi(t) for all
1 ≤ i ≤ K. Before deriving the general stochastic IDIS model, we anal-
yse the substitution and insertion–deletion processes separately.
We first build a specific differential equation for each evolution
process.

2.1. Stochastic substitution model

The substitution process is handled by a differential equation
which determines the occurrence probability P(t) at time t ≥ 0 of
the K residues mutating according to constant substitution prob-
abilities. Let us consider two residues 1 ≤ i, j ≤ K. We denote by
Pt,t+T(j → i), the substitution probability of residue j into residue i
between time t and t + T, T > 0, which can be the result of several con-
secutive substitutions per residue site. The difference Pi(t + T) − Pi(t)
of occurrence probability of residue i at time t and t + T is equal to
the probability of residue i to appear by substitution (j → i, ∀ j /= i)
minus the probability of residue i to disappear by substitution (i → j,
∀ j /= i) over the time interval [t, t + T[, i.e.

Pi(t + T) − Pi(t) =
∑
j /= i

Pj(t)Pt,t+T (j → i)

︸ ︷︷ ︸
Probability of residue i to appear

− Pi(t)
∑
j /= i

Pt,t+T (i → j)

︸ ︷︷ ︸
Probability of residue i to disappear

. (2.1)
Remark 1.
∑

j /= iPt,t+T(i → j) = 1 − Pt,t+T(i → i) where Pt,t+T(i → i)
represents the probability that residue i does not mutate into a
different residue j /= i between time t and t + T.
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From Eq. (2.1), the derivative with respect to time P ′
i
(t) =

Pi(t)/∂t of the occurrence probability of residue i at time t is

P ′
i
(t) = lim

T→0

(
Pi(t + T) − Pi(t)

T

)

= lim
T→0

⎛
⎜⎜⎝
∑
j /= i

Pj(t)Pt,t+T (j → i) − Pi(t)
∑
j /= i

Pt,t+T (i → j)

T

⎞
⎟⎟⎠ .

s the limit of a sum of finite functions is the sum of the function
imits, the derivative P ′

i
(t) is

′
i(t)=

∑
j /= i

Pj(t)lim
T→0

(
Pt,t+T (j → i)

T

)
−Pi(t)

∑
j /= i

lim
T→0

(
Pt,t+T (i → j)

T

)
.

or all residues i, j, the instantaneous substitution probability
(j → i) of residue j into residue i is assumed to be constant along
ime. When T is small enough, there is not more than one residue
ubstitution per residue site (the substitution of residue j into
esidue i cannot be the result of several consecutive substitutions
or a given residue site). Then, the following approximation applies

t,t+T (j → i) =
T→0

P(j → i)T.

nd consequently

lim
→0

(
Pt,t+T (j → i)

T

)
= P(j → i).

inally, for any residue i, the derivative P ′
i
(t) is

P ′
i
(t) =

∑
1≤j≤K, j /= i

Pj(t)P(j → i) − Pi(t)
∑

1≤j≤K, j /= i

P(i → j)

=
∑

1≤j≤K, j /= i

Pj(t)P(j → i) − Pi(t) (1 − P(i → i))

=
∑

1≤j≤K

Pj(t)P(j → i) − Pi(t).

(2.2)

From Eq. (2.2), we derive a matrix differential equation which
escribes the substitution process

′(t) = M · P(t) − P(t) = (M − I) · P(t), (2.3)

here the symbol · is the matrix product, matrix I is the identity
atrix of size K and matrix M = [mij]1≤i,j≤K

is the instantaneous
ubstitution probability matrix whose element mij in row i and
olumn j refers to the substitution probability of residue j into
esidue i

ij = P(j → i). (2.4)

he instantaneous substitution probability matrix M is stochastic
n column. Indeed, for all 1 ≤ j ≤ K, the elements of matrix M satisfy

1≤i≤Kmij =
∑

1≤i≤KP(j → i) = 1. Eq. (2.3) is equal to Equation 2 in
ichel (2007) obtained by a similar approach. In Section 4, analyt-

cal solutions of the IDIS model are derived for various nucleotide
ubstitution matrices stochastic in column.

emark 2. The instantaneous substitution probability matrix M
2.4) is the transpose matrix of the classical substitution matrix
= [P(i → j)]1≤i,j≤K which is stochastic in line (Kimura, 1981; Rivas,

005) (�ij = P(i → j) = mji). When � is symmetric, M = �.
emark 3. The general solution of Eq. (2.3) describing the sub-
titution process is P(t) = P(0)et(M−I). It is equivalent to the classical
ubstitution probability matrix M(t) over time t with M(t) = etQ and
= M − I (Yang, 2006) (including possible intermediate successive

ubstitutions). The ith row of matrix M(t), denoted by M[i, ](t),
y and Chemistry 34 (2010) 259–267 261

describes the substitution probability of residue i. Alternatively,
M[i, ](t) can be obtained from the IDIS model by setting the vector
of initial probability for letter i to 1 (Pi(0) = 1), i.e. P(0) = (ıij)1≤j≤K

,

leading to M[i, ](t) = (ıij)1≤j≤K
et(M−I).

2.2. Stochastic insertion–deletion model

We derive a differential equation modeling the insertion–
deletion process, the substitution process being not considered
here. For any residue i, the occurrence number of residue i in the
biological sequence at time t is denoted by ni(t). The total num-
ber of residues at time t is denoted by n(t) =

∑
1≤i≤Kni(t). Let ri

be the insertion rate per site of each residue i, ∀1 ≤ i ≤ K, ri ≥ 0. In
the IDIS model, the insertion rates are explicit parameters which
are entirely independent from the substitution parameters. Let d
be the deletion rate for all residues, d ≥ 0. For any residue i, we
assume that the growth rate n′

i
(t) = ∂ni(t)/∂t of residue i at time

t due to insertions is equal to ri × n(t), as in population dynamics
(Malthus, 2000). The growth rate n′

i
(t) of residue i at time t due

to deletions is d × ni(t) where ni(t) is the number of occurrences of
residue i in the sequence. Then, the growth rate n′

i
(t) resulting from

the insertion–deletion process is for all 1 ≤ i ≤ K,

n′
i(t) = ri × n(t) − d × ni(t). (2.5)

Remark 4. As in all the previous insertion–deletion models
(Thorne et al., 1991, 1992; Metzler, 2003; Miklós et al., 2004;
McGuire et al., 2001; Rivas, 2005; Rivas and Eddy, 2008), the dele-
tion rate di of each residue i is equal to d. It is classically assumed
that there is no distinction among residue for deletion. Moreover,
the derivation of analytical expression is not ensured with specific
deletion rate di for each residue i.

Basing on the insertion–deletion growth rate n′
i
(t) (Eq. (2.5)), the

derivative P ′
i
(t) of the occurrence probability of residue i at time t

writes

P ′
i(t) =

(
ni(t)
n(t)

)′
= 1

n2(t)

⎡
⎣n(t)[rin(t) − dni(t)] − ni(t)

∑
1≤j≤K

n′
j(t)

⎤
⎦

= 1
n2(t)

⎡
⎣n(t)[rin(t) − dni(t)] − ni(t)

∑
1≤j≤K

[rjn(t) − dnj(t)]

⎤
⎦

= 1
n2(t)

⎡
⎣n(t)[rin(t) − dni(t)] − ni(t)

×

⎡
⎣n(t)

∑
1≤j≤K

rj − d
∑

1≤j≤K

nj(t)

⎤
⎦
⎤
⎦

= 1
n2(t)

⎡
⎣rin

2(t) − dni(t)n(t) − ni(t)n(t)
∑

1≤j≤K

rj + dni(t)n(t)

⎤
⎦

⎛∑ ⎞

1≤j≤K

Finally,

P ′(t) = −rP(t) + R, (2.6)
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here r =
∑

1≤i≤Kri is the sum of all residue insertion rates,
1 ≤ i ≤ K, ri ≥ 0, and R = [ri]1≤i≤K is the vector of residue insertion
ates.

emark 5. Eq. (2.6) does not depend on the deletion rate d. As
xpected, a deletion rate identical for each residue i does not affect
he occurrence probability Pi(t). Thus, the residue distribution is not
ffected by the deletions, in contrast to the most general and recent
on-reversible insertion–deletion model (Rivas and Eddy, 2008)
detailed in Remark 6). Obviously, the sequence length depends
n the deletion rate (Eq. (3.3)).

.3. IDIS model: residue Insertion–Deletion Independent from
ubstitution

From the previous mathematical results, we derive a general
atrix differential equation allowing for the substitution process

nd the insertion–deletion process to be superimposed. The IDIS
odel allows both substitution and insertion–deletion of residues.

hese processes are assumed to be independent, i.e. a substitution
vent does not alter the probability of an insertion–deletion event
nd reciprocally. Then, the derivative P′(t) of the residue occurrence
robability at time t is the result of the instantaneous variation due
o the substitution (2.3) and the insertion–deletion (2.6). Thus, the
esidue occurrence probability vector P(t) = [Pi(t)]1≤i≤K satisfies

P ′(t) = (M − I) · P(t)︸ ︷︷ ︸
Substitution

+ (−rP(t) + R)︸ ︷︷ ︸
Insertion–Deletion

= [M − (1 + r)I] · P(t) + R,

(2.7)

here M is the substitution probability matrix defined in (2.4),
= [ri]1≤i≤K is the vector of the residue insertion rates per site

nd r =
∑

1≤i≤Kri is the sum of the residue insertion rates, ∀1 ≤ i ≤ K,
i ≥ 0. Eq. (2.7) leads to the following nonhomogeneous matrix lin-
ar differential equation

′(t) = A · P(t) + R, (2.8)

here A = M − (1 + r)I.
The general solution for the nonhomogeneous matrix differen-

ial Eq. (2.8) defining the IDIS model is obtained from the method
f variation parameters (Hubbard and West, 1995). For all s, t ≥ 0,

(t) = eA(t−s)P(s) + eAt

⎛
⎝ t∫

s

e−Audu

⎞
⎠R, (2.9)

here A = M − (1 + r)I, r =
∑

1≤i≤Kri.
For s = 0, the residue occurrence probability P(t) is defined as a

unction of initial probabilities P(0). For all t ≥ 0,

(t) = eAtP(0) + eAt

⎛
⎝ t∫

0

e−Audu

⎞
⎠R. (2.10)

When the substitution probability matrix M can be diagonal-
zed with real eigenvalues (�k)1≤k≤K , then ∀1 ≤ k ≤ K − 1, �k ≤ 1
nd �K = 1 as Perron–Frobenius theorem ensures that the largest
igenvalue associated with a stochastic matrix, like M, is always
. Let D = Diag((�k)1≤k≤K ) be the eigenvalues diagonal matrix and

be an associated eigenvectors matrix, the k th column of Q

eing an eigenvector for eigenvalue �k. Then, matrix M decompo-
es as M = Q · D · Q−1. Using A = Q · D · Q−1 − (1 + r)I = Q · D̃ · Q−1

here matrix D̃ = D − (1 + r)I = Diag((�k)1≤k≤K ), matrix A can be
iagonalized with real eigenvalues (�k)1≤k≤K where ∀1 ≤ k ≤ K − 1,

k = �k − (1 + r) and �K = − r. Then, eAt = QeD̃tQ−1 (Lange, 2005), and
y and Chemistry 34 (2010) 259–267

for all t ≥ 0,

P(t) = QeD̃tQ−1P(0) + QeD̃tQ−1

⎛
⎝ t∫

0

Qe−D̃uQ−1du

⎞
⎠R

= QD1Q−1P(0) + QD1Diag

⎛
⎝
⎛
⎝ t∫

0

e−�kudu

⎞
⎠

1≤k≤K

⎞
⎠Q−1R

= QD1Q−1P(0) + QD2Q−1R,
(2.11)

where D1 = Diag((e�kt)1≤k≤K ) and D2 =
Diag(((1/�k)(e�kt − 1))1≤k≤K ).

For all 1 ≤ k ≤ K, we build a matrix Ok of size K × K such that

Ok[i, j] = Q (i, k)Q−1(k, j). (2.12)

After some algebraic manipulation of Eq. (2.11), we obtain an
expression of the residue occurrence probability P(t) as a func-
tion of the insertion rates R = [ri]1≤i≤K , the eigenvalues (�k)1≤k≤K
of the substitution probability matrix M and the matrices (Ok)1≤k≤K
defined in Eq. (2.12) using eigenvectors matrix Q of M

P(t) =
(

K∑
k=1

1
r + 1 − �k

Ok

)
· R

+
K∑

k=1

Ok

(
P(0) − 1

r + 1 − �k
R
)

e−(r+1−�k)t . (2.13)

As the total insertion rate r is positive and the eigenval-
ues (�k)1≤k≤K are smaller than 1, then ∀1 ≤ k ≤ K, −(r + 1 − �k) ≤ 0
and the exponential terms are bounded: ∀t ≥ 0, ∀1 ≤ k ≤ K,
0 ≤ e−(r+1−�k)t ≤ 1. In Section 4, Eq. (2.13) will be used to derive
nucleotide analytical probabilities for various substitution rate
matrices.

Remark 6. As already mentioned when modeling the
insertion–deletion process (Eq. (2.6) and Remark 5), the residue
occurrence probability P(t) is not function of the deletion rate d
when d is identical for all residues. This property is in agreement
with the physical model of gene evolution. Indeed, the probability
P(t) of the IDIS model given by Eq. (2.13) can be retrieved by com-
puter simulation (by generating simulated sequences and applying
evolution by substitutions, insertions and deletions). It is also a
major difference with the most general and recent non-reversible
insertion–deletion model (Rivas and Eddy, 2008). Indeed, the
residue occurrence probability P(t) which can be derived from the
transition probability from residue i into residue j over time t using
Equation (9) in Rivas and Eddy (2008), is a function of the deletion
rate (called � in their paper) and in contradiction with the physical
model of gene evolution.

3. IDIS model properties

We set here four mathematical properties which relate the evo-
lution time t to the values of the mutation parameters (M, R). These
properties are important to model sequence evolution in practice.

3.1. Time scale
By multiplying all the substitution–insertion–deletion param-
eters, i.e. the non-diagonal elements [mij]1≤i,j≤K, i /= j

of the
substitution probability matrix M and the insertion rates [ri]1≤i≤K ,
by a scalar ˛, then the occurrence probability P(t/˛;[˛mij], [˛ri]) at
time t/˛ with the mutation parameters ([˛mij], [˛ri]) is equal to
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Fig. 1. Time scale property (Eq. (3.1)). Occurrence probability Pk(t;[mij], [ri]) of a
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occurrence probability P(t) using Eq. (2.13) with the classical 3-
arameters: a given set ([mij], [ri]) (solid line) and a set ([˛mij], [˛ri]) of parameters
[mij], [ri]) multiplied by ˛ = 0.5 (dashed line). In particular, when t = 10, Pk(10;[mij],
ri]) = Pk(20;[0.5mij], [0.5ri]) = 0.2511.

he occurrence probability P(t;[mij], [ri]) at time t with the original
utation parameters ([mij], [ri])(

t

˛
; [˛mij], [˛ri]

)
= P(t; [mij], [ri]). (3.1)

ndeed, multiplying the model parameters by a scalar ˛
eads to insertion rates R̃ = ˛R and substitution probability

atrix M̃ = ˛M + (1 − ˛)I with eigenvalues �̃k = ˛�k + 1 − ˛,
1 ≤ k ≤ K. Then, in Eq. (2.13), ∀1 ≤ k ≤ K, (r̃ + 1 − �̃k) = ˛(r + 1 −
k), R̃/

(
r̃ + 1 − �̃k

)
= R/(r + 1 − �k) and (r̃ + 1 − �̃k)t = (r + 1 −

k)˛t. This time scale property is illustrated in Fig. 1. As a con-
equence, the order of magnitude of the mutation parameters
substitution parameters M and insertion rates R) is directly related
o time. The larger the parameters are, the faster evolution goes.
his time scale property which is classical in substitution models
Jukes and Cantor, 1969; Kimura, 1980, 1981), is also verified in the
DIS model. Then, without loss of generality, the total insertion rate
can be set to 1 (only a time shifting).

.2. Time step

We derive here a time step formula. From Eq. (2.9), the residue
ccurrence probability P(t) at time t can be written as a function of
he residue occurrence probability P(s) at any time s and the time
ifference t − s. For all times t, s ≥ 0, the probability P(t) at time t is

P(t) = eA(t−s)P(s) + eAt

⎛
⎝t−s∫

0

e−A(v+s)dv

⎞
⎠R

= eA(t−s)P(s) + eA(t−s)

⎛
⎝t−s∫

0

e−Avdv

⎞
⎠R.

his result is obtained by a variable change v = u − s and using the
roperty e−A(v+s) = e−Ave−As as matrices Av and As commute. Let us

enote by F : (y, P(x)) → eAyP(x) + eAy

⎛
⎝ y∫

e−Audu

⎞
⎠R, then for all
0
, t ≥ 0, the residue occurrence probability P(t) satisfies

(t) = F(t − s, P(s)). (3.2)
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3.3. Time inversion

From Eq. (3.2), the time inverse model giving the residue occur-
rence probability P(0) as a function of P(t) is, for all t ≥ 0,

P(0) = F(−t, P(t))

= e−AtP(t) + e−At

⎛
⎝−t∫

0

e−Avdv

⎞
⎠R.

This property allows the evolution time direction to be inverted.
From a computational point of view, the analytical formulas in the
inverse evolution direction (present-past) can be deduced from the
direct evolution direction (past-present) Eq. (2.10) by replacing t by
−t.

3.4. Time and sequence length

From the insertion growth rate n′
i
(t) defined in Eq. (2.5),

the derivative sequence length is n′(t) =
∑

1≤i≤K n′
i
(t) = (r − d)n(t)

where r =
∑

1≤i≤Kri is the sum of all residue insertion rates,
∀1 ≤ i ≤ K, ri ≥ 0, and d is the deletion rate. Then, the number n(t)
of residues in the sequence at time t is, for all t ≥ 0,

n(t) = n0e(r−d)t .

The sequence length L(t) at time t which is equal to the number n(t)
of residues in the sequence at time t (all residue lengths are equal
to 1), can be written as a function of the sequence length at time s
(s < t or s > t) and the sum r of insertion rates. For all s, t ≥ 0,

L(t) = L(s)e(r−d)(t−s).

In particular with s = 0, this formula yields, for all t ≥ 0,

L(t) = L(0)e(r−d)t . (3.3)

4. Analytical occurrence probabilities of nucleotides with
the IDIS-sym3 model

Genetic sequences are series of residues in the set of nucleotides
{A, C, G, T} of size K = 4. Eq. (2.13) of the IDIS model allows to derive
analytical expressions of nucleotide occurrence probability along
time for various substitution rate matrices. In the continuation of
our evolution work, e.g. Arquès and Michel (1990, 1993, 1995),
Michel (2007), and Benard and Michel (2009), and as an illustra-
tion of the general Eq. (2.13), we derive here expressions of the
IDIS model for the classical substitution rate matrix with three
parameters (Kimura, 1981) and for various particular cases: equal
insertion rate, insertion–deletion only, substitution only, station-
ary distribution and IDIS model with 2-parameter (Kimura, 1980)
or 1-parameter (Jukes and Cantor, 1969) substitution rate matrix.
These expressions of nucleotide occurrence probability are entirely
explicit and they can be directly used for biological evolutionary
applications without mathematical computation. Some of them
will also be used for a comparison between two evolution models
in Section 5. Other potential applications are proposed in Section
6.

The IDIS-sym3 model gives the expression of nucleotide
parameter substitution matrix M(a, b, c) (Kimura, 1981). This matrix
M(a, b, c) is defined by three formal parameters a, b, c: a is the rate of
transitions A ↔ G and C ↔ T, b is the rate of transversion type A ↔ T
and C ↔ G, and c is the rate of transversion type A ↔ C and G ↔ T.
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hus, the substitution matrix M(a, b, c) is defined as follows

(a, b, c) =

⎛
⎜⎝

n c a b
c n b a
a b n c
b a c n

⎞
⎟⎠ ,

here n = 1 − (a + b + c).

.1. General formula

We derive the nucleotide occurrence probability P(t) with the
DIS-sym3 model from Eq. (2.13), the four eigenvalues of matrix

(a, b, c)

�1 = 1 − 2(a + b), �2 = 1 − 2(a + c), �3 = 1 − 2(b + c), �4 = 1}
nd their associated eigenvectors

v1 = {−1, −1, 1, 1}, v2 = {1, −1, −1, 1}, v3 = {−1, 1, −1, 1},

4 = {1, 1, 1, 1}}.
fter some algebraic manipulations, we obtain the occurrence
robability P(t) of each nucleotide A, C, G and T at time t

(t) = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + r1

z1
+ r2

z2
+ r3

z3
+
(

p1 − r1

z1

)
e−z1t +

(
p2 − r2

z2

)
e−z2t +

1 + r1

z1
− r2

z2
− r3

z3
+
(

p1 − r1

z1

)
e−z1t −

(
p2 − r2

z2

)
e−z2t −

1 − r1

z1
− r2

z2
+ r3

z3
−
(

p1 − r1

z1

)
e−z1t −

(
p2 − r2

z2

)
e−z2t +

1 − r1

z1
+ r2

z2
− r3

z3
−
(

p1 − r1

z1

)
e−z1t +

(
p2 − r2

z2

)
e−z2t −

here zk = r + 1 − �k for k = 1, 2, 3 and r = rA + rC + rG + rT;
1 = rA + rC − rG − rT, r2 = rA − rC − rG + rT, r3 = rA − rC + rG − rT;
1 = PA(0) + PC(0) − PG(0) − PT(0), p2 = PA(0) − PC(0) − PG(0) + PT(0),
3 = PA(0) − PC(0) + PG(0) − PT(0).

As parameters a, b, c and r are positive, then constants z1, z2 and
3 are positive and the exponential terms tend to 0 when t → ∞.
hus, the nucleotide equilibrium distribution P∞ = lim t→∞P(t) is
asily deduced

∞ = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + r1

z1
+ r2

z2
+ r3

z3

1 + r1

z1
− r2

z2
− r3

z3

1 − r1

z1
− r2

z2
+ r3

z3

1 − r1

z1
+ r2

z2
− r3

z3

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.2)

From Eq. (3.3), the evolution time t can be expressed as a func-
ion of the sequence length L. By replacing t by t = (1/(r − d)) ln (L/L0)
n Eq. (4.1), we derive the nucleotide occurrence probability P(L)
s a function of the sequence length L at evolution time t and the
equence length L0 at some time t0 = 0

(L) = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + r1

z1
+ r2

z2
+ r3

z3
+
(

p1 − r1

z1

)(
L

L0

)−z1/(r−d)
+
(

p2 − r

z

1 + r1

z1
− r2

z2
− r3

z3
+
(

p1 − r1

z1

)(
L

L0

)−z1/(r−d)
−
(

p2 − r

z

1 − r1

z1
− r2

z2
+ r3

z3
−
(

p1 − r1

z1

)(
L

L0

)−z1/(r−d)
−
(

p2 − r

z
r r r

(
r
)(

L
)−z1/(r−d) (

r

1 − 1

z1
+ 2

z2
− 3

z3
− p1 − 1

z1 L0
+ p2 − 2

z2

here d is the deletion rate, p1 = PA(L0) + PC(L0) − PG(L0) − PT(L0),
2 = PA(L0) − PC(L0) − PG(L0) + PT(L0), p3 = PA(L0) − PC(L0) + PG(L0) − PT

L0) and the remaining parameters z1, z2, z3, r, r1, r2, r3 as in Eq.
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− r3

z3

)
e−z3t

− r3

z3

)
e−z3t

− r3

z3

)
e−z3t

− r3

z3

)
e−z3t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.1)

L

L0

)−z2/(r−d)
+
(

p3 − r3

z3

)(
L

L0

)−z3/(r−d)

L

L0

)−z2/(r−d)
−
(

p3 − r3

z3

)(
L

L0

)−z3/(r−d)

L

L0

)−z2/(r−d)
+
(

p3 − r3

z3

)(
L

L0

)−z3/(r−d)

L
)−z2/(r−d) (

r
)(

L
)−z3/(r−d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.3)

(4.1). Eq. (4.3) will be used for an evolution model comparison in
Section 5.

4.2. Equal insertion rate formula

When the nucleotide insertion rates are all equal
(rA = rC = rG = rT /= 0), then the occurrence probability P(t) of
each nucleotide A, C, G and T at time t simplifies

P(t) = 1
4

⎛
⎜⎝

1 + p1e−z1t + p2e−z2t + p3e−z3t

1 + p1e−z1t − p2e−z2t − p3e−z3t

1 − p1e−z1t − p2e−z2t + p3e−z3t

1 − p1e−z1t + p2e−z2t − p3e−z3t

⎞
⎟⎠ , (4.4)

where z1, z2, z3, p1, p2, p3 are defined as in Eq. (4.1). The nucleotide
equilibrium distribution P∞ is

P∞ =
(

1
4

,
1
4

,
1
4

,
1
4

)t

. (4.5)

The nucleotide equilibrium distribution for equal insertion rates is
independent from the insertion rates. It is equal to the nucleotide
equilibrium distribution (4.9) obtained with the substitution only
model.

4.3. Insertion–deletion formula

When the substitution probabilities are all equal to 0
(a = b = c = 0), then the occurrence probability P(t) of each nucleotide
A, C, G and T at time t becomes

P(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rA

r
+
(

PA(0) − rA

r

)
e−rt

rC

r
+
(

PC (0) − rC

r

)
e−rt

rG

r
+
(

PG(0) − rG

r

)
e−rt

rT

r
+
(

PT (0) − rT

r

)
e−rt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.6)

where r = rA + rC + rG + rT. The nucleotide equilibrium distribution P∞
is

P∞ =
(

rA

r
,

rC

r
,

rG

r
,

rT

r

)t

. (4.7)
L0
− p3 − 3

z3 L0
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.4. Substitution formula

When the insertion rates are all equal to 0 (rA = rC = rG = rT = 0),
hen the occurrence probability P(t) of each nucleotide A, C, G and
at time t becomes

(t) = 1
4

⎛
⎜⎜⎜⎝

1 + p1e−2(a+b)t + p2e−2(a+c)t + p3e−2(b+c)t

1 + p1e−2(a+b)t − p2e−2(a+c)t − p3e−2(b+c)t

1 − p1e−2(a+b)t − p2e−2(a+c)t + p3e−2(b+c)t

1 − p1e−2(a+b)t + p2e−2(a+c)t − p3e−2(b+c)t

⎞
⎟⎟⎟⎠ , (4.8)

here a, b, c are the substitution rates of M(a, b, c) and p1, p2, p3 are
efined as in Eq. (4.1). The nucleotide equilibrium distribution P∞

s straightforward

∞ =
(

1
4

,
1
4

,
1
4

,
1
4

)t

(4.9)

nd is equal to P∞ for equal insertion rates (4.5).

.5. Stationary distribution

The stationary distribution varies between two asymptotes, the
tationary distribution for substitution only which is equal to 1/4

or each nucleotide whatever the substitution parameters a, b and
(Eq. (4.9)) and the stationary distribution for insertion–deletion
nly which depends on the insertion rates rA, rC, rG and rT (Eq. (4.7)).
ig. 2 illustrates this property for nucleotide A. The stationary dis-
ribution depends on the order of magnitude of the insertion rates
ith respect to the substitution rates.

P(t) = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2

1 + 2

1 − 2

1 − 2
.6. Particular cases

We now derive the expressions of P(t) from Eq. (2.13) for a
-parameter substitution matrix M2 = M(� , ˇ/2, ˇ/2) (IDIS-sym2

ig. 2. Stationary nucleotide occurrence probability. Stationary occurrence
robability lim t→∞PA(t) for nucleotide A (z-axe) as a function of the total sub-
titution probability ˛ = a + b + c (x-axe) and the total nucleotide insertion rate
= rA + rC + rG + rT (y-axe). In this example, a = b = c = ˛/3 and rA = (3/10)r, rC = (4/10)r,
G = (2/10)r and rT = (1/10)r. As expected, when r = 0, then lim t→∞PA(t) is equal to 1/4
Eq. (4.9)) and when ˛ = 0, lim t→∞PA(t) is equal to (rA/r) = 3/10 (Eq. (4.7)).
y and Chemistry 34 (2010) 259–267 265

model) and for a 1-parameter substitution matrix M1 = M(˛/3, ˛/3,
˛/3) (IDIS-sym1 model). Matrices M2 and M1 are also used for phy-
logenetic inference.

4.6.1. Analytical occurrence probabilities of nucleotides with the
IDIS-sym2 model

The classical substitution matrix M2 (Kimura, 1980) is defined
by two formal parameters � and ˇ: � is the rate of transitions A ↔ G
and C ↔ T, and ˇ is the rate of transversions A ↔ C, A ↔ T, C ↔ G and
G ↔ T

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

n
ˇ

2
�

ˇ

2
ˇ

2
n

ˇ

2
�

�
ˇ

2
n

ˇ

2
ˇ

2
�

ˇ

2
n

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where n = 1 − (ˇ + �). Matrix M2 is a particular case of matrix M(a,
b, c) where a = � and b = c = ˇ/2. The occurrence probability P(t) of
each nucleotide A, C, G and T at time t is

rG + r3

z3
+ 2
(

PA(0) − PG(0) − rA − rG

z1

)
e−z1t +

(
p3 − r3

z3

)
e−z3t

rT − r3

z3
+ 2
(

PC (0) − PT (0) − rC − rT

z1

)
e−z1t −

(
p3 − r3

z3

)
e−z3t

rG + r3

z3
− 2
(

PA(0) − PG(0) − rA − rG

z1

)
e−z1t +

(
p3 − r3

z3

)
e−z3t

rT − r3

z3
− 2
(

PC (0) − PT (0) − rC − rT

z1

)
e−z1t −

(
p3 − r3

z3

)
e−z3t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the constants z1 and z3 become z1 = 2� + ˇ + r and z3 = 2ˇ + r
with r = rA + rC + rG + rT, and the remaining parameters are defined as
in Eq. (4.1): p3 = PA(0) − PC(0) + PG(0) − PT(0) and r3 = rA − rC + rG − rT.

4.6.2. Analytical occurrence probabilities of nucleotides with the
IDIS-sym1 model

The classical substitution matrix M1 (Jukes and Cantor, 1969)
is defined by one formal parameter ˛ where ˛ is the substitution
probability per site

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

n
˛

3
˛

3
˛

3
˛

3
n

˛

3
˛

3
˛

3
˛

3
n

˛

3
˛

3
˛

3
˛

3
n

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where n = 1 − ˛. Matrix M1 is a particular case of matrix M(a, b,
c) where a = b = c = ˛/3. The occurrence probability P(t) of each
nucleotide A, C, G and T at time t is

P(t) = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜

1 + 4rA − r

z1
+ 4
(

PA(0) − 3rA + ˛

3z1

)
e−z1t

1 + 4rC − r

z1
+ 4
(

PC (0) − 3rC + ˛

3z1

)
e−z1t

1 + 4rG − r + 4
(

PG(0) − 3rG + ˛
)

e−z1t

⎞
⎟⎟⎟⎟⎟⎟⎟ ,
⎜⎝ z1 3z1

1 + 4rT − r

z1
+ 4
(

PT (0) − 3rT + ˛

3z1

)
e−z1t

⎟⎠
where z1 = (4/3)˛ + r and r = rA + rC + rG + rT.
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Fig. 4. IDIS model. Example of nucleotide occurrence probability P(L) obtained with
the IDIS-sym3 model using parameters: L0 = 300, PA(L0) = PC(L0) = 0.257, PG(L0) = 0.4,
PT(L0) = 0.086, a = 0, b = 0.511, c = 0, rA = 0.276, rC = 0.244, rG = 0.250, rT = 0.230, d = 0.
These curves reproduce several statistical features observed with nucleotides in
human genes (Fig. 3 and (5.1)).
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Fig. 5. Substitution only model. Nucleotide occurrence probabilities P(t) with the
ig. 3. Averaged occurrence probabilities P(L) of each nucleotide A, C, G and T
bserved in human genes as a function of their nucleotide length L. The curves are
moothed with a moving average window of 250 nucleotides.

. Comparison of the IDIS model with a substitution only
odel on a gene dataset

To our knowledge, the IDIS model is the unique analytical
pproach to study nucleotide occurrence probabilities according
o a comprehensive mutation process (residue insertion, deletion
nd substitution according to independent processes). In order to
how the important difference in stochastic behavior between the
DIS model and a classical substitution only model, we have taken
n example of nucleotide occurrence probabilities in a human gene
ataset (NCBI web site, built 36 version 3 also known as hg18). After
xcluding the rare cases of extreme gene lengths, Fig. 3 shows the
ccurrence probabilities P(L) of each nucleotide A, C, G and T in
uman genes as a function of their nucleotide length L varying from
00 to 10,000.

The main statistical features of these data can be described as
imple approximations according to inequalities which range the
ucleotide probabilities as a function of their values and their limit
robability 1/4. Six intervals I of gene lengths can be described as
ollows
PA(L) ≈ PG(L) ≈ PC (L) > 0.25 > PT (L) when L ∈ I1 = [300, 400[
PG(L) ≈ PC (L) > 0.25 > PA(L) > PT (L) when L ∈ I2 = [400, 1500[
PG(L) > PC (L) > PA(L) > 0.25 > PT (L) when L ∈ I3 = [1500, 2350[
PG(L) > PA(L) > PC (L) > 0.25 > PT (L) when L ∈ I4 = [2350, 3100[
PA(L) > PG(L) > PC (L) > 0.25 > PT (L) when L ∈ I5 = [3100, 8100[
PA(L) > PG(L) > 0.25 > PC (L) > PT (L) when L ∈ I6 = [8100, 10000]

. (5.1)

he IDIS model can describe a complete evolution process (inser-
ion, deletion and substitution) of genes of short lengths. We use
he IDIS-sym3 model giving the nucleotide occurrence probability
s a function of the sequence length (Eq. (4.3)). The initial length
0 is set to the lower limit of the studied data, i.e. L0 = 300. For sake
f simplicity, we set the deletion rate d to 0 as the residue occur-
ence probability is not affected by deletion (Remark 5) and the
otal insertion r to 1 (Section 3.1). No scan within the definition set
f parameters could simultaneously satisfy the inequalities (5.1).
owever, there exists a set of parameters (Fig. 4) which simulates

he observed statistical features (5.1) for nucleotides A and C with
ene lengths varying from 300 to 10,000 nucleotides (intervals I1 to

6) and for nucleotides G and T with gene lengths varying from 1500
o 10,000 nucleotides (intervals I3 to I6). The IDIS model allows us
o reproduce the global nucleotide probability behavior of human
enes of lengths varying from 1500 to 10,000 nucleotides shown
n Fig. 3 (except for PG(L0) = 0.4 which is higher than the observed
robability ≈0.26 and consequently for the dependent probability

T(L0) with an opposite situation).

In order to evaluate the impact of the nucleotide insertion on the
ucleotide occurrence probabilities, all nucleotide insertion rates
re set to 0 (rA = rC = rG = rT = 0), i.e. Eq. (4.8). Keeping the other model
arameters identical to the IDIS-sym3 model (legend of Fig. 4), the
IDIS-sym3 model when all nucleotide insertion rates are set to 0 (rA = rC = rG = rT = 0)
and the other model parameters are identical to Fig. 4. These curves can only simu-
late the observed statistical features for nucleotides A and C in short human genes
(intervals I1 and I2 in (5.1)).

substitution only model gives the occurrence probabilities P(t) of
each nucleotide A, C, G and T as a function of t (Fig. 5). At the
beginning of the substitution process, the stochastic curves of A,
C, G and T have a behavior similar to the curves of the IDIS model
(Figs. 4 and 5). By increasing the number of substitutions, the
nucleotide probabilities converge as expected to 0.25 (Eq. (4.9)) and
they become completely different from the real curves observed in
large human genes (Fig. 3).

6. Conclusions

We developed here a new class of stochastic evolution mod-
els for residue Insertion–Deletion Independent from Substitution
called IDIS. The IDIS model was inspired by a concept in population
dynamics and has the original property that the insertion and dele-
tion processes are not only independent from each other, but they
are also independent from the substitution process.

We give a general analytical expression of the residue occur-
rence probability at time t which can be used for any diagonalizable
substitution rate matrix (Eq. (2.13)). Thus, the IDIS model gives the
residue occurrence probability at time t as a function of a substi-
tution rate matrix M, an insertion rate vector R, a deletion rate d
and an initial residue probability vector P(0). The classical substitu-

tion only models (Jukes and Cantor, 1969; Kimura, 1980, 1981, and
their extensions) become particular cases of the IDIS model. Sev-
eral mathematical properties are also derived: time scale, time step,
time inversion and a relation between time and sequence length.
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In the continuation of our evolution work and as an illustra-
ion of the general expression (Eq. (2.13)), we give an explicit
ormula for the IDIS-sym3 model with the classical substitution
ate matrix with three parameters (Kimura, 1981). Expressions
or various particular biological contexts are also given: equal
nsertion rate, insertion–deletion only, substitution only, and also
he IDIS-sym2 and IDIS-sym1 models associated with 2-parameter
nd 1-parameter substitution matrices (Kimura, 1980; Jukes and
antor, 1969), respectively. All these expressions can be directly
sed for biological evolutionary applications.

The IDIS model showed a strongly different stochastic behavior
rom a classical substitution only model with an example of human
enes. It can also be used for deriving phylogenetic distances or
nferring phylogenetic trees from sequence alignment. Finally, by
onsidering three independent processes for insertion, deletion and
ubstitution, the IDIS model allows a more realistic representation
f gene evolution and opens new directions in this research field.

eferences

rquès, D.G., Michel, C.J., 1990. A model of DNA sequence evolution. Part 1: Statisti-
cal features and classification of gene populations, 743–753. Part 2: Simulation
model, 753–766. Part 3: Return of the model to the reality, 766–770. Bull. Math.
Biol. 52, 741–772.

rquès, D.G., Michel, C.J., 1993. Analytical expression of the purine/pyrimidine codon
probability after and before random mutations. Bull. Math. Biol. 55, 1025–1038.

rquès, D.G., Michel, C.J., 1995. Analytical solutions of the dinucleotide probability
after and before random mutations. J. Theor. Biol. 175, 533–544.

enard, E., Michel, C.J., 2009. Computation of direct and inverse mutations with
the SEGM web server (Stochastic Evolution of Genetic Motifs): an applica-
tion to splice sites of human genome introns. J. Comput. Biol. Chem. 33,
245–252.
elsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. E 17, 368–376.

elsenstein, J., Churchill, G.A., 1996. A hidden Markov model approach to variation
among sites in rate of evolution. Mol. Biol. E 13, 93–104.

asegawa, M., Kishino, H., Yano, T., 1985. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J. Mol. E 22, 160–174.
y and Chemistry 34 (2010) 259–267 267

Hubbard, J.H., West, B.H., 1995. Differential Equations: A Dynamical Systems
Approach. Springer.

Jukes, T.H., Cantor, C.R., 1969. Evolution of protein molecules. In: Munro, H.N. (Ed.),
Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132.

Kimura, M., 1980. A simple method for estimating evolutionary rates of base sub-
stitutions through comparative studies of nucleotide sequences. J. Mol. E 16,
111–120.

Kimura, M., 1981. Estimation of evolutionary distances between homologous
nucleotide sequences. Proc. Natl. Acad. Sci. U.S.A. 78, 454–458.

Lange, K., 2005. Applied Probability. Springer-Verlag, New York.
Malthus, T.R., 2000. An Essay on the Principle of Population. Library of Economics.

Liberty, Fund, Inc.
Metzler, D., 2003. Statistical alignment based on fragment insertion and deletion

models. Bioinformatics 19, 490–499.
McGuire, G., Denham, M.C., Balding, D.J., 2001. Models of sequence evolution for

DNA sequences containing gaps. Mol. Biol. E 18, 481–490.
Michel, C.J., 2007. An analytical model of gene evolution with 9 mutation parame-

ters: an application to the amino acids coded by the common circular code. Bull.
Math. Biol. 69, 677–698.

Miklós, I., Lunter, G.A., Holmes, I., 2004. A “long indel” model for evolutionary
sequence alignment. Mol. Biol. E 21, 529–540.

Miklós, I., Novák, A., Satija, R., Lyngsø, R., Hein, J., 2009. Stochastic models of
sequence evolution including insertion–deletion events. Stat. Methods Med. Res.
18, 453–485.

Rivas, E., 2005. Evolutionary models for insertions and deletions in a probabilistic
modeling framework. BMC Bioinformatics 6, 63.

Rivas, E., Eddy, S.R., 2008. Probabilistic phylogenetic inference with insertions and
deletions. PLoS Comput. Biol. 4 (9), e1000172.

Thorne, J.L., Kishino, H., Felsenstein, J., 1991. An evolutionary model for maximum
likelihood alignment of DNA sequences. J. Mol. E 33, 114–124.

Thorne, J.L., Kishino, H., Felsenstein, J., 1992. Inching toward reality: an improved
likelihood model of sequence evolution. J. Mol. E 34, 3–16.

Takahata, N., Kimura, M., 1981. A model of evolutionary base substitutions and its
application with special reference to rapid change of pseudogenes. Genetics 98,
641–657.

Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in
the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol.
E 10, 512–526.
Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNA
sequences. Lect. Math. Life Sci. 17, 57–86.

Yang, Z., 1994. Estimating the pattern of nucleotide substitution. J. Mol. E 39,
105–111.

Yang, Z., 2006. Computational Molecular Evolution. Oxford University Press, New
York.


	A stochastic evolution model for residue Insertion-Deletion Independent from Substitution
	Introduction
	Mathematical model
	Stochastic substitution model
	Stochastic insertion-deletion model
	IDIS model: residue Insertion-Deletion Independent from Substitution

	IDIS model properties
	Time scale
	Time step
	Time inversion
	Time and sequence length

	Analytical occurrence probabilities of nucleotides with the IDIS-sym3 model
	General formula
	Equal insertion rate formula
	Insertion-deletion formula
	Substitution formula
	Stationary distribution
	Particular cases
	Analytical occurrence probabilities of nucleotides with the IDIS-sym2 model
	Analytical occurrence probabilities of nucleotides with the IDIS-sym1 model


	Comparison of the IDIS model with a substitution only model on a gene dataset
	Conclusions
	References


