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a b s t r a c t

A new trinucleotide proposition is proved here and allows all the trinucleotide circular codes on the
genetic alphabet to be identified (their numbers and their sets of words). This new class of genetic motifs,
i.e. circular codes (or synchronizing genetic motifs), may be involved in the structure and the origin of
the genetic code, and in reading frames of genes.
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. Introduction

We continue our study of the properties of trinucleotide cir-
ular codes. For 50 years, codes, comma-free codes and circular
odes have been mathematical objects studied in biology, mainly
o understand the structure and the origin of the genetic code as
ell as the reading frame (construction) of genes, see the pioneer
orks (Crick et al., 1957; Golomb et al., 1958a,b). In order to have an

ntuitive meaning of these notions, codes are written on a straight
ine while comma-free codes and circular codes are written on a
ircle, but in both cases, unique decipherability is required.

The genetic code based on 64 trinucleotides is a code in the
ense of language theory, more precisely a uniform code (Berstel
nd Perrin, 1985), but not a circular code (Lassez, 1976) (see Remark
below). Before the discovery of the genetic code, Crick et al. (1957)
roposed a maximal comma-free code of 20 trinucleotides for cod-

ng the 20 amino acids. In 1996, a maximal circular code X0 of 20
rinucleotides was identified statistically on a large gene population
f eukaryotes and also on a large gene population of prokaryotes

Arquès and Michel, 1996):

X0 =
{

AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC

GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC
}

∗ Corresponding author.
E-mail addresses: michel@dpt-info.u-strasbg.fr (C.J. Michel),

irillo@math.unifi.it (G. Pirillo).

476-9271/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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This code X0 has remarkable properties. For example, X0 is self-
complementary: 10 trinucleotides are complementary to the 10
other trinucleotides, e.g. AAC is complementary to GTT , AAT to ATT ,
etc. The two sets of 20 trinucleotides, called X1 and X2, obtained
by a simple shift operation of X0, one and two letters, respectively,
are also maximal circular codes (Arquès and Michel, 1996). This
surprising result, still mysterious, was cited/discussed in research
works in mathematics/computer science and mainly in theoret-
ical biology, e.g. (Koch and Lehman, 1997; Béal and Senellart,
1998; Bassino, 1999; Štambuk, 1999; Jolivet and Rothen, 2001;
Nikolaou and Almirantis, 2003; May et al., 2004; Lassez et al.,
2007; Pirillo, 2003; José et al., 2009). Its main biological conse-
quence would be that genes have (or had) two codes: the classical
genetic code to code the amino acids and a circular code to retrieve
the reading frames of genes. Therefore, the computational study
of trinucleotide circular codes is particularly important in biol-
ogy.

The determinations of very small classes of trinucleotide circu-
lar codes, precisely the 99,320 self-complementary trinucleotide
circular codes (Pirillo and Pirillo, 2005) and about 559 millions trin-
ucleotide comma-free codes (Michel et al., 2008a), were obtained
by using the classical flower automaton algorithm (Berstel and
Perrin, 1985). We recently identified a relation between these two

classes of trinucleotide codes by constructing a hierarchy of codes
that are closed by the comma-free codes and the circular codes
(Michel et al., 2008b). The whole class of all the trinucleotide cir-
cular codes is identified in this paper (their numbers and their
sets of words). This problem has a computational complexity with

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:michel@dpt-info.u-strasbg.fr
mailto:pirillo@math.unifi.it
dx.doi.org/10.1016/j.compbiolchem.2010.03.004
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n order of magnitude significantly higher than the two previous
ases (more than 200 times). Indeed, about 116 billion trinucleotide
ircular codes are identified. The proof of a new trinucleotide
roposition (Proposition 3), which appears obvious afterwards,
llows the computational problem associated with the general case
o be solved. Thus, this short Proposition 3 which can easily be pro-
rammed, allows circular codes (synchronizing genetic motifs) on
he genetic alphabet to be identified.

. Definitions

Let A denote a finite alphabet, A∗, the set of all words over A and
+, the set of all words over A except the empty word ε. Given a

ubset X ofA∗, Xn is the set of the words overAwhich is the product
f n words from X, i.e. Xn =

{
x1x2· · ·xn|xi ∈ X

}
.

There is a correspondence between the genetic and language-
heoretic concepts. The letters (or nucleotides or bases) define
he genetic alphabet A4 = {A, C, G, T}. The set of non-empty words
resp. words) over A4 is denoted by A+

4 (resp. A∗
4). The set of the

6 words of length two (or dinucleotides or diletters) is denoted
y A2

4. The set of the 64 words of length three (or trinucleotides or
riletters) is denoted by A3

4. The total order over the alphabet A4
s A < C < G < T . Consequently, A+

4 is lexicographically ordered:
iven two words u, v ∈A+

4 , u is smaller than v in lexicographical
rder, written u < v, if and only if either u is a proper prefix of v
r there exist x, y ∈A4, x < y, and r, s, t ∈A∗

4 such that u = rxs and
= ryt.

efinition 1. Code: A set X of A+ is a code over A if for each
1, . . . , xn, x′

1, . . . , x′
m ∈ X , n, m ≥ 1, the condition x1· · ·xn = x′

1· · ·x′
m

mplies n = m and xi = x′
i
for i = 1, . . . , n.

emark 1. The setA3
4 itself is a code. More precisely, it is a uniform

ode (Berstel and Perrin, 1985).

Notation 1. Consequently, any non-empty subset of A3
4 is a code

alled trinucleotide code in this paper.

efinition 2. Trinucleotide circular code: A trinucleotide code
∈A3

4 is circular if for each x1, . . . , xn, x′
1, . . . , x′

m ∈ X , n, m ≥ 1,
∈A∗

4, s ∈A+
4 , the conditions sx2· · ·xnp = x′

1· · ·x′
m and x1 = ps imply

= m, p = ε and xi = x′
i
for i = 1, . . . , n.

emark 2. A3
4 is obviously not a trinucleotide circular code.

efinition 3. Maximal trinucleotide circular code: A trinucleotide
ircular code X ∈A3

4 is maximal if for each x ∈A3
4, X ∪ {x} is not a

rinucleotide circular code.

emark 3. Any trinucleotide circular code with 20 words is max-
mal. Therefore, the lengths of trinucleotide circular codes vary
etween 1 and 20.

. Propositions

roposition 1. The number of trinucleotide circular codes of length
is equal to 60.

roof. Obvious. �

roposition 2. The number of trinucleotide circular codes of length
0 is equal to 12,964,440.

roof. This number was obtained in 1996 by using the flower

utomaton algorithm (Table 2(d) in Arquès and Michel, 1996). �

In order to compute the growth function of trinucleotide circular
odes for all lengths l = 1, . . . , 20, we extend the necklace defini-
ion (Pirillo, 2003; Michel et al., 2008b). l1, l2, . . . , ln−1, ln, . . . are
y and Chemistry 34 (2010) 122–125 123

letters in A4, d1, d2, . . . , dn−1, dn, . . . are diletters in A2
4 and n is an

integer satisfying n ≥ 2.

Definition 4. Letter Diletter Continued Closed Necklaces (LDCCN):
We say that the ordered sequence l1, d1, l2, d2, . . . , dn−1, ln, dn, ln+1
is an (n + 1)LDCCN for a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and
d1l2, d2l3, . . . , dn−1ln, dnln+1 ∈ X and l1 = ln+1.

Notation 2. An (n + 1)LDCCN l1, d1, l2, d2, . . . , dn−1, ln, dn, ln+1
is denoted by [l1, d1, l2, d2, . . . , dn−1, ln, dn]. Accordingly:
a 2LDCCN, i.e. [l1, d1], has the form l1, d1, l1; a 3LDCCN,
i.e. [l1, d1, l2, d2], has the form l1, d1, l2, d2, l1; a 4LDCCN,
i.e. [l1, d1, l2, d2, l3, d3], has the form l1, d1, l2, d2, l3, d3, l1;
a 5LDCCN, i.e. [l1, d1, l2, d2, l3, d3, l4, d4], has the form
l1, d1, l2, d2, l3, d3, l4, d4, l1.

Proposition 3. Let X be a trinucleotide circular code. The following
conditions are equivalent.

(i) X is a trinucleotide circular code.
(ii) X has no nLDCCN for any integer n ∈ {2, 3, 4, 5}.

Proof. (i) ⇒ (ii). By way of contradiction, suppose that X has some
nLDCCN for some integer n ∈ {2, 3, 4, 5}.

If it is a 2LDCCN then l1, d1, l1, d1, l1, d1, l1, d1, l1 is a 5LDCN for
X.

If it is a 3LDCCN then l1, d1, l2, d2, l1, d1, l2, d2, l1 is a 5LDCN for
X.

If it is a 4LDCCN then l1, d1, l2, d2, l3, d3, l1, d1, l2 is a 5LDCN for
X.

If it is a 5LDCCN then l1, d1, l2, d2, l3, d3, l4, d4, l1 is a 5LDCN for
X.

In each of these four cases, by Proposition 1, X is not a trinu-
cleotide circular code. Contradiction.

(ii) ⇒ (i). By way of contradiction, suppose that X is not a
trinucleotide circular code. By Proposition 1, X has a 5LDCN, say
l1, d1, l2, d2, l3, d3, l4, d4, l5. As A4 has four letters, then li = lj for
some i, j, 1 ≤ i ≤ j ≤ 5.

If j − i = 4 then l1 = l5 and [l1, d1, l2, d2, l3, d3, l4, d4] is a 5LDCCN
for X.

If j − i = 3 then [li, di, li+1, di+1, li+2, di+2] is a 4LDCCN for X.
If j − i = 2 then [li, di, li+1, di+1] is a 3LDCCN for X.
If j − i = 1 then [li, di] is a 2LDCCN for X.
In each of these four cases, by Proposition 1, there is a contra-

diction with (ii). �

Necklace algorithm (principle): This new Proposition 3 is used to
compute all the trinucleotide circular codes (growth function for
all lengths l = 1, . . . , 20). The principle of this necklace algorithm
is simple. If the algorithm identifies a necklace iLDCCN for a given
i ∈ {2, 3, 4, 5} in a code, then it is not circular and the algorithm
stops avoiding to analyse the next necklaces jLDCCN for j > i and
j ∈ {2, 3, 4, 5}.

4. Results

Table 1 shows the number Nb(l) of trinucleotide circular codes
of length l. The growth function has a minimum number NbMin =
60 at l = 1 and a maximum number NbMax = 23,403,485,556 at
l = 13. Fig. 1 associated with Table 1 gives the graphical distribu-
tion of trinucleotide circular codes. The distribution is asymmetric
with respect to NbMax at l = 13. The numbers of codes of l = 13( )

and l = 14 are close. There are NbPot(l) = 20

l
× 3l potential

trinucleotide circular codes of length l ∈
{

1, 20
}

. Therefore, the
probability Pr(l) of a trinucleotide circular code of length l is equal
to Pr(l) = Nb(l)/NbPot(l). Table 1 and Fig. 1 also show this proba-
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Fig. 1. Growth function of trinucleotide circular codes. The x-axis represents their
length l, the primary y-axis, their number Nb(l) and the secondary y-axis, their
probability Pr(l).

bility distribution which decreases from 1 at l = 1 to 3.72 × 10−3 at
l = 20.

5. Conclusion

After a first computer result in 1996 giving the number (and its
sets of words) of trinucleotide circular codes of length l = 20 (max-
imal codes) (Arquès and Michel, 1996), the trinucleotide circular
codes for all lengths l = 1, . . . , 20 are identified here (numbers and
sets of words). In particular, the 12,964,440 maximal trinucleotide
circular codes obtained with the flower automaton algorithm are
retrieved with this new necklace algorithm. The necklace program-
mation allows the determination of these synchronizing genetic
motifs which may be involved, in particular, in the structure and
the origin of the genetic code, and in the reading frames of genes.
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