Available online at www.sciencedirect.com

ScienceDirect Theoretical

Computer Science

sl EIREL R
ELSEVIER Theoretical Computer Science 401 (2008) 17-26

www.elsevier.com/locate/tcs

A relation between trinucleotide comma-free codes and trinucleotide
circular codes

Christian J. Michel®*, Giuseppe Pirillo®®, Mario A. Pirillo9

4 Equipe de Bioinformatique Théorique, LSIIT (UMR CNRS-ULP 7005), Université Louis Pasteur de Strasbourg, Péle API,
Boulevard Sébastien Brant, 67400 Illkirch, France
b Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Unita di Firenze,
Dipartimento di Matematica “U.Dini”, viale Morgagni 67/A, 50134 Firenze, Italy
€ Université de Marne-la-Vallée, 5 boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France
d Istituto Statale SS. Annunziata, Piazzale del Poggio Imperiale, 50134 Firenze, Italy

Received 20 October 2007; accepted 10 February 2008

Communicated by D. Perrin

Abstract

The comma-free codes and circular codes are two important classes of codes in code theory and in genetics. Fifty years ago
before the discovery of the genetic code, a trinucleotide (triletter) comma-free code was proposed for associating the codons
of genes with the amino acids of proteins. More recently, in the last ten years, trinucleotide circular codes have been identified
statistically in different genomes. Here, we identify a relation between these two classes of trinucleotide codes by constructing a
hierarchy of comma-free and circular codes.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The genetic code associates trinucleotides (triletters) over the 4-letter alphabet {A, C, G, T} with amino acids
(letters) over a 20-letter alphabet. There are 61 trinucleotides among 4% = 64 coding 20 amino acids because the three
stop trinucleotides {TAA, TAG, TGA} do not code. There are three start trinucleotides {ATG, GTG, TTG} where ATG is
the standard one that codes the methionine amino acid. These start and stop trinucleotides close a series of nucleotides
(letters) in a genome which are translated from three in three nucleotides by the genetic code. This particular series of
trinucleotides in a reading frame (also called codons), defines a gene which codes a series of amino acids constituting
a protein.

Fifty years ago (in 1957), before the discovery of the genetic code, a class of trinucleotide codes, called comma-
free codes (or codes without commas) was proposed by Crick et al. [5] for explaining how the reading of a series

* Corresponding author.
E-mail addresses: michel @dpt-info.u-strasbg.fr (C.J. Michel), pirillo@math.unifi.it (G. Pirillo), map @conmet.it (M.A. Pirillo).

0304-3975/$ - see front matter ©) 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.02.049


http://www.elsevier.com/locate/tcs
mailto:michel@dpt-info.u-strasbg.fr
mailto:pirillo@math.unifi.it
mailto:map@conmet.it
http://dx.doi.org/10.1016/j.tcs.2008.02.049

18 C.J. Michel et al. / Theoretical Computer Science 401 (2008) 17-26

of trinucleotides could code amino acids. The two questions of interest were: why are there more trinucleotides than
amino acids and, how does one choose the reading frame?

Crick et al. [5] proposed that only 20 trinucleotides among 64 code the 20 amino acids. Such a bijective code
implies that the coding trinucleotides are found only in one frame. The determination of a set of 20 trinucleotides
forming a comma-free code has several constraints:

(i) A trinucleotide with identical nucleotides must be excluded from such a code. Indeed, the concatenation of AAA
with itself (for instance) does not allow the (original) reading frame to be retrieved as there are three possible
decompositions: ...AAA, AAA, AAA, ..., ...A,AAA,AAAAA ... and ...AA,AAA, AAA, A ..., the commas
showing the adopted decomposition.

(i) Two trinucleotides related to circular permutation, for example AAC and ACA, must also be excluded from such a
code. Indeed, the concatenation of AAC with itself (for instance) does not allow the reading frame to be retrieved
as there are two possible decompositions: . ..AAC, AAC,AAC, ...and ... A,ACA,ACA, AC ....

Therefore, by excluding the four trinucleotides with identical nucleotides AAA, CCC, GGG and TTT and by gathering
the 60 remaining trinucleotides in 20 classes of three trinucleotides such that, in each class, three trinucleotides are
deduced from each other by circular permutations, e.g., AAC, ACA and CAA, we see that a comma-free code has only
one trinucleotide per class and therefore contains at most 20 trinucleotides. This trinucleotide number is identical to
the amino acid number, thus leading to a code assigning one trinucleotide per amino acid without ambiguity.

Some basic results on trinucleotide comma-free codes were obtained by Golomb et al. [9,10]. However, no
trinucleotide comma-free codes have been identified in genes statistically. Furthermore, in the late fifties, the discovery
that the trinucleotide 777, an excluded trinucleotide in a comma-free code, codes phenylalanine [13], led to the
abandonment of the concept of a comma-free code over the alphabet {A, C, G, T}. For several biological reasons,
in particular the interaction between mRNA and tRNA, this concept was again taken up over the purine/pyrimidine
alphabet {R, Y} (R = {A, G}, Y = {C, T}) with two trinucleotide comma-free codes for primitive genes: RRY [4]
and RNY (N = {R, Y}) [6].

Back in 1996, a statistical study of trinucleotide occurrences per frame has identified a set X (EUK_PRO) of 20
trinucleotides in the gene populations of both eukaryotes EUK and prokaryotes PRO [1]. This set is a trinucleotide
circular code with several strong biomathematical properties. A circular code is a set of words over an alphabet
such that any word written on a circle has at most one decomposition into words of the circular code [11]. The
construction frame of a word generated by any concatenation of words of a circular code can be retrieved after the
reading, anywhere in the generated word, of a certain number of nucleotides depending on the code. This series of
nucleotides is called the window of the circular code. The minimal window length is the size of the longest ambiguous
word that can be read in at least two frames, added with one letter. Similar to the existence of variant genetic codes
(compared to the universal one), several trinucleotide circular codes have been found in genes: one code X (MIT) in
mitochondria [2], 15 codes X (G grchaeq) in archaeal genomes [7] and 72 codes X (G pacreriq) in 175 complete bacterial
genomes (with several bacterial genomes having the same codes) [8].

A circular code has weaker conditions compared to a comma-free code. In particular, some trinucleotides of a
circular code can be found in the non-reading frame, i.e., in the two shifted frames (the reading frame shifted by
one and two nucleotides in the 5-3’ direction), while the 20 trinucleotides of a comma-free code are found only
in the reading frame. On the other hand, the lengths of the minimal windows of a circular code and a comma-free
code are less than or equal to 13 and four nucleotides, respectively. A comma-free code in genes is too constrained
from an evolutionary point of view compared to a circular code. Perhaps, this is the reason why it is not observed in
current genes statistically. From a code theory point of view, these two classes of codes are analysed separately. Here,
we present several results leading to the identification of a relation between these two classes of trinucleotide codes
by constructing a hierarchy of codes that are closed by the comma-free and circular codes. More precisely, all the
trinucleotide codes in this hierarchy are circular, the strongest ones being comma-free.

2. Definitions

For the classical notions of an alphabet, empty word, length, factor, proper factor, prefix, proper prefix, suffix,
proper suffix, we refer the reader to [3]. Let A denote a finite alphabet and let A* denote the set of all words
over A. Given a subset X of A*, X" is the set of the words over A which is the product of n words from X, i.e.,
X" ={x1x2---x, | x; € X}.
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There is a correspondence between the genetic and language-theoretic concepts. The letters (or nucleotides or
bases) define the genetic alphabet A4 = {A, C, G, T}. The set of non-empty words (resp. words) over Ay is denoted
by .AI (resp. Aj}). The set of the 16 words of length two (or dinucleotides or diletters) is denoted by Ai. The set of
the 64 words of length three (or trinucleotides or triletters) is denoted by Ai. The total order over the alphabet Ay is
A < C < G < T. Consequently, Aj( is alphabetically ordered: given two words u, v € AZ, u is smaller than v in
alphabetical order, written u < v, if and only if either u is a proper prefix of v or there exist x, y € A4, x < y, and
r,s,t € Aj such thatu = rxs and v = ryt.

2.1. Two genetic maps

Definition 1. The complementarity map C: AI — AI isdefinedby C(A) = T,C(T) = A,C(C) = GandC(G) =C
and by C(uv) = C(v)C(u) forall u, v € .AI, e.g., C(AAC) = GTT. This map C is associated to the property of the
complementary and antiparallel (one DNA strand chemically oriented in a 5'-3" direction and the other DNA strand,
in the opposite 3’5" direction) double helix. This map on words is naturally extended to word sets: a complementary
trinucleotide set is obtained by applying the complementarity map C to all its trinucleotides.

Definition 2. The circular permutation map P: .Ai — .Ai permutes circularly each trinucleotide /1/2/3 as follows
P(l11pl3) = lh13l,. The kth iterate of P is denoted P¥. This map on words is also naturally extended to word sets: a
permuted trinucleotide set is obtained by applying the circular permutation map P to all its trinucleotides.

Remark 1. Two trinucleotides u# and v are conjugate if there exist two words s and ¢ such that 4 = st and v = ts.
Therefore, if u and v satisfy P (u) = v for some k, then u and v are conjugate.

2.2. Codes, trinucleotide comma-free codes and trinucleotide circular codes

The notion of a code has very different meanings in biology and language theory. In biology, the “genetic code”
associates trinucleotides with amino acids, while in language theory a “code” is a set of words with a unique
decipherability condition.

Definition 3. Code: A set X of words is a code if, for each x, ..., x;, x{, ...,x, € X,n,m > 1, the condition

X[ Xy =X|--- X, impliesn =m and x; = x fori =1,...,n.

!/
m

The set .Ai itself is a code. More precisely, it is a uniform code [3]. Consequently, any non-empty subset of .Ai is
a code called trinucleotide codes in this paper.

Definition 4. Trinucleotide comma-free code: A trinucleotide code X is comma-free if, foreach y € X and u, v € A}
such that uyv = x1 - - - x, with x1, ..., x, € X, n > 1, it holds that u, v € X*.

Several varieties of trinucleotide comma-free codes were described in [12].

Definition 5. Trinucleotide circular code: A trinucleotide code X is circular if, for each x, ..., x,, xi, R x,’n e X,
nm=>1,peAjse AZ, the conditions sx3 - - - x,p = x| - - - x,, and x; = ps imply n = m, p = & (empty word)
andx; = x/ fori =1,...,n.

Remark 2. .Ai is obviously not a circular code and even less a comma-free code (see also Propositions 1 and 2).
Definition 6. Self-complementary code: A trinucleotide code X is self-complementary if, foreach y € X, C(y) € X.

Definition 7. C3 self-complementary code: A trinucleotide code X is C3 self-complementary if X, X; = P(X) and
X> = P?(X) are codes satisfying the following properties: X = C(X) (self-complementary), C(X;) = X and
C(Xy) = Xy.

Example 1. The set X (EUK _PRO) of 20 trinucleotides identified in the gene populations of both eukaryotes EUK and
prokaryotes PRO, i.e., X (EUK_PRO) = {AAC,AAT,ACC,ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT,
GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} is a maximal (20 words on Ai) c3 self-complementary circular
code [1].
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Fig. 1. A graphical representation of the regularities given in the Letter Diletter Necklaces (LDN) and Letter Diletter Continued Necklaces (LDCN)
definitions.
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Fig. 2. A graphical representation of the regularities given in the Diletter Letter Necklaces (DLN) and Diletter Letter Continued Necklaces (DLCN)
definitions.
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Fig. 3. A graphical representation of the SLDCN definition.

2.3. Necklace concept

The concept of a necklace was introduced by Pirillo for circular codes in [14] and was used for studying the
self-complementary circular codes and the trinucleotide comma-free codes in [16] and [12] respectively. Here, we
extend this concept to both the trinucleotide comma-free and the circular codes with the notions of a Letter Diletter
(Continued) Necklace (LDN, LDCN) and a Diletter Letter (Continued) Necklace (DLN, DLCN).

In the following definitions, /1,3, ..., l,—1, s, ... are letters in Ay, dy,da, ...,dy—1,dy, ... are diletters in .Aﬁ
and 7 is an integer satisfying n > 2.

Definition 8. Letter Diletter Necklaces (LDN): We say that the ordered sequence [y, dy, [, da, ..., dn—1, Iy, d, is an
nLDN for a subset X C Ai if lidy, bhdy, ..., 1,d, € X and dilp, dols, ...,d,—1l, € X.

Definition 9. Letter Diletter Continued Necklaces (LDCN): We say that the ordered sequence I, d1, I, da, ..., dy—1,
by, dp, L1 1s an (n + 1)LDCN for a subset X C AZ if l1dy, bda, ..., 1,d, € X and dilp, dola, ..., dy—1ly, dyly41 €
X.

Definition 10. Diletter Letter Necklaces (DLN): We say that the ordered sequence d, I1, d>, l2, ..., l,—1,dy, [, is an
nDLN for a subset X C Ai ifdily,dyly, ...,dyl, € X and l1dy, yds, ..., l,—1d, € X.

Definition 11. Diletter Letter Continued Necklaces (DLCN): We say that the ordered sequence dy, I1, d2, l2, ..., I,—1,
dp, 1y, dyy1is an (n + 1)DLCN for a subset X C Ai ifdily, dals, ..., dyl, € X and l1dy, Iads, ..., I,—1dy, lydyy 1 €
X.

Figs. 1 and 2 give a graphical representation of the regularities in the LDN, LDCN, DLN and DLCN definitions. In
particular, they show the forbidden LD and DL configurations for the codes in our hierarchy (see Definitions 8—11).

Fig. 3 gives a graphical representation of the SLDCN definition. If a code X admits a SLDCN then for some i, j,
1<i<j<5,l;=I1;.1f j—i=4thenl; =I5 and this configuration (written on a circle in Fig. 4) is impossible for
acircularcode. If j —i =1 (or j —i =2or j —i =3 or j — i = 4) then there are similar configurations which are
forbidden for a circular code.
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Fig. 4. The SLDCN forbidden configuration for a circular code.

Proposition 1 ([14]). Let X be a trinucleotide code. The following conditions are equivalent.

(1) X is circular code.
(i1) X has no SLDCN.

Proposition 1 of [12] gives several necessary and sufficient conditions for a trinucleotide code to be a comma-free
code. In particular, the following equivalence, useful in this paper, holds.

Proposition 2 ([12]). Let X be a trinucleotide code. The following conditions are equivalent.

(i) X is a comma-free code.
(i1) X has no 2LDN and no 2DLN.

Remark 3. A circular code can have a 2LDN, 3LDN, 4LDN, 2DLN, 3DLN and 4DLN but, by Proposition 1, it has
no SLDCN. Given a non-circular code, by Proposition 1, for any & there exists n > k such that X admits an nLDN
and an nDLN. By Proposition 2, a comma-free code has no 2LDN and no 2DLN. A non-comma-free code must have
either a 2LDN or a 2DLN.

3. A hierarchy of trinucleotide comma-free and circular codes

A hierarchy of variable length codes is presented in [15]. We propose here a hierarchy specific for trinucleotide
codes. In this proposed hierarchy, all the codes are trinucleotide circular codes and the constraints ones are
trinucleotide comma-free codes.

Definition 12. Let X be a trinucleotide code. For k € {2, 3, 4, 5}, we say that X belongs to the class C kLDN if X has
no kLDN and that X belongs to the class C¥PLN if X has no kDLN. Similarly, for k € {3, 4, 5}, we say that X belongs
to the class CKLPEN if X has no kLDCN and that X belongs to the class CKPLCN if X has no kDLCN.

Notation 1. /" = CnLDN a CnDLN, I"C = CnLDCN N CnDLCN, U" = CnLDN U CnDLN’ U'"C = CnLDCN U CnDLCN.

Proposition 3. The following chains of inclusions hold.

(i) C2LDN = C3LDCN — 3LDN — C4LDCN = C4LDN — CSLDCN — CSLDN
(i) C2PLN « 3DPLCN = C3DLN = C4DLCN — c4DIN — ¢SDLCN — oSDLN,
(iii) C2LPN < C3DLCN = C3LDN = C4DLCN — CALDN — oSDLCN — CSLDN
(iv) C2PLN = C3LDCN — 3DIN — CALDCN = CADLN = CSLDCN — SDLN
wIPcrPccrPcriccrtcrccr.

(vi) U? CU3C c U3 cU*C cU* cUC cU>

Proof. (i) We first prove that C2LPN < C3LPCN By way of contradiction, suppose that X € C2LPN put X ¢ C3LPCN
i.e., X has a3LDCN: Iy, d1, I», da, I3. Immediately, 1, dy, [, d» is a 2LDN for X, i.e., X ¢ C2LDN 4 contradiction.
The inclusions C3LPEN < C3LPN C3LDN — CALDCN "etc | are proved similarly.

The proofs of (ii)—(iv) are similar to (i). Moreover, (v) and (vi) follow from (i) and (ii), respectively. [

Proposition 4. C3LPN = CSLDCN — ¢SDLN,

Proof. We first prove that COLPN = C>LPCN By (i) of Proposition 3 , C3LPEN < 3PN | [t remains to prove that
CLDN = C3LDCN By way of contradiction, suppose X € C3LDN put X ¢ COLDCN et ]y, dy, 1z, da, 13, d3, s, da, I5
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be a SLDCN for X. As A4 contains four letters, then for some i, j € {1,2,3,4,5) withi < j, [; = [;. So
lidi,...,lj—1,dj_1,ljisa (j—i+1)LDCN for X having /; as its first and last letter. Using this property, an nLDCN
with an arbitrary n can be constructed for X. A suitable “prefix” of one of them is a SLDN for X, a contradiction.

The fact that C3PIN = C3LPCN g proved similarly using (iv) of Proposition 3 and considering a “factor” of a
suitable nLDCN that is a SLDN for X and begins with d;. [

Remark 4. As, by Proposition 1, C SLDCN i the class of circular codes, Proposition 4 shows that all the chains of

inclusions of Proposition 3 end with the class of circular codes. The chain of inclusions in (v) of Proposition 3 begins
with 12 which is exactly the class of comma-free codes.

On the other hand, C3PLEN - CSLPCEN More precisely, there is the following inclusion.

Proposition 5. CPLCN < CSLDCN iy ¢SPLEN o CSLDCN,

Proof. By Propositions 3 and 4, the codes in C3PLCN are circular. By Proposition 1, C3LPCN is the class of circular
codes. So, C3PLEN - CSLDCN

Now, consider the following set Y of diletters and letters dy = AC, Iy = A,d» = AG,l, = C,d3 = AT,z =G,
dy = CG,ly = T,ds = CT and the following code X = {ACA, AAG, AGC, CAT, ATG, GCG, CGT,TCT}.
It is circular as it is in the class CLPCN pyt, by construction, it is not in the class C3PLEN | o the inclusion
COPLEN — CSLDCN g gtrict. [

Remark 5. We will see in the next section that the inclusion C?PLCN < C3LPCN remains strict in the class of the
528 maximal self-complementary circular codes and in the case of the 216 maximal C? self-complementary circular
codes.

Remark 6. By Proposition 4, C?LPN = (C3PLN The strict inclusion CPLCN < C3LPCEN holds too. The first level
in which some codes can be in the class LD but not in the class DL and vice-versa, is 4LDN — 4DLN. Indeed,
the code X’ = {ACA, AAG, AGC, CAT, ATG, GCG, CGT} obtained from X (used in the proof of Proposition 5) by
suppressing TCT, is in the class C 4LDN ¢ by construction, X’ is not in the class C 4DLN (Op the other hand, the code
X1 ={AAC, ACC, CAG, AGG, GAT, ATT, T CG} built using the diletters and letters [y = A,d; = AC, [, =C,dr =
AG,l3 =G,d3 = AT, I3 = T, dy = CG is in the class C*PLV but, by construction, X is not in the class C*PV,

The hierarchies in Proposition 3 concern the class of trinucleotide circular codes. The following proposition
explains some symmetries of hierarchies within the 528 maximal self-complementary codes and the 216 maximal
C? self-complementary codes.

Proposition 6. For the class of the 528 maximal self-complementary circular codes, the following equalities hold.
(1) C2LDN — CZDLN‘

(ll) C3LDN — C3DLN.

(111) C4LDN — C4DLN.

(IV) CSLDN — CSDLN.

Proof. (i) Let X C .Ai be a maximal self-complementary code. We have to prove that X is in the class C*LPV if and
only if X is in the class C*PIN. By way of contradiction, suppose that X € C?PN and X ¢ C?PIN. Then, X has a
2DLN denoted by d1, [1, da, [>. Consider the sequence C(l2), C(d2), C(l1), C(d1). By the self-complementary property
of X,C(l)C(dy) € Xasdylr € X,C(11)C(dy) € X asdil; € X and C(dx)C(l}) € X asl1dy € X,i.e., X hasa 2LDN,
a contradiction. So X is in the class C?PLN  In a similar way, we prove that if X is in the class C?PLN then X is also
in the class C?/PN_ The proofs of (ii)—(iv) are similar to (i). [

4. Computer results

We consider the following partition of Az \ {AAA, CCC, GGG, TIT, ATA, TAT, CGC, GCG} into 28 self-
complementary pairs (Table 1). The first element of each pair is the smallest in alphabetical order and the 28 pairs
are ordered according to the alphabetical order of their first components. Finally, we denote them by the following
symbols {a, b,c,d, e, f, g, h,i, j, k,l,m,n,0,p,q,r,s,t,u,v,w,x,Vv,z, 2,7} which are the letters of the English
alphabet with the two additional symbols z" and z”.
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Partition of Ai \ {AAA, CCC, GGG, TTT, ATA, TAT, CGC, GCG} into 28 self-complementary pairs

23

a = {AAC, GTT) b = {AAG, CTT}) ¢ = {AAT, ATT) d = {ACA, TGT)
e = {ACC, GGT} f ={ACG, CGT} g ={ACT, AGT} h={AGA,TCT}
i = {AGC, GCT) Jj ={AGG, ccT) k = {ATC, GAT} | = {ATG, CAT)
m = {CAA, TTG} n = {CAC, GTG} o = {CAG, CTG} p = {CCA, TGG}
q ={CCG, CGG} r ={CGA, TCG} s = {CTA, TAG} t = {CTC, GAG}
u = {GAA, TTC} v = {GAC, GTC} w = {GCA, TGC} x ={GCC, GGC}
y ={GGA, TCC} z = {GTA, TAC} 7 = {TAA, TTA} 7 = {TCA, TGA}
Table 2

Hierarchy of the 528 maximal self-complementary codes

CZLDN C3LDCN C3LDN C4LDCN C4LDN CSLDCN CSLDN

0 96 96 96 64 + 96 368 + 64 + 96 368 + 64 + 96
CZDLN C3DLCN CSDLN C4DLCN C4DLN CSDLCN CSDLN

0 0 96 64 + 96 64 + 96 64 + 96 368 + 64 + 96
1? 3c & 1*c * Pc r

0 0 96 96 64 4+ 96 64 4+ 96 368 + 64 + 96
U? U3c U’ Utc vt Uc U’

0 96 96 64 4+ 96 64 + 96 368 4+ 64 + 96 368 4+ 64 + 96
The number of codes is given in each class.

Table 3

Hierarchy of the 216 maximal c3 self-complementary codes

C2LDN CSLDCN C3LDN C4LDCN C4LDN CSLDCN CSLDN

0 56 56 56 56 4+ 56 104 4 56 + 56 104 4 56 + 56
C2DLN CSDLCN CSDLN C4DLCN C4DLN CSDLCN CSDLN

0 0 56 56 + 56 56 + 56 56 + 56 104 4 56 + 56
12 3c I8 I*c 14 ’c I8

0 0 56 56 56 + 56 56 + 56 104 4+ 56 + 56
U? U3c U3 Utc Ut U3c U’

0 56 56 56 + 56 56 + 56 104 4+ 56 + 56 104 4+ 56 + 56
The number of codes is given in each class.

Table 4a

List of the 56 maximal C3 self-complementary codes of the class C3LDCN (¢lass € 1)

abcegiktvx abcfgjlnoq abcflnogst abclnogstv abcikntvxz abcknotvxz
aceghijkvx aceghikvxy acfghijlng achiknvxyz acegiktuvx acikntuvxz
acknotuvxz anuvwxyzz' 7" akntuvwxzz' aknotuvxzz' bedefgiktx bedefgjlog
bcedfgjlopg bedflopgst cdefghijkx cdefghijq?’ cdefghijxz’ cdefghijlq
cdefghikxy cdefghixy?” cdfghijpq?” cdfghijlpq deghrwxy?'7" dehrwxyzz' 7’
dghjpqrw?'7’ dghpqrwy? 7" dghprwxy?'7" dhjpgrswz'7" dhpqrswyz'7" dhprwxyzZ'7"
deuvwxyzz'7" dektuvwxzz dpgrstuwz'7" dpuvwxyzz' 7" befgjlmnogq bcflmnogst
belmnogsty bmopqrst?' 7’ blmnogrstz blmnogstvy hjmopqrsz' 7’ hmopqrsy?' 7"’
hjlmnoqrsz hmnrwxyzz' 7" mopqrstuz' 7’ Imnogrstuz Imnogstuvy’ mnuvwxyzz' 7’
kmntuvwxzz' kmnotuvxz?

In this section, we present the computer results for the 528 maximal self-complementary codes and the 216 maximal
C3 self-complementary codes with a code classification according to the hierarchies of Proposition 3 (Tables 2 and 3).
For both hierarchies, the classes C2LPN and C2PLN are empty. Moreover, the cardinalities of the classes from C 3LDN
to C3PN and also from C3PLN to C3PLN are increasing. The class C3LPCN s the first one that is non-empty. New
codes occur in the class C*PLCN and then in the class C*PCN | According to Proposition 1, the class C3XPCN contains
all codes. But, for the DL codes, it is the class COPLY that contains all codes and not the class CPLCN
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Table 4b

List of the 40 maximal non-C3 self-complementary codes of the class C3LDCN ((lass Cy)

abcegikvxy abcfgjlopg abcflopgst abciknvxyz abcknovxyz abclopgstv
acegijkuvx acfghijlpg acfghijpqz” achijknvxz acijknuvxz ahnrwxyzz'7"
ahprwxyzz'7" akptuvwxzz apuvwxyzz' 7’ bedefgikxy bedefgixy?” bedeflogst
beefgjlmog beeflmogst bdpgrstw?'7" bdpqgrswyz'7" blmnogrsyz’ bmopqrsyZ'7"
cdefgijkux cdefgiktux cefghijlmg cfghijlmng dgjpqruw?'?’ dipgqrsuw?' 7"
dkptuvwxzz' eghmrwxyz' 7" ehmrwxyzz 7’ ekmotuvxzz ekmtuvwxzz emuvwxyzz'7”
hlmnogqrsyz Jjlmnogrsuz’ Jjlmnogsuvz jmopqrsuz' 7’

Table Sa

List of the 56 maximal C3 self-complementary codes of the class CHDLEN that are not already in the class C 3LDCN (class C3)

abcefgijkx abcefgijlg abcefgiktx abcefgjlog abcefglogt abcegijkvx
abcegkotvx abcfgijlng abcfglnoqt abcgijknvx abcgikntvx abcgjlnoqv
abcgknotvx abcglnogtv aceghivxy?” acehikvxyz aehvwxyzz' 7" acegikuvxy
aceikuvxyz aekuvwxyzz' aeuvwxyzz'7" bedfgjopqz” bedfjlopgs bdjopqrs7'7’
cdeghikvxy cdeghivxy?” cdfghjopqz” cdfghjlopq deghvwxy? 7" dehvwxyzZ' 7"
dghjopqr? 7’ dhjopqrs7'7’ cdegikuvxy deguvwxy?'7" dekuvwxyzz' bcfgjlmopq
befjlmopgs bjmopqrsz'7’ bjlmopqrs? cfghjlmopq ghjmopqrs' 7’ hjlmopqrs?
mpqrsuwyz' 7" mpgrstuw?'7” mopqrsuyz'7”’ mpruwxyzz'7" mopgstuvz'7’ mpuvwxyzz' 7"
mptuvwxzz 7" mnogqrsuyz'7”’ mnoqrstuz' 7’ mnruwxyzz'7" mnogstuvz'7" mntuvwxzz' 7"
mnouvxyzz'7" mnotuvxzz' 7"

Table 5b

List of the eight maximal non-C 3 self-complementary codes of the class C 4DLEN that are not already in the class C 3LDCN (class Cyq)

abcefgkotx abcgijingv acehivxyzz” bedfjopgs?” degkuvwxy? ghjlmopqr?
mnoruxyzz/z” mpqsluvwz’z”

Table 6a

List of the 104 maximal C3 self-complementary codes of the class C SLDCN that are not already in the class CHDLEN (class C 5)

abcefgijq?” abcefgijxz”’ abceiktvxz abcekotvxz abcfjlnogs abcjlnogsv
ablnogrst? ablnogstvy abkntvwxzz' abknotvxzz/ acefghijkx acefghijq?”
acefghijxz”’ acefghijlg acefghikxy acefghixy?” aceghijvx?”’ acfghjlnoq
acghiknvxy acegkotuvx aceiktuvxz acekouvxyz acekotuvxz acgikntuvx
acgknotuvx aciknuvxyz acknouvxyz aektuvwxzz aekouvxyzz aekotuvxzz
aknuvwxyzz antuvwxzz'7" aknouvxyzz' anouvxyzz'7" anotuvxzz' 7’ bedefgijkx
bedefgijq?” bedefgijx? bedefgijlg bedefgjoq?” bedegiktvx bedfgijpq?”’
bedfgijlpg bedfglopgt cdefghiqy?” cdefghilgy cdefghjoq?” cdefghjlog
cdeghijkvx cdeghijvx?”’ cdfghijkpx cdfghijpx?” deghqrwy? 7" dehqrswyz'7"
dghjprwxz' 7" dghopqryz'7" dhopgrsy?'7" dhjprwxz7' 7" dghpvwxy?'7" dhpywxyz7 7"
degruwxy?'7" deruwxyzz'7’ detuvwxzz' 7’ dgpqruwyz' 7’ dgpruwxyz'7” dpgrsuwyz'7”
dopgrstuz' 7’ dpruwxyzz'7" dgpuvwxy?'7" beflmopgst bejlmopgsv bclmopgsty
bcfglmnogt bcfjlmnogs bcgjlmnogv bcglmnogtv bcjlmnogsv blmopgqrstz
bjlmopgsvy bmopgstvz'7’ blmopgstvy bjlmnogrs7’ bmnoqrst7'7" bjlmnogsvz
bmnogstvz'7" ghjmpqrwz'7" ghmpgrwyz'7" ghmprwxyz'7" ghmopqryz'7’ hjmpqrswz'7"
hmpgrswyz' 7" hmprwxyzz' 7" hjmnoqrsz' 7" hmnvwxyzz' 7" cflmnogstu clmnogstuvy
cikmntuvxz ckmnotuvxz gmpqruwyz'7’ gmpruwxyz'7” Imopqrstuz Imopgstuvy’
kmnuvwxyzz' kmnouvxyzz'

Tables 4a, 4b, 5a, 5b, 6a and 6b list the 528 maximal self-complementary codes organized according to their
occurrences in the hierarchy. Precisely, we define a partition of these 528 codes into six classes Cq, C> , C3, C4, Cs

and Cg.

In a compact way, by using the above partition of the 528 maximal self-complementary codes, the following

hierarchies are observed (Table 7).
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Table 6b

List of the 264 maximal non-C3 self-complementary codes of the class CALDEN that are not already in the class C*PLEN (class Ce)

abcefgikxy abcefgixy?” abcefgkoxy abceflogst abcegivxy?” abcegkovxy
abceikvxyz abceivxyz7”’ abcekovxyz abcfgijlpg abcfgijpqz”’ abcfgjopq?”’
abcfglnogy abcfglopgt abcfjlopgs abcfjopgs?”’ abcflnogsy abcfopgst?”
abcgijlpgv abcgiknvxy abcgikptvx abcgjlopgv abcgknovxy abcglopgtv
abcijknvxz abcikptvxz abcinvxyzz” abcjlopgsv abkptvwxzz' ablnogrsy?’
abnogrst?' 7’ abnoqrsy? 7" abnoqstvz/ 4 abnorxyzz’ d abnotvxzz’ d abnovxyzz'7"
abnrwxyzz'7" abntvwxzZ'7" abmvwxyzz'7" abopqrst?'7" abopqrsy?'7’ abopgstvz'7”’
abpqrstw?'7" abpqrswyz' 7" abpqsrvwz’z’ / abprwxyzZ'7" abptywxz? z” abpvwxyz7' 7’
acefgijkux acefgiktux acefgkotux acehijkvxz acehijvxzz” aceijkuvxz
acfghilngy acfghjlopq acfghjopq”’ acfghlnoqy acghijknvx acghijkpvx
acghijingv acghijlpqv acghijpvxz”’ acgijknuvx acgijkpuvx acgikptuvx
achijkpvxz achijnvxzz” achijpvxzz” achinvxyzz” acijkpuvxz acikptuvxz
aehrwxyzz' 7" ahjlnogrs?’ ahjnoqrsz' 7’ ahjnrwxzz 7" ahjnvwxzz/z/ ¢ ahjopqrs?'7’
ahjpqrswz' 7" ahjprwxzz z” ahjpywxzZ 7" ahlnogrsy? ahnoqrsy? 7" ahnorxyzz' 7"
ahnvwxyzz' 7" ahopqrsyz'7" ahpqrswy? 7" ahpvwxyzz' 7" ajknuvwxzz’ ajkpuvwxzz’
ajnuvwxzz/z” ajpuvwxzz'7’ akpuvwxyzz anoruxyzz' 7’ anruwxyzz'7" apruwxyzz'7"
aptuvwxzz'7" bedefgkotx bedefgkoxy bedefglogt bedefgloqy bedefgoqy?”
bedefjlogs bedefjogs?” bedeflogsy bedefogst?” bedefoqsy?” bedegikvxy
bedegivxy?” bedfgikptx bedfopgst?” bedgikptvx beefgijlmg beefglmogqt
bcefglmoqy beefjlmogs bceflmogsy bcfgijlmng bcfglmnoqy bcflmnogsy
begijlmngv bdektvwxzz bdeogrst? 7" bdeoqrsy?'7" bdegrstw?'7" bdeqrswyz'7'
bderwxyzz'7" bdetvwxzZ'7" bdevwxyzZ 7" bdjpgrswz' 7" bdkptvwxzz' bdopgrst?'7’
bdopqrsyz' 7 bdpgstvw?'7" bdprwxyzZ'?" bdptvwxzZ 7’ bdpvwxyz7'7" belmogrst
belmoqrsy? bemogrst7' 7’ bemoqrsy?' 7" blmopqrsyz’ bmnogrsy?' 7" bmpgrstwz'7’
bmpgrswyz' 7’ bmpgstvwz'7" cdefghlogy cdefghoqy?’ cdefgijlqu cdefgikuxy
cdefgjloqu cdefgkotux cdefglogtu cdeflogstu cdegijkuvx cdegiktuvx
cdfgijkpux cdfgijlpqu cdfgikptux cdfgjlopqu cdfglopqtu cdflopgstu
cdghijkpvx cdghijpvx?’ cdgijkpuvx cdgikptuvx cefghijkmx cefghikmxy
cefghilmqy cefghjlmoq cefghlmoqy cefgijkmux cefgijlmqu cefgikmtux
cefgjlmoqu cefgkmotux cefglmoqtu ceflmogstu ceghijkmvx ceghikmvxy
cegijkmuvx cegikmtuvx cegkmotuvx cfghijlmpq cfghilmngy cfghjlmnoq
cfghlmnoqy cfgijlmnqu cfgjlmnoqu cfglmnoqtu cghijkmnvx cghijlmngv
cghikmnvxy cgijkmnuvx cgijlmnquv cgikmntuvx cgjlmnoquv cgkmnotuvx
cglmnogtuy chijkmnvxz chikmnvxyz cijkmnuvxz deghoqry?'7" degktuvwxz'
dehoqrsyz' 7’ deoqrstu7'7”’ deqrstuwz' 7’ dghjpvwx7'7" dgjkpuvwxz’ dgjopqruz' 7’
dgjpuvwxz'7’ dgkptuvwxz' dgkpuvwxy? dhjpvwxzz 7" djkpuvwxzz' djopqrsuz'7’
dipgsuvwz' 7’ dipuwwxzZ 7" dkpuvwxyzz' dpgstuvwz'7” dptuvwxzz 7" eghlmoqry?
eghmoqry?'7" eghmvwxyz' 7" egkmtuvwxz' egkmuvwxy?' egmruwxy?'7" egmuvwxyz' 7’
ehlmogqrsy? ehmoqrsyz'7’ ehmorxyz7'7" ehmvwxyzz'7” ekmouvxyzz ekmuvwxyzz
elmogrstuz’ emoqrstuz' 7’ emoruxyzz' 7" emotuvxz?'7’ emouvxyzz'7" emruwxyzz' 7"
emtuvwxzz’z’ ! ghjlmnoqr? ghlmnoqry? ghlmopqry? gjlmnogruz’ gjlmopqruz’
gimopgruz' 7’ gimpqruwz'7” hjmnrwxzz' 7" hjmnvwxzz' 7" himopqrsyz hmnoqrsyz/ 4
hmnorxyzz' 7" Jkmnuvwxzz Jjlmopqrsuz’ Jjlmopgsuv? Jjmnogrsuz'7" Jjmnogsuvz'7’
Jjmnuvwxzz' 7" jmopgsuvz'7’ Jjmpgrsuwz'7” jmpgsuvwz'7" kmptuvwxzz' Imnogrsuy?’
Table 7

Hierarchy of the 528 maximal self-complementary codes according to the classes Cy, Cy, C3, Cy4, C5 and Cg

C3LDCN C4LDN C5LDCN

CLuCy CluUCUC3UCy ClUCUC3UC4UC5UCq
C3DLN C4DLCN CSDLN

CiLuCy ClUuC,UC3UCy ClUC,UC3UC4UC5UCg

Remark 7. The maximal C3 self-complementary circular code X (EUK_PRO) belongs to the class C>XPN and is the
code acekotuvxz in 6a.
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