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Abstract

‘We develop here an analytical evolution model based on a trinucleotide mutation matrix 64 x 64 with nine substitution parameters associated
with the three types of substitutions in the three trinucleotide sites and with non-zero elements on its main diagonal. It generalizes the previous
models based on the nucleotide mutation matrices 4 x 4 and the trinucleotide mutation matrices 64 x 64 with zero elements on its main diagonal.
It determines at some time ¢ the exact occurrence probabilities of trinucleotides mutating randomly according to these nine substitution parameters.
Furthermore, applications of this model allow to generalize an evolutionary analytical solution of the common circular code of eukaryotes and

prokaryotes and also to derive a codon phylogenetic distance.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A new stochastic evolution model will determine at some
time ¢ the occurrence probabilities of trinucleotides mutating
randomly according to several types of substitutions in the
trinucleotide sites. Occurrence probabilities of trinucleotide sets
can obviously be deduced from this approach. This model with
nine substitution parameters associated with the three types
of substitutions in the three trinucleotide sites and with non-
zero elements on the main diagonal of the mutation matrix
generalizes the previous models both based on the nucleotide
mutation matrices 4 x 4, in particular with one substitution
parameter (Jukes and Cantor, 1969), two parameters (transitions
and transversions) (Kimura, 1980), three parameters (Kimura,
1981), four parameters (Takahata and Kimura, 1981) and six
parameters (Kimura, 1981), and based on the trinucleotide
mutation matrices 64 x 64 with three, six and nine substitution
parameters and with zero elements on the main diagonal (Arques
et al., 1998; Frey and Michel, 2006; Michel, 2007a).

Two types of results are presented in this paper:

(i) A mathematical model of gene evolution with nine
substitution parameters is developed: a, d and g are the
rates of transitions A <> G (a substitution from one purine
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{A, G} to the other) and C <> T (a substitution from
one pyrimidine {C, T} to the other) in the three sites,
respectively, b, e and h are the rates of transversions (a
substitution from a purine to a pyrimidine, or reciprocally)
A < T and C < G in the three sites, respectively, and ¢, f
and k are the rates of transversions A <> C and G < T in
the three sites, respectively.

(i) The applications of this model proposed here allow to
generalize a previous evolutionary analytical solution of the
common circular code and to derive a codon phylogenetic
distance.

2. Mathematical model

The mathematical model will determine at an evolutionary
time ¢ the occurrence probabilities P(¢) of the 64 trinucleotides
mutating according to nine substitution parameters a, b, ¢, d, e, f,
g, handk: a, d and g are the transitionrates A <> GandC <> T
in the three sites, respectively, b, e and h are the transversion
rates A <> T and C < G in the three sites, respectively, and c, f
and k are the transversion rates A <> C and G <> T in the three
sites, respectively.

By convention, the indexes i, j € {1,...,64} represent
the 64 trinucleotides 7= {AAA, ..., TIT} in alphabetical
order. Let P(j — i) be the substitution probability of a
trinucleotide j, j # i, into a trinucleotide i. The probability
P(j — i) is equal to O if the substitution is impossible,
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ie., if j and i differ by more than one nucleotide as
the time interval 7 is assumed to be small enough that
a trinucleotide cannot mutate successively two times
during 7. Otherwise, it is given as a function of the nine
substitution rates a, b, c, d, e, f, g, h and k. For example
with the trinucleotide AAA associated with i = 1, P(CAA —
AAA)=c, P(GAA — AAA)=a, P(TAA — AAA)=0b,
P(ACA — AAA)=f, P(AGA — AAA)=d, P(ATA —
AAA)=e, P(AAC — AAA)=k, P(AAG — AAA) =g,
P(AAT - AAA)=h and P(j > AAA)=0 with j¢
{AAC, AAG, AAT, ACA, AGA, ATA,CAA, GAA, TAA}.
Compared to the previous models, the substitution probability
P(i — i) of a trinucleotide i into itself is introduced in this
stochastic approach with a value greater than O (see below (2.1)).

Let P;(¢) be the occurrence probability of a trinucleotide i
at the time ¢. At time ¢ + 7', the occurrence probability of the
trinucleotide i is P;(t + T) so that P;(t + T) — P;(t) represents
the probabilities of trinucleotides i which appear and disappear
during the time interval T

64
Pi(t+T)— Pit) =aTy_P(j — D)Pj(t) — aTPi(t)
j=1

where « is the probability that a trinucleotide is subjected to one
substitution during 7. By rescaling time, we can assume that
o = 1, i.e., there is one substitution per trinucleotide per time
interval. Then,

Pi(t+T)— Pi(t)
64
= TZP(j — )P;j(t) — TP;(t)
j=1

64
=T Y P(j— i)Pj(t)+ TP(i — i)Pi(t) — TP;(t)

j=1j#i

64

=T Z P(j — i)P;(1)

=1

64
+T (1= > PG —i)| Pi(t)— TP(. 2.1)
j=1j#

The formula (2.1) leads to

. PG+ T)— Pi2)
hm _—
T—0 T

64
= P{() =Y _P(j > )P;(t) — Pi(1).
=1
(2.2)
when T — 0 and with non-zero elements on the main diagonal.
By considering the column vector P(¢) = [ P;(¢)]1<i<64 made
of the 64 P;(t) and the mutation matrix A (64,64) of the 4096

trinucleotide substitution probabilities P(j — i), the differential
Eq. (2.2) can be represented by the following matrix equation

Py=A-Plt)—Pt)=(A—1)-P@) 2.3)

where [ represents the identity matrix and the symbol °-’
represents the matrix product.

The square mutation matrix A (64,64) can be defined by a
square block matrix (4,4) whose four diagonal elements are
formed by four identical square submatrices B (16,16) and whose
12 non-diagonal elements are formed by four square submatrices
al (16,16), four square submatrices b/ (16,16) and four square
submatrices c/ (16,16) as follows

1...1617...3233...4849...64

1...16 B cl al bl
A=|17...32cI B bl al

33...48 al bl B cl

49...64 bl al cl B
The index ranges {I,...,16}, {17,...,32}, {33,...,48}
and {49,...,64} are associated with the trinucleotides

{AAA, ..., ATT}, {CAA,...,CTT}, {GAA,...,GTT} and
{TAA, ..., TTT}, respectively. The square submatrix B (16,16)
can again be defined by a square block matrix (4,4) whose four
diagonal elements are formed by four identical square subma-
trices C (4,4) and whose 12 non-diagonal elements are formed
by four square submatrices dI (4,4), four square submatrices el
(4,4) and four square submatrices fI (4,4) as follows

C fldlel
fIC el dI
dl el C fI
el dI fI C
Finally, the square submatrix C (4,4) is equal to
nkgh
knhg
ghnk
hgkn
withn =1—(@+b+c+d+e+ f+g+h+k).
Remark 1. The mutation matrix A is a doubly stochastic and

positive matrix.

The differential Eq. (2.3) can then be written in the following
form
P@t)=M- P@®
with
M=A-1
As the nine substitution parameters are real, the matrix A is real
and also symmetrical by construction. Therefore, the matrix M
is also real and symmetrical. There exist an eigenvector matrix
Q and a diagonal matrix D of eigenvalues A; of M ordered
in the same way as the eigenvector columns in Q such that
M=Q-D-Q " Then,
P(ty=0Q-D-Q7"- P
This equation has the classical solution (Lange, 2005)
P(ty=Q-e- 07! P(0) 2.4)

where " is the diagonal matrix of exponential eigenvalues e*+!.
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The eigenvalues A of M are deduced from the eigenvalues
ur of A such that Ay = ux — 1. The eigenvalues u; of A
can be obtained by determining the roots of the characteristic
equationdet(A — pl) = 0 of A using its block matrix properties.
Therefore, after linear combinations, the determinant det(A —
wl) is equal to
det(A —ul)=det(B—(a+ b —c+ w)l)

x det(B—(a—b+c+ wl)
x det(B—(—a+b+c+ wli)
x det(B — (—a — b — c+ w)I). 2.5)

As the matrix B has a block structure similar to the matrix A,
the form of the determinant det(B — vI) can be easily deduced
from det(A — ul)

det(B—vl) =det(C—(d+e— f+v)I)
x det(C—(d—e+ f+v))
x det(C —(—d+e+ f+v)])
x det(C — (—d — e — f +v)I).
Therefore, by substituting in 2.5)v=a+b—c+ u,v=

a—-b+c+pu,v=—a+b+c+porv=—a—-b—-c+u,
the determinant det(A — /) becomes

det(A — ul) = det(C — (@ +b—c+d—+e— f+ )
xdet(C—(@+b—c+d—e+ f+ i)
x det(C—(@a+b—c—d+e+ f+ i)
xdet(C—(a+b—c—d—e— f+ i)
xXdet(C—(@—b+c+d+e— f+ i)
x det(C—(@a—b+c+d—e+ f+ i)
x det(C—(@a—b+c—d+e+ f+ )
xdet(C—(a—b+c—d—e— f+ i)
X det(C—(—a+b+c+d+e— f+p))
x det(C —(—a+b+c+d—e+ f+ i)
X det(C—(—a+b+c—d+e+ f+ )
x det(C —(—a+b+c—d—e— f+ )l
xdet(C—(—a—b—c+d+e— f+ )
xdet(C—(—a—b—c+d—e+ f+ )
x det(C—(—a—b—c—d+e+ f+wl)
x det(C—(—a—b—-—c—d—e— f+ )l

16
= [[ det(C ~ Tia. b, c.d. e, f D)

i=1

(2.6)

where T; is an internal term as a function of a, b, ¢, d, e, f and
. After linear combinations, the determinant det(C — &1) is
equal to

det(C—-&N=(1—-a—-b—-—c—d—e—f—-§
x(l—a—-b—-—c—d—-—e—f—2g—-2h—-§)
x(l—a—b—c—d—e— f—2g—-2k—§&)
x(l—a—-b—-—c—d—e— f—2h—2k—§).

Therefore, by substituting in (2.6) & with the 16 terms
Ti(a, b, c,d, e, f, 1), the determinant det(A — 1) is obtained,
and then, the eigenvalues A; of M are deduced. There are 64
eigenvalues A; of M of algebraic multiplicity 1 (Appendix A):
nine eigenvalues depend on two parameters, 27 eigenvalues, on
four parameters and 27 eigenvalues, on six parameters.

The 64 eigenvectors of M associated with these 64 eigen-
values A; computed by formal calculus can be put in a form
independent of a, b, c, d, e, f, g, h and k (results not shown).

The formula (2.4) with the initial probability vector P(0)
before the substitution process (¢ = 0), the diagonal matrix ¢
of exponential eigenvalues ¢*/ of M, its eigenvector matrix Q
andits inverse Q !, determines the 64 trinucleotide probabilities
P;(¢) after ¢ substitutions as a function of the nine parameters a,
b, c,d, e, f, g hand k. The matrix R = Q - eP". 0~ is given
in Appendix B for the reader who wants to develop different
evolutionary applications by varying the choice of P(0). Two
applications, one with the common circular code and the other
with the codon phylogenetic distance, are given in the Section 3.

3. Results
3.1. Time inversion

The formula P(t) = Q -eP"- Q~!. P(0) (2.4) gives the
trinucleotide probabilities at the evolutionary time ¢ from their
past ones P(0). By expressing P(0) as a function of P(¢) in
(2.4),then P(0) = Q - ¢~ P. 0~ . P(t). Therefore, the formula
P(1)= Q- P 0~1. P(0), by replacing ¢ by —t in (2.4),
gives the past trinucleotide probabilities from their actual ones
P(0), i.e., by inverting the direction of the evolutionary time.

3.2. Time steps

Let t9 < t; < 1, be three evolutionary times. Let P(f;) and
P(;) be the trinucleotide probabilities at the evolutionary times
t1 and 1, respectively, as a function of their past ones P(f),
ie,P(t))=Q-eP1. Q0 1. P(tp)and P(rr) = Q - P2 . Q1.
P(ty). Then, P(t>) can be expressed as a function of P(#1) such
that P(r;) = QO - ePa—1) Q_1 - P(ty).

3.3. Analytical solution of the common circular code

3.3.1. Identification

In 1996, a simple statistical analysis of the trinucleotide
occurrence in the three frames of genes has identified the
same subset C of 20 trinucleotides in the reading frames of
two large and different gene populations of eukaryotes (26757
sequences, 11397678 trinucleotides) and prokaryotes (13686
sequences, 4708758 trinucleotides) (Arques and Michel, 1996).
This common trinucleotide subset C = {AAC, AAT, ACC,



C.J. Michel / Computational Biology and Chemistry 31 (2007) 36—43 39

ATC, ATT, CAG, CTC,CTG, GAA, GAC, GAG, GAT, GCC,
GGC,GGT,GTA, GTC, GTT, TAC, TIC} presents several
strong biomathematical properties, in particular the property of
circular code. Due to the law of large numbers, this subset C
is (obviously) retrieved in these two gene populations with the
actual statistical studies (results not shown). We briefly point
out the property of circular code.

Notation 1. A being a finite alphabet, A* denotes the words
over A of finite length including the empty word € of length O
and A, the words over A of finite length greater or equal to 1.
Let wiws be the concatenation of the two words wi and w,.

Definition 1. A subset X of A™ is a circular code if Vi, m > 1
and X1, X2, ..., Xy, Y1, Y2, .-, Ym € X,andr € A*,s € AT the
equalities sx2 ...x,7r = y{¥2... Y, and x| = rs imply n = m,
r=-eand x; = y;, 1 <i < n (Lassez, 1976; Berstel and Perrin,
1985).

A circular code allows the reading frames of genes to be
retrieved. It is a set of words over an alphabet such that any
word written on a circle (the next letter after the last letter
of the word being the first letter) has a unique decomposition
(factorization) into words of the circular code. As an exam-
ple, let the set X be composed of the six following words:
X ={AAT, ATG, CCT,CTA, GCC, GGC} and the word w,
be a series of the nine following letters: w = ATGGCCCTA.
The word w, written on a circle, can be factorized into words
of X according to two different ways: ATG, GCC, CTA and
AAT, GGC, CCT, the commas showing the way of decom-
position. Therefore, X is not a circular code. In contrast, if
the set Y obtained by replacing the word GGC of X by GTC
is considered, i.e., Y = {AAT, ATG, CCT,CTA, GCC, GTC},
then there never exists an ambiguous word with Y, in particular
w is not ambiguous, and Y is a circular code. The construction
frame of a word generated by any concatenation of words of a
circular code can be retrieved after the reading, anywhere in the
generated word, of a certain number of nucleotides depending
on the code. This series of nucleotides is called the window of
the circular code. Then, the minimal window length is the size
of the longest ambiguous word which can be read in at least
two frames, more one letter. Therefore, a circular code has the
ability to retrieve the reading frames in genes, both locally, i.e.,
anywhere in genes and in particular without a start codon, and
automatically with a window of a few nucleotides.

The main properties of the common circular code C are
reviewed in (Michel, 2007b): maximality, permutation, com-
plementarity, a3 code, rarity, largest window length, higher
frequency of “misplaced” trinucleotides, flexibility, evolution-
ary properties and common occurrence in both eukaryotic and
prokaryotic genes. In genes, the circular code information for
retrieving the reading frames is added to the classical genetic
code for coding the amino acids (Michel, 2007b).

3.3.2. Evolution model

The observation of a common trinucleotide set C in the
reading frames of various genes from the two largest domains,
the eukaryotes and the prokaryotes, is the basis of our devel-

opment of an evolution model. Indeed, if such a “universal”
set occurs with a frequency higher than the random one in
actual genes after (mainly) random mutations, then a realistic
hypothesis consists in asserting that this set had a frequency in
past higher than in actual time. In other words, the trinucleotides
of C are the basic words of “primitive” genes (genes before
evolution). As these primitive genes will be constructed by
trinucleotides of C, the mathematical model will be based on
a trinucleotide mutation matrix 64 x 64. The evolution model
proposed will be based on two processes. A construction process
(t = 0) will generate primitive genes according to a random
mixing of the 20 trinucleotides of the common circular code
C with equiprobability (1/20). Then, an evolutionary process
(t > 0) will transform these primitive genes into simulated
actual ones. Random substitutions with different rates in the
three sites of the 20 trinucleotides of C modelled by nine
substitution parameters will generate other trinucleotides and
distribute them according to an unbalanced way in the hope
of retrieving the statistical distribution of C in the actual
genes.

This stochastic approach with exact solutions in the past-
present evolutionary sense relies on a gene evolution phys-
ical model by constructing simulated sequences and then
by applying random substitutions to them. Note that in
such a physical model, a population of large sequences
must be simulated in the statistical analysis, which is time
consuming for obtaining computer results with a good
approximation.

This evolution model with an independent mixing of the 20
trinucleotides of the common circular code C with equiprobabil-
ity (1/20) leads to the following initial vector P(0) = [0, 1/20,
0,1/20,0,1/20,0,0,0,0,0,0,0,1/20,0, 1/20,0,0, 1/20, 0,
0,0,0,0,0,0,0,0,0,1/20,1/20,0, 1/20, 1/20, 1/20, 1/20,
0,1/20,0,0,0,1/20,0,1/20,1/20,1/20,0, 1/20,0, 1/20, 0,
0,0,0,0,0,0,0,0,0,0,1/20,0, 0].

The occurrence probability P(X, ¢) of a trinucleotide set X
at the evolutionary time ¢ as a function of the nine substitution
parameters a, b, ¢, d, e, f, g, h and k, is
P(X. 1) =) Pi(t) 3.1)

ieX

with P;(f) defined by (2.4). As the code C cannot contain
a trinucleotide 7;; = {AAA, CCC, GGG, TTT} by definition
(explained in Michel, 2007b), its probability P(C, ) is renor-
malized. Furthermore, it can be expressed as a function of
eigenvalues A of M, Ay being given in Appendix A

. Pt 1
2iec PO L 00 L ghar 4 gghar 4 pspat
ZieTf’Z}d Pi(t) 2D

+ 366! + 468 4 9T 4 2502101 | goP13t 4 fot14t

+e)\151 _i_e)ulﬁl‘ +€M7l +e}»13[ +e)»19t _}_e)\zot +4e)u22t

PC, 1) =

+e)\23t + e)\24l‘ + ek25l‘ _i_e)»zf,t +4e)»27t + ]66128,
+e}n30t + e}n31t + e)\33t _I_ek34t +4ek35t + e}h}ét

+€A37t + e)u39t +€)u4()l +4ek41t + e}»42t + ek43t + e)u45t
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+e}»46t +ek47t +4ek49t _i_e)nsot + 16e)»52t +e)\53l‘

M 4T Py 6eM0T - et (32

with the denominator D
D = 150 + 2eM14 - M8t _ phast | getast 4 it phat
+ek43t _ e)\45t + 26k49t _ e)ns3[ + 26)»57t + e)\59t'

Furthermore, if a+b+c+d+e+ f+g+h+ k=1, then
P(C, 1) is equal to the formula (8) in Michel (2007a).

Property 1. The initial probability P(C,0) of the code C at
the time t = 0 can (obviously) be obtained from the analytical
solution P(C, t) witht = 0 (3.2) or also by a simple probability
calculus.

Indeed, the probability P(C,0) is equal to I as the primitive
genes in this evolution model P(0) are generated by the code C
(20 among 20 trinucleotides).

Property 2. The probability P(C,t) of the code C at the
limit time t — oo can (obviously) be obtained from their
limit study (3.2) or also by a simple probability calculus.
Whatever a, b, c,d, e, f, g, h, k €]0, 1[, lim,—, o P(C, t) = 1/3.
Indeed, the nine substitutions in the 20 trinucleotides of
C generate the 44 other trinucleotides. When t — 00, the
64 trinucleotides T occur with the same probability and
therefore, the probability of C is equal to 20/60 = 1/3 (the four
trinucleotides T;j being not considered).

Property 3. The evolutionary analytical formula Py (C, t) of the
common circular code C as a function of the three substitution
rates p, q and r associated with the three trinucleotide sites,
respectively, is a particular case of P(C,t) 32) witha=b =
c=p/3,d=e=f=qg/3andg=h=k=7r/3

1
PIC D = 5550+ 19¢~4/3P1 1 18e=@/3ar 1 19o=/3)t

+56—(4/3)(P+q)l + 16¢— @/ 3+t + 5~ (@4/3)g+n
+ 286*(4/3)(P+11+r)l)

with the denominator D

Dy = 75 + 3= @3 | 9 ,~@/3patry

Furthermore, if p+q+r =1, then Pi(C,1t) is equal to the
formula of Property 4 in Michel (2007a).

Property 4. The evolutionary analytical formula P(C,t) of
the common circular code C as a function of the six substitution
rates u, v, w, x, y and z such that u and v (w and x, y and z,
respectively) are the transition and the transversion rates in the
1st(2nd and 3rd, respectively) trinucleotide sites, respectively, is
a particular case of P(C,t) 3.2) witha=u,b=c=v/2,d =
w,e=f=x/2,g=yandh =k =2z/2

1
PZ(C, [) — 2D2(100 + 258—21)1 + 136—(2u+v)l + e—2(v+x)t

+ 366—(2w+x)t + 28—(2u+v+2w+x)t + 26—(2v+2w+x)t

+ 56—(2u+v+2x)t + e—(2v+2x+2y+z)t + 25e—2zt

+ 166—2(v+z)t + e—Z(X+z)t + e—(2u+v+2x+21)t
+ 136—(2y+z)t + 66—(2u+v+2y+z)z + 26—(2w+x+2y+z)t
| go— QuAVFRwAX A2y | o0, —(Qu 2wt 2y )
+ 56—(2v+2y+z)t + 56_(2x+2}’+2)t
4 2 Qutvi 22yt 4 5~ Qutvt2an
4+ 2o~ Qw420 4 226—(2u+v+2w+x+2z)t)
with the denominator D>
Dy = 150 — ¢ 20+ | o= QuAvi2ut)t 4 g,~20tan
_ e—2(x+z)t + 26—(2u+v+2}'+z)t + e—(2w+x+2y+z)t
+ 3¢ QuH2wx+2y+2)t _ o, —QuAv2x+2y+2)t

+ 36—(2u+u+2w+x+2z)t

Furthermore, if u+v+w+x+y+z=1, then P,(C,1) is
equal to the formula of Property 5 in Michel (2007a).

3.4. Codon phylogenetic distance

In order to derive a codon phylogenetic distance, we choose
an initial vector P(0) containing only one trinucleotide, e.g.,
AAA, ie.,

{ Pi0) =1
P0) = .
P(0)=0 Vie{2,...,64).

By convention, the index I;, l € {1,...,4}and s € {1, ..., 3},
represents the four nucleotides {A, C, G, T} in alphabetical
order in the three codon sites s and let P, , be their associated
evolutionary probabilities. Then,

15
P, = ZPi+16(11—1)+1(t)a (3.3)
i=0
15
Py = ZPimod4+16HJ+4(1271)+1(t)’ (3.4)
i=0
15
Py = ZP4(imod4)+16Lﬁ'J+lg(t)' (-5
i=0
The nine substitution parameters a, b, ¢, d, e, f, g, h and k are
renamed here by considering their codon site: ag, s € {1, ..., 3},
are the transition rates A <> G and C <> T in the three codon
sites s, i.e., a1 =a,a =d and a3 = g, by, s € {1, ..., 3}, are

the transversion rates A <> T and C < G in the three sites s,
ie., by =b,by =eand b3 = h, and c;, s € {1, ..., 3}, are the
transversion rates A <> C and G <> T in the three sites s, i.e.,
c1 =c,co = fandcz = k. Let o, S5 and y; be the probabilities
associated with the nucleotide differences between a codon site
s of a Ist gene and the same codon site s of a 2nd gene: o,
s € {l,...,3}, is the probability that the sth codon site of a
Ist gene and the same sth codon site of a 2nd gene differ by
the transitions A <> G and C < T, B, s € {1, ..., 3}, is the
probability that the sth codon site of a 1st gene and the same
sth codon site of a 2nd gene differ by the transversions A <> T
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and C < G, and y;5, s € {1, ..., 3}, is the probability that the
sth codon site of a 1st gene and the same sth codon site of a
2nd gene differ by the transversions A <> C and G <> T. Then,
these nine probabilities can be expressed as a function of the
substitution parameters ag, by and cs. Indeed,

oy = 2(Pa, x Pg, + Pc, x Pr,)

1 : .
Z(l o 674(as+b_¢)t . 674(as+cx)t + e*4(bs+cs)t)’

Bs = 2(PAS x Pr, + Pc, x PGS)

— 1(1 _ 674(as+bx)l _|_ e*4(as+cs)t _ 674(bs+cx)t),

vs = 2(Pa, x Pc, + PG, x Pr,)

_ %(1 e Hatb)r _ astedr _ i~ dbieor)

with P4, Pc,, Pg, and Pr, obtained by the formulas (3.3), (3.4)
and (3.5).

The phylogenetic distance, classically defined per site,
is extended per codon of length n = 3. As there are nine
substitution parameters per codon per time unit (see the matrices
A, B and C) in each branch of the phylogenetic tree, the codon
phylogenetic distance Dj3 is defined as

3
D3y =2 (a5 + by +cy).

s=1

By solving ay, by and ¢, as a function of «g, s and ys, then

3
1
D3 =—7 > l(111(1 — 205 — 2B5) + In(1 — 205 — 2y5)
s=

+ In(1 — 285 — 2yy))
withog + B < 1/2, a5+ y5s < 1/2 and B + ys < 1/2.

(3.6)

Property 5. By using a similar reasoning with mutation matri-
ces of different sizes, the phylogenetic distance D, associated
with a word (sequence) of length n can easily be generalized
from the distance D3 (3.6)

Z(ln(l — 205 — 285) + In(1 — 205 — 2y5)

s=1

+ In(1 — 285 — 2y5)).

1
DnZ—Z

Remark 2. The distance D; associated with a letter is
1
D = —Z(ln(l —2a—2pB)

+ In(1 — 2o — 2y) + In(1 — 28 — 2y))

and is equal to the site distance formula (6) in Kimura (1981)
(p. 455) which extends the site distance formulas with one and
two substitution parameters (Jukes and Cantor, 1969; Kimura,
1980).

4. Discussion

A new analytical evolution model has been developed here
in order to generalize several previous models based on the
nucleotide mutation matrices 4 x 4 (Jukes and Cantor, 1969;
Kimura, 1980, 1981; Takahata and Kimura, 1981) and based
on the trinucleotide mutation matrices 64 x 64 with three, six
and nine substitution parameters and with zero elements on its
main diagonal (Arques et al., 1998; Frey and Michel, 2006;
Michel, 2007a). A first application of this model has allowed
to generalize an evolutionary analytical solution of the common
circular code C of eukaryotes and prokaryotes. The evolution of
this code C cannot obviously be predicted without modelling as
its solution is based on a sum of 46 exponential terms (formula
(3.2)), each exponential term being a function of the time # and
the nine substitutions parameters. A second application of this
model has allowed to derive a codon phylogenetic distance D3.
This distance D3 extends the classical site phylogenetic distance.
According to formula (3.6), more the codons differ more its
distance D3 increases.

Other applications of this model can be applied to various
problems. In particular, the eigenvalues given in Appendix
A as well as the structure of the matrix R= Q - e’ . Q7!
given in Appendix B can be directly used to develop other
evolution models based on a trinucleotide mutation matrix with
nine substitution parameters associated with the three types
of substitutions in the three trinucleotide sites. Finally, this
approach could also improve some algorithms of phylogenetic
tree reconstruction and sequence alignment.

Appendix A. The 64 eigenvalues A; of M of algebraic
multiplicity 1

A =0, h=—2a+b),

A3 =—-2a+c), A=-2(b+0),

As = =2(d+e), re=—-20d+ f),

A =20+ f), rg=-2(g+h),

ho = =2(g + k), rio=—2(h+k),

A1 =-2@a@+b+d+e), rip=-2@+b+d+ f),
AMz=—-2@+b+e+ f), hig=-20a+b+g+h),
Ms=-2@a+b+g+k), rie=-2(a+b+h+k),
A7 =-2a+c+d+e), Mg=-2(@a+c+d+ f),
AMo=—-2@a@+c+e+ f), Ao=-2a+c+g+h),
Mi=-2a+c+g+k), Ap=-2(+c+h+k),
A3=-20b+c+d+e), lu=-20b+c+d+f),
As=-"20b+c+e+ ), Ae=-20b+c+g+h),
A7 = —20b+c+g+k), rg=—20b+c+h+k),
Ao=-2d+e+g+h), ro=—-2d+e+g+k),



42 C.J. Michel / Computational Biology and Chemistry 31 (2007) 36—43

A1 ==-2d+e+h+k), Ap=-2(d+ f+g+h),
M3=-2d+ f+g+k), Aaa=-2d+ f+h+k),
AMs=-2e+ f+g+h), rg=-2e+f+g+k),
A= =20+ f+h+k),

Mg =—-2a+b+d+e+g+h),

A9 =—-2a+b+d+e+g+k), ho=-2a+b+d+e+h+k),

My =-2a+b+d+ f+g+h), p=-2a+b+d+ f+g+k), rz=-"20@+b+d+ f+h+k),
Mg=—2a+b+te+ f+g+h), hs=-2@a+bt+e+f+g+k), rag=—-2a+b+e+ f+h+k),

A7 =-"2@a+c+d+e+g+h),

rg=—-2@a+c+d+e+g+k), Mo=-2@+c+d+e+h+k),

hso=—2atc+d+ f+g+h), Asi=—2a+ct+d+f+g+k, hp=—-2a+c+d+ f+h+k),

Az =—2@a+c+e+ f+g+h),
Ase = —2(b+c+d+e+ g+ h),
Asg=—-20b+c+d+ f+g+h),

Mg =—2@a+c+e+ f+g+k), Ass=—-2(a+c+e+ f+h+k),
As7=-20b+c+d+e+g+k), rAsg=-20b+c+d+e+h+k),
Ao =—20b+c+d+ f+g+k), et =-20b+c+d+ f+h+k),

r2=—2b+c+e+f+g+h), hes=—-20b+c+e+ f+g+k), dea=—-20b+c+e+ f+h+k).

Appendix B. The matrix R = Q - ¢P* . 9!

The square matrix R= Q-eP - Q~! (64,64) can be
defined by a square block matrix (4,4) whose four diago-
nal elements are formed by four identical square submatrices
S1(16,16) and whose 12 non-diagonal elements are formed
by four square submatrices Si7 (16,16), four square subma-
trices S33 (16,16) and four square submatrices Sq9 (16,16) as
follows
R=0- ¢ . 0!

1...1617...3233...4849...64
1...16 §; S17 S33 S49
=— 1 17...32 S17 Mt S49 S$33

33...48 S33 S49 M S17

49...64 Sy S33 S17 S|

A square submatrix S; (16,16) can again be defined by a square
block matrix (4,4) whose four diagonal elements are formed
by four identical square submatrices 7; (4,4) and whose 12
non-diagonal elements are formed by four square submatrices
Tiya (4,4), four square submatrices Tj4+g (4,4) and four square
submatrices 7112 (4,4) as follows

Ti  Titsa Tiys T2
Tiva Ti Tig12 Tiys

Tivg Tiyrn i Tigs

Tivi2 Tivg Tiva T;
Finally, the square submatrix 7; (4,4) is defined as follows

Fi Fip1 Figz Fit3
Firr Fi Fiysz Fita
Fivr Firs Fi Fita
Fiyz Fixo Fipr Fi

where the function JF; associated with the ith line of R is defined
as

64

Ajt

Fi= D 8y
=1

with the eigenvalues A ; defined in Appendix A and the constant
dij, by the following matrix & (Fig. B.1)
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