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Abstract We develop here an analytical evolutionary model based on a trinu-
cleotide mutation matrix 64 × 64 with nine substitution parameters associated with
the three types of substitutions in the three trinucleotide sites. It generalizes the
previous models based on the nucleotide mutation matrices 4 × 4 and the trinu-
cleotide mutation matrix 64 × 64 with three and six parameters. It determines at
some time t the exact occurrence probabilities of trinucleotides mutating randomly
according to these nine substitution parameters. An application of this model
allows an evolutionary study of the common circular code C of eukaryotes and
prokaryotes and its 12 coded amino acids. The main property of this code C is the
retrieval of the reading frames in genes, both locally, i.e. anywhere in genes and
in particular without a start codon, and automatically with a window of a few nu-
cleotides. However, since its identification in 1996, amino acid information coded
by C has never been studied. Very unexpectedly, this evolutionary model demon-
strates that random substitutions in this code C and with particular values for the
nine substitution parameters retrieve after a certain time of evolution a frequency
distribution of these 12 amino acids very close to the one coded by the actual genes.

Keywords Analytical model · Parameter · Evolution · Mutation ·
Circular code · Gene · Amino acid

1. Introduction

1.1. Presentation of the approach

Each genome has its own trinucleotide distribution (Grantham et al., 1980). In-
deed, the synonymous codons (codons coding for the same amino acids) do
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not occur with the same frequencies in genes. This synonymous codon usage is
biased: a restricted subset of codons is preferred in genes. Codon usage is gener-
ally correlated with gene expressivity (Grantham et al., 1981; Ikemura, 1985; Sharp
and Matassi, 1994) even if its strength varies among bacterial species (Sharp et al.,
2005). A proposed explanation is that codon usage reflects the variation in the con-
centration of tRNAs. Major codons encoded by more abundant tRNAs should in-
crease translational efficacy (Bulmer, 1991; Akashi and Eyre-Walker, 1998). Nev-
ertheless, tRNA abundance could also have evolved for matching codon pattern
in a genome (Fedorov et al., 2002) and then would rather be a consequence of the
synonymous codon bias.

Several other processes may influence codon usage (Jukes and Bhushan, 1986;
Campbell et al., 1999; Llopart and Aguade, 2000; Smith and Eyre-Walker, 2001;
Konu and Li, 2002; Krakauer and Jansen, 2002; Rogozin et al., 2005) (see also the
review (Ermolaeva, 2001)). In particular, codon choice may depend on its context,
i.e. the surrounding nucleotides (Yarus and Folley, 1984; Shpaer, 1986; Berg
and Silva, 1997). These pressures might be frame independent (Antezana and
Kreitman, 1999). In this line of research, we have studied the occurrences of the
64 trinucleotides T = {AAA, . . . , TTT} in the three frames of genes by computing
their frequencies. This approach has led to the identification of a particular code
in genes called circular code.

By convention, the reading frame established by a start codon belonging to
Tstart = {ATG, GTG, TTG}, is the frame 0, and the frames 1 and 2 are the read-
ing frame shifted by 1 and 2 nucleotides in the 5′–3′ direction, respectively. After
excluding the trinucleotides with identical nucleotides Tid = {AAA, CCC, GGG,

TTT} and by assigning each trinucleotide to a preferential frame, three subsets of
20 trinucleotides per frame have been identified statistically in the gene popula-
tions of both eukaryotes and prokaryotes (Arquès and Michel, 1996). These three
trinucleotide sets C0, C1 and C2 associated with the frames 0, 1 and 2, respectively,
have several strong properties, in particular the property of circular code. The cir-
cular code concept will be briefly pointed out without mathematical notations after
a short historical presentation of an another class of code which has been searched
but not found in genes (over the alphabet {A, C, G, T}).

A code in genes has been proposed by Crick et al. (1957) in order to explain
how the reading of a series of nucleotides could code for the amino acids con-
stituting the proteins. The two problems stressed were: why are there more
trinucleotides than amino acids and how to choose the reading frames? Crick
et al. (1957) have then proposed that only 20 among 64 trinucleotides code for
the 20 amino acids. Furthermore, such a bijective code implies that the coding
trinucleotides are found only in one frame. Such a particular code is called a
comma-free code or a code without commas. However, the determination of a set
of 20 trinucleotides forming a comma-free code has several constraints:

(i) A trinucleotide Tid must be excluded from such a code. Indeed, the
concatenation of AAA with itself, for example, does not allow the
reading (original) frame to be retrieved as there are three possi-
ble decompositions: . . . AAA, AAA, AAA, . . ., . . . A, AAA, AAA, AA. . . and
. . . AA, AAA, AAA, A. . ., the commas showing the way of construction (de-
composition).
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(ii) Two trinucleotides related to circular permutation, for example AAC and
ACA, must be also excluded from such a code. Indeed, the concatenation of
AAC with itself, for example, also does not allow the reading frame to be re-
trieved as there are two possible decompositions: . . . AAC, AAC, AAC, . . . and
. . . A, AC A, AC A, AC . . .

Therefore, by excluding the four trinucleotides Tid and by gathering the 60 re-
maining trinucleotides in 20 classes of three trinucleotides such that, in each class,
three trinucleotides are deduced from each other by circular permutations, e.g.
AAC, AC Aand C AA, a comma-free code has only one trinucleotide per class and
therefore contains at most 20 trinucleotides. This trinucleotide number is identical
to the amino acid one, thus leading to a comma-free code assigning one trinu-
cleotide per amino acid without ambiguity.

The determination of comma-free codes and their properties are unrealiz-
able without computer as there are 320 ≈ 3.5 billions potential codes. A comma-
free code search algorithm demonstrates in particular that there are only 408
comma-free codes of 20 trinucleotides. None of them is self-complementary
(see also the property (iii) in Section 1.2.2) as the maximal complementary
comma-free codes contain only 16 trinucleotides (results not shown). Further-
more, in the late fifties, the two discoveries that the trinucleotide TTT, an ex-
cluded trinucleotide in a comma-free code, codes for phenylalanine (Nirenberg
and Matthaei, 1961) and that genes are placed in reading frames with a start
trinucleotide Tstart, have led to give up the concept of comma-free code over
the alphabet {A, C, G, T}. For several biological reasons, in particular the in-
teraction between mRNA and tRNA, this concept is taken again later over
the purine/pyrimidine alphabet {R, Y} (R = {A,G}, Y = {C,T}) with two comma-
free codes for primitive genes: RRY (Crick et al., 1976) and RNY (N = {R, Y})
(Eigen and Schuster, 1978).

A circular code also allows the reading frames of genes to be retrieved but with
weaker conditions compared to a comma-free code. It is a set of words over an
alphabet such that any word written on a circle (the next letter after the last letter
of the word being the first letter) has at most one decomposition (factorization)
into words of the circular code. As an example, let the set X be composed of the
six following words: X = {AAT, ATG, CCT, CT A, GCC, GGC} and the word w,
be a series of the nine following letters: w = ATGGCCCT A. The word w, writ-
ten on a circle, can be factorized into words of X according to two different ways:
ATG, GCC, CT A and AAT, GGC, CCT. Therefore, X is not a circular code. In
contrast, if the set Y obtained by replacing the word GGC of X by GTC is con-
sidered, i.e. Y = {AAT, ATG, CCT, CT A, GCC, GTC}, then there never exists an
ambiguous word with Y, in particular w is not ambiguous, and Y is a circular code.
The construction frame of a word generated by any concatenation of words of a cir-
cular code can be retrieved after the reading, anywhere in the generated word, of a
certain number of nucleotides depending on the code. This series of nucleotides is
called the window W of the circular code. Therefore, a circular code has the abil-
ity to retrieve the reading frames in genes, both locally, i.e. anywhere in genes
and in particular without a start codon, and automatically with a window of a
few nucleotides. In genes, the circular code information for retrieving the reading
frames is added to the classical genetic code for coding the amino acids. Such an
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Table 1 The 12 amino acids A coded by the trinucleotides C of the common circular code and
by the trinucleotides TA\C which do not belong to the common circular code.

Trinucleotides C Trinucleotides TA\C
Number Type Number Type

Ala 1 GCC 3 GC A, GCG, GCT
Asn 2 AAC, AAT 0
Asp 2 GAC, GAT 0
Gln 1 C AG 1 C AA
Glu 2 GAA, GAG 0
Gly 2 GGC, GGT 2 GGA, GGG
Ile 2 ATC, ATT 1 AT A
Leu 2 CTC, CTG 4 CT A, CTT, TT A, TTG
Phe 1 TTC 1 TTT
Thr 1 ACC 3 AC A, ACG, ACT
Tyr 1 T AC 1 T AT
Val 3 GT A, GTC, GTT 1 GTG

important property might be involved in the transcription and translation appara-
tus of primitive genes (Arquès and Michel, 1996).

A comma-free code has conditions stronger than a circular code. Indeed, the
20 trinucleotides of a comma-free code are found only in one frame, i.e. in the
reading frame, while some trinucleotides of a circular code can be found in the
two shifted frames 1 and 2 (property (vib) in Section 1.2.2). On the other hand, the
lengths of the windows W for retrieving the reading frames of a comma-free code
and a circular code are less than or equal to 4 and 13 nucleotides, respectively.

The common circular code C = C0 of 20 trinucleotides identified in the reading
frames (frames 0) of genes belonging to two large and different populations
of eukaryotes (26757 genes, 11397678 trinucleotides) and prokaryotes (13686
genes, 4708758 trinucleotides) is C = {AAC, AAT, ACC, ATC, ATT, C AG, CTC,

CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GT A, GTC,GTT,T AC,TTC}
(Arquès and Michel, 1996). It codes for the 12 amino acids A={Ala,

Asn, Asp, Gln, Glu, Gly, Ile, Leu, Phe, Thr, Tyr, Val} according to the (stan-
dard) genetic code (Table 1).

Five amino acids (AA) Ala, Gln, Phe, Thr and Tyr are coded by one
trinucleotide of the code C, six AA Asn, Asp, Glu, Gly, Ile and Leu,
by two trinucleotides of C, and one AA Val, by three trinucleotides of
C (Table 1). Some biological properties of these 12 AA associated with
the code C have been given in Arquès and Michel (1996); Koch and
Lehmann (1997). In actual genes, these 12 AA A are coded by a set
TA of 37 trinucleotides. Let TA\C be the set of trinucleotides which be-
long to TA but not to C. The set TA\C has 17 trinucleotides: TA\C =
{AC A, ACG, ACT, AT A, C AA, CT A, CTT,GC A,GCG,GCT,GGA,GGG,GTG,

T AT, TT A, TTG, TTT}. It codes for nine among 12 AA: five AA Gln, Ile, Phe,
Tyr and Val are coded by one trinucleotide of TA\C, one AA Gly, by two
trinucleotides of TA\C, two AA Ala and Thr , by three trinucleotides of TA\C, and
one AA Leu, by four trinucleotides of TA\C (Table 1).

The observation of a preferential trinucleotide set C in various genes from
the two largest domains, the eukaryotes and the prokaryotes, is the basis of our
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development of an evolutionary model. Indeed, if such a “universal” set occurs
with a frequency higher than the random one in actual genes after (mainly)
random mutations, then a realistic hypothesis consists in asserting that this set had
a frequency in past higher than in actual time. In other words, the trinucleotides of
C are the basic words of “primitive” genes (genes before evolution). As the “prim-
itive” genes will be constructed by trinucleotides of C and as the amino acids are
coded by trinucleotides, the mathematical model will be based on a trinucleotide
mutation matrix 64 × 64. The evolutionary model proposed will be based on two
processes: a construction process with a random mixing of 20 trinucleotides of
C with equiprobability (1/20) followed by an evolutionary process with random
substitutions which are modelled by nine parameters a, b, c, d, e, f , g, h and k
associated with the three types of substitutions in the three trinucleotide sites:
a, d and g are the rates of transitions A←→G (a substitution from one purine
{A, G} to the other) and C←→T (a substitution from one pyrimidine {C, T} to the
other) in the three sites, respectively; b, e and h are the rates of transversions (a
substitution from a purine to a pyrimidine, or reciprocally) A←→T and C←→G
in the three sites, respectively; and c, f and k are the rates of transversions
A←→C and G←→T in the three sites, respectively.

Two types of results are presented in this paper: a development of a mathemat-
ical model and its application to an amino acid evolution. The stochastic evolu-
tionary model will determine at some time t the occurrence probabilities of trin-
ucleotides mutating randomly according to these nine substitution parameters in
order to derive the evolutionary analytical solutions of the common circular code
C and the 12 amino acids A. Therefore, it will generalize the previous models,
in particular the nucleotide mutation matrices 4 × 4 at one substitution parameter
(Jukes and Cantor, 1969), two parameters (transitions and transversions) (Kimura,
1980) and the trinucleotide mutation matrix 64 × 64 with three and six substitution
parameters (Arquès et al., 1998; Frey and Michel, 2006). Since the identification of
the common circular code C in 1996, evolution of its 12 coded amino acids A has
never been investigated. An application of this evolutionary model will show that
random substitutions in the trinucleotides of the code C and with particular values
for the nine substitution parameters, will generate after a certain time of evolution
other trinucleotides in the reading frames of genes in an unbalanced way, extend
the capacity of coding the 12 amino acids A, from 20 trinucleotides (C) to 37 trinu-
cleotides (TA), and retrieve an amino acid frequency distribution very close to the
one coded by the actual genes.

In the next two sections 1.2 and 1.3, the two stages of our approach are briefly
detailed: the observation of a common circular code in eukaryotic and prokaryotic
genes and the two processes of the evolutionary model.

1.2. A common circular code in eukaryotic and prokaryotic genes

1.2.1. Definition
Notation. A being a finite alphabet, A

∗ denotes the words over A of finite length
including the empty word of length 0 and A

+, the words over A of finite length
greater or equal to 1. Let w1w2 be the concatenation of the two words w1 and w2.
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Definition 1. A subset X of A
+ is a circular code if ∀n, m ≥ 1 and

x1, x2, . . . , xn, y1, y2, . . . , ym ∈ X, and r ∈ A
∗, s ∈ A

+, the equalities sx2 . . . xnr =
y1 y2 . . . ym and x1 = rs imply n = m, r = ε (empty word) and xi = yi , 1 ≤ i ≤ n
(Berstel and Perrin, 1985; Béal, 1993).

1.2.2. Properties of the common circular code C

Definition 2. The (left circular) permutation P of a trinucleotide w0 = l0l1l2,
l0l1l2 ∈ T , is the permuted trinucleotide P (w0) = w1 = l1l2l0, e.g. P (AAC) =
AC A, and P (P (w0)) = P (w1) = w2 = l2l0l1, e.g. P (P (AAC)) = C AA. This defi-
nition is naturally extended to the trinucleotide set permutation: The permutation
P of a set of trinucleotides is the permuted trinucleotide set obtained by the per-
mutation P of all its trinucleotides.

The properties of the common circular code C = C0 identified in frames 0 of eu-
karyotic and prokaryotic genes are briefly recalled (details can be found in Arquès
and Michel (1996); Lacan and Michel (2001)):

(i) Maximality: C is a maximal circular code, i.e. with 20 trinucleotides, as it
is not contained in a larger circular code, i.e. in a circular code with more
words. For words of length 3 over a 4-letter alphabet, a circular code has at
most 20 words. Then, any 20-long circular code is maximal.

(ii) Permutation: C generates C1 by one permutation and C2 by another permu-
tation, i.e. P (C) = C1 and P (P (C)) = C2.

(iii) Complementarity: C is self-complementary (10 trinucleotides of C are com-
plementary to 10 other trinucleotides of C) and, C1 and C2 are complemen-
tary to each other (the 20 trinucleotides of C1 are complementary to the 20
trinucleotides of C2).

(iv) C3 code: C1 and C2 obtained by permutation of C (property ii) are maximal
circular codes. Therefore, if C, C1 and C2 are circular codes, then C, C1 and
C2 are C3 codes. As the circular code C is associated with the reading frame
(frame 0) in genes, i.e. the most important frame with a biological function,
it is considered as the main C3 code. It is important to stress that a circular
code X0 does not necessarily imply that X1 and X2 obtained by its permu-
tations, are also circular codes, i.e. a circular code is not necessarily a C3

code.
(v) Rarity: the occurrence probability of the C3 code C is equal to 216/320 ≈ 6 ×

10−8, i.e. the computed number of complementary C3 codes (216) divided by
the number of potential codes (320 = 3486784401).

(vi) Flexibility:
(via) The lengths of the minimal windows of C, C1 and C2 for retrieving automat-

ically the frames 0, 1 and 2, respectively, are all equal to 13 nucleotides and
represent the largest window length among the 216 C3 codes.

(vib) The frequencies of “misplaced” trinucleotides in the shifted frames 1
and 2 are both equal to 24.6%. If the trinucleotides of C are randomly
concatenated, for example as follows:
. . . GAA, GAG, GT A, GT A, ACC, AAT, GT A, CTC, T AC, TTC, ACC,
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ATC . . . then, the trinucleotides in frame 1:
. . . G, AAG, AGG, T AG, T AA, CC A, ATG, T AC, TCT, ACT, TC A, CC A,

TC . . . and the trinucleotides in frame 2:
GA, AGA, GGT, AGT, AAC, C AA, TGT, ACT, CT A, CTT, C AC, C AT,

C . . . mainly belong to C1 and C2, respectively. A few trinucleotides are
misplaced in the shifted frames. With this example, in frame 1, nine
trinucleotides belong to C1, one trinucleotide (T AC) to C and one trin-
ucleotide (T AA= P (P (AAT))) to C2. In frame 2, eight trinucleotides
belong to C2, two trinucleotides (GGT, AAC) to C and one trinucleotide
(ACT = P (T AC)) to C1. By computing exactly, the frequencies of mis-
placed trinucleotides in frame 1 are 11.9% for C and 12.7% for C2. In frame
2, the frequencies of misplaced trinucleotides are 11.9% for C and 12.7%
for C1. The complementarity property (iii) explains on the one hand, the
identical frequencies of C in frames 1 and 2, and on the other hand, the
identical frequencies of C2 in frame 1 and C1 in frame 2. Then, the frequency
sum of misplaced trinucleotides in frame 1 (C and C2) is equal to the one of
misplaced trinucleotides in frame 2 (C and C1) and is equal to 24.6%. This
value is close to the highest frequency (27.9%) of misplaced trinucleotides
among the 216 C3 codes. Note that misplaced trinucleotides are impossible
with a comma-free code (Section 1.1).

(vic) The four types of nucleotides occur in the three trinucleotide sites of C, and
also obviously by the permutation property (ii) in those of C1 and C2. It is
important to stress that C3 codes can have missing nucleotides in their trin-
ucleotide sites.

(vii) Common: C has a “universal” distribution in eukaryotic and prokaryotic
genes.

1.2.3. Mean occurrence probabilities of the 12 amino acids A in prokaryotic
genomes
The mean occurrence probabilities of the 12 amino acids A coded by the com-
mon circular code C and the trinucleotides TA\C, are computed in all (valid) genes
of 175 complete prokaryotic genomes representing 487863 genes of 453749 kb
(Table 2).

This amino acid distribution is (obviously) correlated with the number of codons
coding for these amino acids. It is very similar to the one published in 1996 with
only 9510 genes of 9132 kb (Table 5 in Arquès and Michel (1996)). Table 2 shows
in particular that Leu occurs with the highest frequency, then it appears a group
of three amino acids Ala, Gly and Val, and Tyr has the lowest frequency. These
statistical features will constitute the principal constraints in the application of the
stochastic model for studying evolution of the amino acids A.

Table 2 Mean occurrence probabilities (in %) of the 12 amino acids A computed in all genes
of 175 complete prokaryotic genomes.

Ala Asn Asp Gln Glu Gly Ile Leu Phe Thr Tyr Val

9.4 3.9 5.3 3.9 6.1 7.4 6.3 10.3 4.1 5.4 3.0 7.1
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1.3. An amino acid evolutionary model

Founded on the principle described in Introduction, the model is based on a con-
struction process (t = 0) which generates “primitive” genes according to a random
mixing of the 20 trinucleotides of the common circular code C with equiprobabil-
ity (1/20). Then, an evolutionary process (t > 0) transforms these primitive genes
into simulated actual ones. Random substitutions with different rates in the three
sites of the 20 trinucleotides of the code C will generate other trinucleotides and
distribute them according to an unbalanced way in the hope of retrieving the distri-
bution of the 12 amino acids A coded by the actual genes. This problem is a priori
hard as there are two effects: the initial amino acid probabilities which strongly
differ from the actual ones (Tables 1 and 2) and the amino acid coding which
is carried out only by the code C at the initial condition (t = 0) and by the ge-
netic code (C and TA\C) during the evolutionary process (t > 0). For example,
Val coded by C at t = 0 (primitive genes) has the highest probability 3/20 = 15%
(Table 1) while Leu coded by the genetic code in actual time occurs with the high-
est frequency 10.3% (Table 2). In the same line, Ala, Gln, Phe, Thr and Tyr at
t = 0 have the same lowest probability 1/20 = 5% (Table 1) while Ala and Tyr ,
for example, have a completely different distribution in actual time, precisely the
second highest frequency and the lowest one, respectively (Table 2).

The aim of this mathematical model consists in determining the analytical so-
lutions of the occurrence probabilities of the common circular code C and the
12 amino acids A as a function of the evolutionary time t and the nine substitu-
tion parameters a, b, c, d, e, f , g, h and k (Section 2). It should be stressed that
this stochastic approach with exact solutions relies on a gene evolutionary physi-
cal model by applying random substitutions in simulated sequences. However, in
order to get computer results with a good approximation in such a physical model,
a population of large sequences must be simulated in the statistical analysis, which
is time consuming.

This evolutionary model will demonstrate here that the actual distribution of the
12 amino acids A can be simulated after a certain evolutionary time t of random
substitutions in the common circular code C and with particular values for the nine
substitution parameters.

2. Mathematical model

The mathematical model will determine at an evolutionary time t the occurrence
probability P (X, t) of a trinucleotide set X whose trinucleotides mutate according
to nine real substitution parameters a, b, c, d, e, f , g, h and k: a, d and g are the
transition rates A←→G and C←→T in the three sites, respectively; b, e and h are
the transversion rates A←→T and C←→G in the three sites, respectively; and c,
f and k are the transversion rates A←→C and G←→T in the three sites, respec-
tively. The trinucleotide sets X studied are the common circular code C and the 12
trinucleotide sets coding the 12 amino acids A. This model generalizes the previous
mathematical models based on the nucleotide mutation matrices 4 × 4 (Jukes and
Cantor, 1969; Kimura, 1980) and the trinucleotide mutation matrix 64 × 64 with
three and six parameters (Arquès et al., 1998; Frey and Michel, 2006).
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By convention, the indexes i, j ∈ {1, . . . , 64} represent the 64 trinucleotides T in
alphabetical order. Let P ( j → i) be the substitution probability of a trinucleotide
j , j �= i , into a trinucleotide i . The probability P ( j → i) is equal to 0 if the substi-
tution is impossible, i.e. if j and i differ more than one nucleotide as the time inter-
val T is assumed to be enough small that a trinucleotide cannot mutate successively
two times during T. Otherwise, it is given as a function of the nine substitution
rates a, b, c, d, e, f , g, h and k. For example with the trinucleotide AAAassociated
with i = 1, P(C AA→ AAA) = c, P(GAA→ AAA) = a, P(T AA→ AAA) = b,
P(AC A→ AAA) = f , P(AGA→ AAA) = d, P(AT A→ AAA) = e, P(AAC →
AAA) = k, P(AAG → AAA) = g, P(AAT → AAA) = h and P( j → AAA) = 0
with j /∈ {AAC, AAG, AAT, AC A, AGA, AT A, C AA, GAA, T AA}. The substitu-
tion probability P (i → i) of a trinucleotide i into itself is equal to P (i → i) =
(1 − ∑64

j=1, j �=i P ( j → i)) in a stochastic approach.
Let Pi (t) be the occurrence probability of a trinucleotide i at the time t . At

time t + T, the occurrence probability of the trinucleotide i is Pi (t + T) so that
Pi (t + T) − Pi (t) represents the probabilities of trinucleotides i which appear and
disappear during the time interval T

Pi (t + T) − Pi (t) = αT
64∑

j=1

P( j → i)Pj (t) − αT Pi (t)

where α is the probability that a trinucleotide is subjected to one substitution dur-
ing T. With a suitable time interval, the probability α is equal to 1, i.e. there is one
substitution per trinucleotide per time interval. Then,

Pi (t + T) − Pi (t) = T
64∑

j=1

P ( j → i) Pj (t) − T Pi (t)

= T
64∑

j=1
j �=i

P ( j → i) Pj (t) + T P (i → i) Pi (t) − T Pi (t)

= T
64∑

j=1
j �=i

P ( j → i) Pj (t) + T

(

1 −
64∑

j=1
j �=i

P( j → i)

)

Pi (t)

−T Pi (t). (1)

As the sum of the substitution probabilities P ( j → i) of trinucleotides j into
a trinucleotide i is equal to 1 in this stochastic approach, i.e. a + b + c + d + e +
f + g + h + k = 1, then P (i → i) = 0, i.e. the substitution probability of a trinu-
cleotide i into itself is impossible, and the formula (1) leads to

lim
T→0

Pi (t + T) − Pi (t)
T

= P′
i (t) =

64∑

j=1

P ( j → i) Pj (t) − Pi (t) (2)

when T → 0 and with P ( j → i) = 0 if j = i .
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By considering the column vector P(t) = [Pi (t)]1≤i≤64 made of the 64 Pi (t) and
the mutation matrix A (64, 64) of the 4096 trinucleotide substitution probabilities
P( j → i), the differential equation (2) can be represented by the following matrix
equation

P′(t) = A· P(t) − P(t) = (A− I) · P(t) (3)

where I represents the identity matrix and the symbol ·, the matrix product.
The square mutation matrix A (64, 64) can be defined by a square block matrix

(4, 4) whose four diagonal elements are formed by four identical square subma-
trices B (16, 16) and whose 12 non-diagonal elements are formed by four square
submatrices aI (16, 16), four square submatrices bI (16,16) and four square sub-
matrices cI (16, 16) as follows

A=

⎛

⎜
⎜
⎜
⎜
⎝

1 · · · 16 17 · · · 32 33 · · · 48 49 · · · 64
1 · · · 16 B cI aI bI

17 · · · 32 cI B bI aI
33 · · · 48 aI bI B cI
49 · · · 64 bI aI cI B

⎞

⎟
⎟
⎟
⎟
⎠

.

The index ranges {1, . . . , 16}, {17, . . . , 32}, {33, . . . , 48} and {49, . . . , 64}
are associated with the trinucleotides {AAA, . . . , ATT}, {C AA, . . . , CTT},
{GAA, . . . , GTT} and {T AA, . . . , TTT}, respectively. The square submatrix B
(16, 16) can again be defined by a square block matrix (4, 4) whose four di-
agonal elements are formed by four identical square submatrices C (4, 4) and
whose 12 non-diagonal elements are formed by four square submatrices dI
(4, 4), four square submatrices eI (4, 4) and four square submatrices f I (4, 4)
as follows

B =

⎛

⎜
⎜
⎜
⎝

C f I dI eI

f I C eI dI

dI eI C f I

eI dI f I C

⎞

⎟
⎟
⎟
⎠

.

Finally, the square submatrix C (4, 4) is equal to

C =

⎛

⎜
⎜
⎜
⎝

0 k g h

k 0 h g

g h 0 k

h g k 0

⎞

⎟
⎟
⎟
⎠

.

The differential equation (3) can then be written in the following form

P′(t) = M · P(t)
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with

M = A− I.

As the nine substitution parameters are real, the matrix A is real and also sym-
metrical by construction. Therefore, the matrix M is also real and symmetrical.
There exists an eigenvector matrix Q and a diagonal matrix D of eigenvalues
λk of M ordered in the same way as the eigenvector columns in Q such that
M = Q · D · Q−1. Then,

P′(t) = Q · D · Q−1 · P(t).

This backward equation has the classical solution (Lange, 2005)

P(t) = Q · eDt · Q−1 · P(0) (4)

where eDt is the diagonal matrix of exponential eigenvalues eλkt .
The eigenvalues λk of M are deduced from the eigenvalues µk of A such

that λk = µk − 1. The eigenvalues µk of A can be obtained by determining the
roots of the characteristic equation det(A− µI) = 0 of A using its block matrix
properties. Therefore, after linear combinations, the determinant det(A− µI) is
equal to

det(A− µI) = det (B − (a + b − c + µ) I) × det (B − (a − b + c + µ) I)

× det (B − (−a + b + c + µ) I) × det (B − (−a − b − c + µ) I) .

(5)

As the matrix B has a block structure similar to the matrix A, the form of the
determinant det(B − ν I) can be easily deduced from det(A− µI)

det(B − ν I) = det (C − (d + e − f + ν) I) × det (C − (d − e + f + ν) I)

× det (C − (−d + e + f + ν) I) × det (C − (−d − e − f + ν) I) .

Therefore, by substituting in (5) ν = a + b − c + µ, ν = a − b + c + µ, ν = −a +
b + c + µ or ν = −a − b − c + µ, the determinant det(A− µI) becomes

det(A− µI) = det (C − (a + b − c + d + e − f + µ) I)

× det (C − (a + b − c + d − e + f + µ) I)

× det (C − (a + b − c − d + e + f + µ) I)

× det (C − (a + b − c − d − e − f + µ) I)

× det (C − (a − b + c + d + e − f + µ) I)
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× det (C − (a − b + c + d − e + f + µ) I)

× det (C − (a − b + c − d + e + f + µ) I)

× det (C − (a − b + c − d − e − f + µ) I)

× det (C − (−a + b + c + d + e − f + µ) I)

× det (C − (−a + b + c + d − e + f + µ) I)

× det (C − (−a + b + c − d + e + f + µ) I)

× det (C − (−a + b + c − d − e − f + µ) I)

× det (C − (−a − b − c + d + e − f + µ) I)

× det (C − (−a − b − c + d − e + f + µ) I)

× det (C − (−a − b − c − d + e + f + µ) I)

× det (C − (−a − b − c − d − e − f + µ) I)

=
16∏

i=1

det (C − Ti (a, b, c, d, e, f, µ) I) (6)

where Ti is an internal term as a function of a, b, c, d, e, f and µ. After linear
combinations, the determinant det(C − ξ I) is equal to

det(C − ξ I) = (g + h + k − ξ)(g − h − k − ξ)

× (−g + h − k − ξ)(−g − h + k − ξ).

Therefore, by substituting in (6) ξ with the 16 terms Ti (a, b, c, d, e, f, µ), the de-
terminant det(A− µI) is obtained and then, the eigenvalues λk of M are deduced.
There are 64 eigenvalues λk of M of algebraic multiplicity 1 (Annex 1).

The 64 eigenvectors of M associated with these 64 eigenvalues λk computed by
formal calculus can be put in a form independent of a, b, c, d, e, f , g, h and k (data
not shown).

The independent mixing of the 20 trinucleotides of the code C with
equiprobability (1/20) leads to the following initial vector P(0) = [0, 1/20, 0,

1/20, 0, 1/20, 0, 0, 0, 0, 0, 0, 0, 1/20, 0, 1/20, 0, 0, 1/20, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 1/20,

1/20, 0,1/20, 1/20,1/20, 1/20,0, 1/20,0, 0, 0,1/20, 0,1/20,1/20,1/20, 0, 1/20, 0,

1/20,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/20,0, 0].
The formula (4) with the initial probability vector P(0) before the substitution

process (t = 0), the diagonal matrix eDt of exponential eigenvalues eλkt of M, its
eigenvector matrix Q and its inverse Q−1, determine the 64 trinucleotide probabil-
ities Pi (t) after t substitutions as a function of the nine parameters a, b, c, d, e, f ,
g, h and k.

Then, the occurrence probability P (X, t) of a trinucleotide set X at the evolu-
tionary time t as a function of the nine substitution parameters a, b, c, d, e, f , g, h
and k, is
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P (X, t) =
∑

i∈X

Pi (t). (7)

This formula P (X, t) allows the evolutionary analytical formulas P (C, t) and
P (A, t) of the common circular code C and its 12 amino acids A ∈A, respec-
tively, to be deduced. As the code C cannot contain a trinucleotide Tid (AAA,
CCC, GGG, TTT ) by definition, its probability P (C, t) is renormalized. Further-
more, it can be expressed as a function of eigenvalues λk of M, λk being given in
Annex 1

P (C, t) =
∑

i∈C Pi (t)
∑

i∈T −Tid
Pi (t)

= 1
2D

(100 + 25eλ2t + 9eλ3t + 4eλ4t + eλ6t + eλ7t + 4eλ8t + 36eλ9t

+ eλ10t + eλ11t + eλ14t + eλ15t + 25eλ17t + 16eλ18t + 4eλ19t + eλ20t + eλ21t

+ eλ24t + eλ25t + 16eλ27t + eλ28t + eλ29t + 4eλ31t + eλ32t + 9eλ33t + 4eλ34t

+ eλ36t + eλ37t + eλ40t + eλ41t + 16eλ42t + eλ44t + eλ45t + 4eλ46t + eλ48t

+ 4eλ49t + eλ50t + eλ51t + 4eλ52t + 4eλ53t + eλ54t + eλ55t + eλ58t + eλ59t

+ 4eλ60t + eλ62t + eλ63t ) (8)

with the denominator D

D = 150 − eλ6t + eλ11t + 4eλ18t − eλ21t + eλ28t + 2eλ31t − eλ40t + eλ41t + 2eλ46t

+ 2eλ52t − eλ55t + eλ58t .

In Annex 2, we give the analytical formulas P (A, t) = ∑
i∈TA

Pi (t) of the 12
amino acids A, TA being the set of trinucleotides T coding the amino acid A, for
the reader who wants detailed results (see also Discussion).

Property 1. The initial probability P (X, 0) of a trinucleotide set X (the code C
or an amino acid A) at the time t = 0 can (obviously) be obtained from the ana-
lytical solution P (X, t) with t = 0 (8 and Annex 2) or also by a simple probability
calculus.

Indeed, the probability P (C, 0) is equal to 1 as the primitive genes in this evolutionary
model are generated by the code C (20 among 20 trinucleotides).

The probability P (A, 0) is also equal to the number of trinucleotides of C coding A
divided by 20 (deduced from Table 1).

Property 2. The probability P (X, t) of a trinucleotide set X at the limit time t → ∞
can (obviously) be obtained from their limit study (8 and Annex 2) or also by a simple
probability calculus.
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Whatever a, b, c, d, e, f, g, h, k ∈ ]0, 1[ such that a + b + c + d + e + f + g +
h + k = 1, limt→∞ P (C, t) = 1/3. Indeed, the nine substitutions in the 20 trin-
ucleotides of C generate the 44 other trinucleotides. When t → ∞, the 64 trin-
ucleotides T occur with the same probability and therefore, the probability
of C is equal to 20/60 = 1/3 (the four trinucleotides Tid being not
considered).

Whatever a, b, c, d, e, f, g, h, k ∈ ]0, 1[ such that a + b + c + d + e + f + g + h +
k = 1, limt→∞ P (A, t) = limt→∞

∑
i∈TA

Pi (t) = KA where KA is a constant.

Property 3. When one (or more) substitution has a rate equal to 0, some trin-
ucleotides may be either not generated or generated without equiprobability and
limt→∞ P (C, t) �= 1/3, or limt→∞ P (A, t) �= KA. As an example, we explain by a sim-
ple probability calculus why limt→∞ P (C, t) = 5/12 when b = c = 0, i.e. no transver-
sion in the first trinucleotide sites of C. The code C has 20 trinucleotides with 15 trinu-
cleotides beginning with a purine base forming the subset CR and five trinucleotides be-
ginning with a pyrimidine base forming the subset CY, C = CR ∪ CY. Each trinucleotide
w ∈ C occurs with the same probability P(w) = 1/20. As there are purine and pyrimi-
dine bases in the first trinucleotide sites of C and as the transitions and the transversions
are allowed in the second and third sites of C (d, e, f, g, h, k > 0), the 64 trinucleotides
T are generated during the evolutionary process. Among these 64 trinucleotides T , let
TR be the subset of 32 trinucleotides beginning with a purine base and TY, the sub-
set of 32 trinucleotides beginning with a pyrimidine base, T = TR ∪ TY. As in the first
sites of C the transitions are allowed (a > 0) but not the transversions (b = c = 0), the
trinucleotide set TR can only be generated from CR. When t → ∞, the trinucleotides
w of CR and TR occur with the same probability P(w, t) = (15/20)/32 = 3/128. Sim-
ilarly, when t → ∞, the trinucleotides w of CY and TY occur with the same probabil-
ity P(w, t) = (5/20)/32 = 1/128. The trinucleotides AAA and GGG (CCC and TTT
resp.) belong to TidR (TidY resp.). Therefore, when t → ∞, the trinucleotides w of Tid oc-
cur with the same probability P(w, t) = (6 + 2)/128 = 1/16. Finally, limt→∞ P (C, t) is
equal to

lim
t→∞ P (C, t) =

∑

w∈CR∪CY

lim
t→∞ P(w, t)

1 − lim
t→∞
w∈Tid

P(w, t)
=

45+5
128

1 − 1
16

= 5
12

.

Property 4. The evolutionary analytical formula P1 (C, t) of the com-
mon circular code C as a function of the three substitution rates p, q and
r associated with the three trinucleotide sites respectively, is a particular
case of P (C, t) (8) with a = b = c = p/3, d = e = f = q/3 and g = h = k =
r/3

P1(C, t) = 1
2D1

(
50 + 28e− 4

3 t + 19e− 4
3 pt + 18e− 4

3 qt + 19e− 4
3 r t + 5e− 4

3 (1−p)t

+ 16e− 4
3 (1−q)t + 5e− 4

3 (1−r)t
)
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with the denominator D1

D1 = 75 + 2e− 4
3 t + 3e− 4

3 (1−q)t .

Property 5. The evolutionary analytical formula P2 (C, t) of the common circular
code C as a function of the six substitution rates u, v, w, x, y and z such that u and v

(w and x, y and z resp.) are the transition and the transversion rates in the first (second
and third resp.) trinucleotide sites respectively, is a particular case of P (C, t) (8) with
a = u, b = v/2, c = v/2, d = w, e = x/2, f = x/2, g = y, h = z/2 and k = z/2 (Frey
and Michel, 2006)

P2(C, t) = 1
2D2

(100 + 25eµ1t + eµ2t + 25eµ3t + 16eµ4t + eµ5t + 13eµ6t + 5eµ7t

+ 36eµ8t + 2eµ9t + 5eµ10t + eµ11t + 2eµ12t + 13eµ13t + 5eµ14t + 5eµ15t

+ eµ16t + 2eµ17t + 22eµ18t + 6eµ19t + 2eµ20t + 2eµ21t + 22eµ22t + 8eµ23t )

with the denominator D2

D2 = 150 − eµ2t + 4eµ4t − eµ5t + eµ17t + 3eµ18t + 2eµ19t − 2eµ20t + eµ21t + 3eµ22t

and with µ1 = −1 + u + v + w + x + y − z, µ2 = −1 + u + v + w − x + y − z, µ3

= −1 + u − v + w + x + y + z, µ4 = −1 + u − v + w + x + y − z, µ5 = −1 + u −
v + w − x + y + z, µ6 = −1 + u + v + w + x − y, µ7 = −1 + u + v + w − x − y,

µ8 = −1 + u + v − w + y + z, µ9 = −1 + u + v − w + y − z, µ10 = −1 + u − v +
w + x − y, µ11 = −1 + u − v + w − x − y, µ12 = −1 + u − v − w + y + z, µ13 =
−1 − u + w + x + y + z, µ14 = −1 − u + w + x + y − z, µ15 = −1 − u + w − x +
y + z, µ16 = −1 − u + w − x + y − z, µ17 = −1 + u + v − w − y, µ18 = −1 + u −
v − w − y, µ19 = −1 − u + w + x − y, µ20 = −1 − u + w − x − y, µ21 = −1 − u −
w + y + z, µ22 = −1 − u − w + y − z and µ23 = −1 − u − w − y.

Property 6. The formula P(t) = Q · eDt · Q−1 · P(0) (4) gives the trinucleotide oc-
currence probabilities at the evolutionary time t from their past ones P(0). By express-
ing P(0) as a function of P(t) in (4), then P(0) = Q · e−Dt · Q−1 · P(t). Therefore, the
formula P̃(t) = Q · e−Dt · Q−1 · P̃(0), by replacing t by −t in (4), gives the past trinu-
cleotide occurrence probabilities from their actual ones P̃(0), i.e. by inverting the direc-
tion of the evolutionary time.

Property 7. Let t0 < t1 < t2 be three evolutionary times. Let P(t1) and P(t2) be the
trinucleotide occurrence probabilities at the evolutionary times t1 and t2, respectively,
as a function of their past ones P(t0), i.e. P(t1) = Q · eDt1 · Q−1 · P(t0) and P(t2) = Q ·
eDt2 · Q−1 · P(t0). Then, P(t2) can be expressed as a function of P(t1) such that P(t2) =
Q · eD(t2−t1) · Q−1 · P(t1).
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3. Results

The 12 amino acids A coded by the common circular code C have initial prob-
abilities P (A, 0) ranging from 1/20 = 5% to 3/20 = 15% (Table 1). They can be
classified into three groups: Ala, Gln, Phe, Thr and Tyr with the lowest probabil-
ity P (A, 0) = 5%, Asn, Asp, Glu, Gly, Ile and Leu with P (A, 0) = 10% and Val
with the highest probability P (A, 0) = 15%. This distribution is completely differ-
ent from the one coded by the actual genes, both from their absolute and relative
values (Table 2). Therefore, a random mutation process seems a priori completely
unable to retrieve the actual amino acid distribution from the past one coded by
the code C.

The stochastic model developed here allows the investigation of such a property
by searching the main statistical features of the actual amino acid distribution: Leu
with the highest frequency, Tyr with the lowest one, Ala, Gly and Val with the
second highest one, Asn, Gln and Phe with the second lowest one, and Asp, Glu,
Ile and Thr with an average one (Table 2). Each substitution parameter a, b, c, d,
e, f , g, h and k varies in the range [0, 1] with a step of 2% such that their probability
sum is equal to 1, and t , in the range [0, 10].

Very unexpectedly, this model retrieves a distribution of the 12 amino acids A
close to the actual one after an evolutionary time t ≈ 8 of random substitutions in
the common circular code C and with particular values for the nine substitution
parameters (Table 3, Fig. 1). Table 3 gives the barycenter of the solution space
(not given) of the nine substitution rates.

This model involves mainly the transition d in the second trinucleotide sites of C,
and to a lesser extent, the transversions h and k in its third sites and the transver-
sion b in its first sites, while the transversions c and e in its first and second sites,
respectively, have small effects.

The stochastic curves have a complex behaviour (Fig. 1). After an initial de-
crease up to t = 1.93, the curve Leu increases, crosses the four curves Asp, Ala,
Val and Gly successively and becomes the highest one, such as in actual time, after
an evolutionary time t ≥ 6.24. The three curves Ala, Gly and Val (group 1) gather
at t ≈ 8 after different stochastic behaviours: the curve Val always decreases from
its initial value while the curves Ala and Gly first increase then decrease. The gath-
ering value of these three curves is lower than the initial values of Gly and Val
but higher than the one of Ala. As in actual time, Ile and Thr (group 2) occur
with probabilities lower than those of group 1, Asn, Gln and Phe (group 4) occur
with probabilities ranging between those of Asp and Glu (group 3) and Tyr . As in
actual time, Tyr has the lowest occurrence probability. Certain curves have local

Table 3 Substitution rate barycenter (in %) in the stochastic model leading to a distribution
of the 12 amino acids A close to the actual one.

Parameters a b c d e f g h k

Barycenter (%) 4.5 9.2 1.7 52.6 2.4 5.9 5.7 8.6 9.4
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Fig. 1 Evolution of the 12 amino acids A from random substitutions in the common circular code
C in the substitution rate barycenter (in %): a = 4.5, b = 9.2, c = 1.7, d = 52.6, e = 2.4, f = 5.9,
g = 5.7, h = 8.6 and k = 9.4 (Table 3).

maxima, e.g. Ala, Gly and Thr , or local minima, e.g. Gln, Leu, Phe and Tyr , or
continuous decreases, e.g. Asn, Asp, Glu, Ile and Val.

4. Discussion

A new analytical evolutionary model has been developed here in order to gen-
eralize several previous models based on the nucleotide mutation matrices 4 × 4
(Jukes and Cantor, 1969; Kimura, 1980) and the trinucleotide mutation matrix
64 × 64 with three and six substitution parameters (Arquès et al., 1998; Frey and
Michel, 2006). Furthermore, an application of this model allows the evolutionary
probabilities of the common circular code C found in actual genes of eukaryotes
and prokaryotes and the 12 amino acids coded by this code C to be derived as a
function of the time t and nine substitution parameters associated with the three
types of substitutions in the three trinucleotide sites.

Very unexpectedly, an amino acid distribution very close to the actual one can
be derived after an evolutionary time t ≈ 8 of random substitutions in the com-
mon circular code C and with particular values for the nine substitution parameters
(Fig. 1 and Table 3). The main effect is related to the transition d in the second trin-
ucleotide sites of C, in agreement with the chemical properties of nucleotides (one
carbon–nitrogen ring for pyrimidines and two carbon–nitrogen rings for purines)
and the complementary base pairing showing a universal transition/transversion
rate bias in prokaryotic and eukaryotic genomes, e.g. Ochman (2003), Rosenberg
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et al. (2003). This model retrieves the main statistical properties of the actual
amino acid distribution. However, it cannot explain all the observed features, e.g.
the actual probability of Ala is higher than those of Gly and Val (Table 2) while its
probability curve cannot cross them in this model (Fig. 1). More general models,
e.g. with non-symmetrical mutation matrices, could improve the correlation with
reality.

The variations of the stochastic curves P (A, t) of the 12 amino acids A cannot
obviously be predicted without modelling as their analytical solutions are based on
a sum of several exponential terms, e.g. 46 terms for P (Ile, t) (Annex 2), each ex-
ponential term being a function of the time t and the nine substitutions parameters.
The probability differences existing between the amino acids coded by the “prim-
itive” genes (at t = 0) have still some properties after a great number of random
substitutions in genes, e.g. at t = 10 in Fig. 1. In other words, some primitive traces
of amino acid variations can still be observed after a long period of random evo-
lution in spite of the generation of noise. Several properties with these stochastic
amino acid curves have been observed with particular values for the nine substitu-
tion rates: curves with crossings, curves with local maxima and minima, curves with
continuous increases or decreases, curves with a series of fusions and separations,
etc. (data not shown). They have not been investigated as they are not directly in
the subject of this paper. However, as already mentioned in Section 2, the evolu-
tionary analytical formulas P (A, t) of the 12 amino acids A are given in Annex
2 for the reader who wants to deepen the analysis of these stochastic curves with
different values for the nine substitution parameters.

The biological meaning of this amino acid evolutionary model would suggest
that the primitive genes (at t = 0) are constructed by trinucleotides of the common
circular code C. Only 20 among 64 trinucleotides would have been necessary. The
20 types of trinucleotides as well as the type of their concatenation are determined
in this model. Indeed, the 20 trinucleotides are defined by the set C which is a
maximal self-complementary C3 code (Section 1.2.2). Furthermore, the indepen-
dent concatenation of these 20 trinucleotides with equiprobability is the simplest
type of concatenation and therefore, compatible with a primitive stage of gene evo-
lution. From a biological point of view, this process can be compared with a mixing
of trinucleotides in a primitive soup. A Markov concatenation of trinucleotides
(based on a stochastic matrix) would have been too complex at this primitive
time.

The mathematical model developed here has demonstrated that a construction
process based on the common circular code C and a random evolutionary process
with nine substitutions parameters, retrieves the main properties of the amino
acid distribution coded by actual genes. Furthermore, it can be applied to other
problems. In particular, the eigenvalues obtained here and given in Annex 1 can
be directly used to develop other evolutionary models based on a trinucleotide
mutation matrix with nine substitution parameters associated with the three
types of substitutions in the three trinucleotide sites. Finally, this approach could
also improve some algorithms of phylogenetic tree reconstruction and sequence
alignment.
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Annex 1: The 64 eigenvalues λk of M of algebraic multiplicity 1

λ1 = −1 + a + b + c + d + e + f + g + h + k, λ2 = −1 + a + b + c + d + e + f + g − h − k,
λ3 = −1 + a + b + c + d + e + f − g + h − k, λ4 = −1 + a + b + c + d + e + f − g − h + k,
λ5 = −1 + a + b + c + d − e − f + g + h + k , λ6 = −1 + a + b + c + d − e − f + g − h − k,
λ7 = −1 + a + b + c + d − e − f − g + h − k , λ8 = −1 + a + b + c + d − e − f − g − h + k,
λ9 = −1 + a + b + c − d + e − f + g + h + k, λ10 = −1 + a + b + c − d + e − f + g − h − k,
λ11 = −1 + a + b + c − d + e − f − g + h − k, λ12 = −1 + a + b + c − d + e − f − g − h + k,
λ13 = −1 + a + b + c − d − e + f + g + h + k, λ14 = −1 + a + b + c − d − e + f + g − h − k,
λ15 = −1 + a + b + c − d − e + f − g + h − k, λ16 = −1 + a + b + c − d − e + f − g − h + k,
λ17 = −1 + a − b − c + d + e + f + g + h + k, λ18 = −1 + a − b − c + d + e + f + g − h − k,
λ19 = −1 + a − b − c + d + e + f − g + h − k, λ20 = −1 + a − b − c + d + e + f − g − h + k,
λ21 = −1 + a − b − c + d − e − f + g + h + k, λ22 = −1 + a − b − c + d − e − f + g − h − k,
λ23 = −1 + a − b − c + d − e − f − g + h − k, λ24 = −1 + a − b − c + d − e − f − g − h + k,
λ25 = −1 + a − b − c − d + e − f + g + h + k, λ26 = −1 + a − b − c − d + e − f + g − h − k,
λ27 = −1 + a − b − c − d + e − f − g + h − k, λ28 = −1 + a − b − c − d + e − f − g − h + k,
λ29 = −1 + a − b − c − d − e + f + g + h + k, λ30 = −1 + a − b − c − d − e + f + g − h − k,
λ31 = −1 + a − b − c − d − e + f − g + h − k, λ32 = −1 + a − b − c − d − e + f − g − h + k,
λ33 = −1 − a + b − c + d + e + f + g + h + k, λ34 = −1 − a + b − c + d + e + f + g − h − k,
λ35 = −1 − a + b − c + d + e + f − g + h − k, λ36 = −1 − a + b − c + d + e + f − g − h + k,
λ37 = −1 − a + b − c + d − e − f + g + h + k, λ38 = −1 − a + b − c + d − e − f + g − h − k,
λ39 = −1 − a + b − c + d − e − f − g + h − k, λ40 = −1 − a + b − c + d − e − f − g − h + k,
λ41 = −1 − a + b − c − d + e − f + g + h + k, λ42 = −1 − a + b − c − d + e − f + g − h − k,
λ43 = −1 − a + b − c − d + e − f − g + h − k, λ44 = −1 − a + b − c − d + e − f − g − h + k,
λ45 = −1 − a + b − c − d − e + f + g + h + k, λ46 = −1 − a + b − c − d − e + f + g − h − k,
λ47 = −1 − a + b − c − d − e + f − g + h − k, λ48 = −1 − a + b − c − d − e + f − g − h + k,
λ49 = −1 − a − b + c + d + e + f + g + h + k, λ50 = −1 − a − b + c + d + e + f + g − h − k,
λ51 = −1 − a − b + c + d + e + f − g + h − k, λ52 = −1 − a − b + c + d + e + f − g − h + k,
λ53 = −1 − a − b + c + d − e − f + g + h + k, λ54 = −1 − a − b + c + d − e − f + g − h − k,
λ55 = −1 − a − b + c + d − e − f − g + h − k, λ56 = −1 − a − b + c + d − e − f − g − h + k,
λ57 = −1 − a − b + c − d + e − f + g + h + k, λ58 = −1 − a − b + c − d + e − f + g − h − k,
λ59 = −1 − a − b + c − d + e − f − g + h − k, λ60 = −1 − a − b + c − d + e − f − g − h + k,
λ61 = −1 − a − b + c − d − e + f + g + h + k, λ62 = −1 − a − b + c − d − e + f + g − h − k,
λ63 = −1 − a − b + c − d − e + f − g + h − k, λ64 = −1 − a − b + c − d − e + f − g − h + k.

Annex 2: Evolutionary analytical formulas of the 12 amino acids A

With the eigenvalues λk of M (Annex 1), the evolutionary analytical formulas
P (A, t) = ∑

i∈TA
Pi (t) (7) of the 12 amino acids A obtained are

P (Ala, t) = PGC A(t) + PGCC(t) + PGCG(t) + PGCT(t)

= 1
160

(
10 − 6eλ9t + 5eλ17t − eλ21t − eλ25t + eλ29t + 3eλ33t − eλ37t

− eλ41t − eλ45t + 2eλ49t − 2eλ53t
)

P (Asn, t) = PAAC(t) + PAAT(t)

= 1
320

(
10 + 5eλ2t − eλ6t + 6eλ9t + eλ10t − eλ14t + 5eλ17t + 4eλ18t
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+ eλ21t + eλ25t + eλ29t − 3eλ33t + 2eλ34t − eλ37t − eλ41t + 4eλ42t

+eλ45t + 2eλ46t − 2eλ49t − eλ50t − 2eλ53t − eλ54t + eλ58t + eλ62t
)

P (Asp, t) = PGAC(t) + PGAT(t)

= 1
320

(
10 + 5eλ2t − eλ6t + 6eλ9t + eλ10t − eλ14t + 5eλ17t + 4eλ18t

+ eλ21t + eλ25t + eλ29t + 3eλ33t − 2eλ34t + eλ37t + eλ41t − 4eλ42t

− eλ45t − 2eλ46t + 2eλ49t + eλ50t + 2eλ53t + eλ54t − eλ58t − eλ62t
)

P (Gln, t) = PC AA(t) + PC AG(t)

= 1
320

(
10 − 5eλ2t + eλ6t + 6eλ9t − eλ10t + eλ14t − 5eλ17t + 4eλ18t

− eλ21t − eλ25t − eλ29t + 3eλ33t + 2eλ34t + eλ37t + eλ41t + 4eλ42t

−eλ45t + 2eλ46t − 2eλ49t + eλ50t − 2eλ53t + eλ54t − eλ58t − eλ62t
)

P (Glu, t) = PGAA(t) + PGAG(t)

= 1
320

(
10 − 5eλ2t + eλ6t + 6eλ9t − eλ10t + eλ14t + 5eλ17t − 4eλ18t

+ eλ21t + eλ25t + eλ29t + 3eλ33t + 2eλ34t + eλ37t + eλ41t + 4eλ42t

− eλ45t + 2eλ46t + 2eλ49t − eλ50t + 2eλ53t − eλ54t + eλ58t + eλ62t
)

P (Gly, t) = PGGA(t) + PGGC(t) + PGGG(t) + PGGT(t)

= 1
160

(
10 − 6eλ9t + 5eλ17t + eλ21t − eλ25t − eλ29t + 3eλ33t + eλ37t

−eλ41t + eλ45t + 2eλ49t + 2eλ53t
)

P (Ile, t) = PAT A(t) + PATC(t) + PATT(t)

= 1
640

(
30 + 5eλ2t − 3eλ3t + 2eλ4t + eλ6t − eλ7t + 2eλ8t + 18eλ9t

+ eλ10t − eλ11t + eλ14t + eλ15t + 15eλ17t + 4eλ18t + 2eλ19t + eλ20t

− 3eλ21t + eλ24t + 3eλ25t + 4eλ27t − eλ28t − 3eλ29t + 2eλ31t

− eλ32t − 9eλ33t + 2eλ34t + eλ36t + 3eλ37t − eλ40t − 3eλ41t + 4eλ42t

+ eλ44t − 3eλ45t − 2eλ46t − eλ48t − 6eλ49t − eλ50t − eλ51t − 2eλ52t

+ 6eλ53t + eλ54t − eλ55t + eλ58t − eλ59t − 2eλ60t − eλ62t − eλ63t
)

P (Leu, t) = PCT A(t) + PCTC(t) + PCTG(t) + PCTT(t) + PTT A(t) + PTTG(t)

= 1
320

(
30 − 5eλ2t − eλ6t + 18eλ9t − eλ10t − eλ14t − 15eλ17t + 4eλ18t
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+ 3eλ21t − 3eλ25t + 3eλ29t + 3eλ33t − 2eλ34t − eλ37t + eλ41t − 4eλ42t

+ eλ45t + 2eλ46t − 2eλ49t − eλ50t + 2eλ53t + eλ54t + eλ58t − eλ62t
)

P (Phe, t) = PTTC(t) + PTTT(t)

= 1
320

(
10 + 5eλ2t + eλ6t + 6eλ9t + eλ10t + eλ14t − 5eλ17t − 4eλ18t

+ eλ21t − eλ25t + eλ29t − 3eλ33t + 2eλ34t + eλ37t − eλ41t + 4eλ42t

− eλ45t − 2eλ46t + 2eλ49t + eλ50t − 2eλ53t − eλ54t − eλ58t + eλ62t
)

P (Thr, t) = PAC A(t) + PACC(t) + PACG(t) + PACT(t)

= 1
160

(
10 − 6eλ9t + 5eλ17t − eλ21t − eλ25t + eλ29t − 3eλ33t + eλ37t

+ eλ41t + eλ45t − 2eλ49t + 2eλ53t
)

P (Tyr, t) = PT AC(t) + PT AT(t)

= 1
320

(
10 + 5eλ2t − eλ6t + 6eλ9t + eλ10t − eλ14t − 5eλ17t − 4eλ18t

− eλ21t − eλ25t − eλ29t − 3eλ33t + 2eλ34t − eλ37t − eλ41t + 4eλ42t

+ eλ45t + 2eλ46t + 2eλ49t + eλ50t + 2eλ53t + eλ54t − eλ58t − eλ62t
)

P (Val, t) = PGT A(t) + PGTC(t) + PGTG(t) + PGTT(t)

= 1
160

(
10 + 6eλ9t + 5eλ17t − eλ21t + eλ25t − eλ29t + 3eλ33t − eλ37t

+ eλ41t + eλ45t + 2eλ49t − 2eλ53t
)
.
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