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An analytical model of gene evolution with six mutation parameters:
An application to archaeal circular codes
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Abstract

We develop here an analytical evolutionary model based on a trinucleotide mutation matrix 64× 64 with six substitution parameters associated
with the transitions and transversions in the three trinucleotide sites. It generalizes the previous models based on the nucleotide mutation matrices
4 × 4 and the trinucleotide mutation matrix 64× 64 with three parameters. It determines at some timet the exact occurrence probabilities of
trinucleotides mutating randomly according to six substitution parameters. An application of this model allows an evolutionary study of the
common circular codeCOM and the 15 archaeal circular codesX which have been recently identified in several archaeal genomes. The main
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roperty of a circular code is the retrieval of the reading frames in genes, both locally, i.e. anywhere in genes and in particular without a s,
nd automatically with a window of a few nucleotides. In genes, the circular code is superimposed on the traditional genetic one. Very un

he evolutionary model demonstrates that the archaeal circular codes can derive from the common circular code subjected to random
ith particular values for six substitutions parameters. It has a strong correlation with the statistical observations of three archaeal codtual
enes. Furthermore, the properties of these substitution rates allow proposal of an evolutionary classification of the 15 archaeal cod
ain classes according to this model. In almost all the cases, they agree with the actual degeneracy of the genetic code with substi

requent in the third trinucleotide site and with transitions more frequent that transversions in any trinucleotide site.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

.1. Presentation of the approach

The trinucleotide distribution in (protein coding) genes is not
andom. Indeed, a few trinucleotides occur with high frequencies
n the reading frame of genes (Grantham et al., 1980), the read-
ng frame being the modulo 3 frame established by the codon
TG. This trinucleotide usage preference has been related to sev-
ral biological factors, including translational selection (Shpaer,
986; Akashi and Eyre-Walker, 1998), GC composition (Jukes
nd Bhushan, 1986; Konu and Li, 2002), strand-specific muta-

ional bias (Sharp and Matassi, 1994; Berg and Silva, 1997;
ampbell et al., 1999), transcriptional selection, RNA stabil-
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ity and tRNA content (Ikemura, 1985) (see also the revie
Ermolaeva, 2001).

In this line of research, we have identified several prefe
tial subsets of 20 trinucleotides in the reading frame of g
(eukaryotes/prokaryotes and archaeal genomes) by deve
three main statistical methods (frame autocorrelation fun
without bias, frame trinucleotide frequency and frame perm
trinucleotide frequency) (Arquès and Michel, 1996; Frey a
Michel, 2003). The principle of these methods is simple
based on two steps:

(i) a computation of the occurrence frequencies of the 64
ucleotidesT = {AAA , . . . , TTT} in the three frames o
genes, i.e. the reading frame and the two shifted fra
(the reading frame shifted in the 5′–3′ direction by one an
two nucleotides), followed by

(ii) an assignment of a preferential frame for the 64 tr
cleotidesT by associating each trinucleotide with the fra
in which it occurs with the highest frequency.

476-9271/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compbiolchem.2005.09.001
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Totally unexpectedly, by excluding the four trinucleotides
made of identical nucleotides̃T = {AAA , CCC, GGG, TTT},
this approach has identified the common subsetCOM of 20 trin-
ucleotides in the reading frame of genes belonging to two large
and different populations of eukaryotes (26,757 sequences,
11,397,678 trinucleotides) and prokaryotes (13,686 sequences,
4,708,758 trinucleotides):COM = {AAC, AAT , ACC, ATC,

ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC,

GGT, GTA, GTC, GTT, TAC, TTC}. Furthermore, this set
COM has interesting properties, in particular it is a circular
code (Arquès and Michel, 1996; Lacan and Michel, 2001).

The observation of this preferential setCOM of trinucleotides
in various actual genes from the two largest domains, the eukary-
otes and the prokaryotes, is the basis of our development of an
evolutionary model. Indeed, if a trinucleotide preferential set
occurs with a frequency higher than the random one in actual
genes after (mainly) random mutations, then a realistic hypoth-
esis consists in asserting that this set had a frequency in past
higher than in actual time. In other words, the trinucleotides of
COM are the basic words of the “primitive” genes (genes before
evolution). Therefore, the evolutionary model proposed will be
based on two processes: a construction process with a random
mixing of the 20 trinucleotides ofCOM with equiprobability
(1/20) followed by an evolutionary process with random substi-
tutions which are modelled by six parametersa, b, c, d, e and
f associated with the transitions and transversions in the three
t
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on A of finite length greater or equal to 1. Letw1w2 be the
concatenation of the two wordsw1 andw2.

Definition 1. A subsetX of A
+ is a circular code if∀n, m ≥ 1

andx1, x2, . . . , xn, y1, y2, . . . , ym ∈ X, andr ∈ A
∗,s ∈ A

+, the
equalitiessx2 . . . xnr = y1y2 . . . ym andx1 = rs imply n = m,
r = 1 andxi = yi, 1 ≤ i ≤ n (Berstel and Perrin, 1985; Béal,
1993).

A circular code is a set of words on an alphabet such that any
word written on a circle (the next letter after the last letter of
the word being the first letter) has a unique decomposition into
words of the circular code. For example, letX be the six word set
X = {AAT , ATG, CCT, CTA, GCC, GGC} andw, the word of
nine lettersw = ATGGCCCTA. The wordw can be factorized
circularly in two different ways: ATG, GCC, CTA and GGC,
CCT, AAT. Therefore, the setX is not a circular code. But the
setX̃ obtained by replacing the last word GGC ofX by GTC,
X̃ = {AAT , ATG, CCT, CTA, GCC, GTC}, is a circular code as
the factorizations of all the words, in particularw, are unique.

An important property of a circular code is the automatic
retrieval of the construction frame of a word. Indeed, the con-
struction frame of a word generated by a concatenation of the
words of a circular code can be retrieved after the reading, any-
where in the word, of a certain number of nucleotides depending
on the code. This series of nucleotides is called the window of the
c erty
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rinucleotide sites, respectively:a andb (resp.c andd, e and
) are the transitions (a substitution from one purine{A, G} to
he other, or a substitution from one pyrimidine{C, T} to the
ther) and the transversions (a substitution from a purine
yrimidine, or reciprocally) in the first (resp. second, third) t
cleotide sites.

As the primitive genes will be constructed by trinucleotid
he mathematical model will be based on a trinucleotide m
ion matrix 64× 64 with six substitution parameters. Therefo
t generalizes the previous models, in particular the nucle

utation matrices 4× 4 at one substitution parameter (Jukes
nd Cantor, 1969), two parameters (transitions and tranversio
Kimura, 1980) and the trinucleotide mutation matrix 64× 64
ith three substitution parameters (Arquès et al., 1998).
The evolutionary model proposed here will show that

rchaeal circular codes which have been recently identifi
everal archaeal genomes, can derive from the common ci
odeCOM after a certain time of evolution and with particu
alues for the six substitution parameters. It has a strong c
ation with the statistical observations of three archaeal cod
ctual genes.

In next two Sections1.2 and 1.3, the two stages of ou
pproach are briefly detailed: the observation of circular c

n genes and the two processes of the evolutionary model.

.2. Circular codes in genes

.2.1. Definition and basic properties (detailed in Arquès
nd Michel, 1996, in particular)

A being a finite alphabet,A∗ denotes the words onA of finite
ength including the empty word of length 0 andA

+, the words
-

r

-
n

s

ircular code. The main biological consequence of this prop
s the ability to retrieve the reading frames in genes, both loc
.e. anywhere in genes and in particular without a start co
nd automatically with a window of a few nucleotides. Suc

mportant property might be involved in the transcription
he translation apparatus of primitive genes.

.2.2. A common circular code in eukaryotic and
rokaryotic genes

efinition 2. The (left circular) permutationP of a trinu-
leotide w = l0l1l2, l0l1l2 ∈ T, is the permuted trinucleotid
(w) = l1l2l0, e.g.P(AAC) = ACA. This definition is naturall
xtended to the permutation of a trinucleotide set: The pe
ationP of a set of trinucleotides is the permuted trinucleo
et obtained by the permutationP of its trinucleotides.

We cite the main properties of the circular codeCOM which
re defined, proved and commented inArquès and Michel (1996
ndLacan and Michel (2001):

(i) a maximal circular code, i.e. with 20 trinucleotides, a
cannot be contained in a larger circular code, i.e. in a
with more words,

(ii) a C3 code, i.e. a maximal circular code such that its
permuted sets are also maximal circular codes (a cir
code is not necessarily aC3 code),

iii) a self-complementary code, i.e. 10 trinucleotides are c
plementary to the 10 other trinucleotides,

(iv) a rare code, as the probability that a random set of 20 t
cleotides without permuted trinucleotides is a circular c
is only 6.2 × 10−8,
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(v) an evolutionary flexible code, in particular with an occur-
rence of the four types of nucleotides in the three trinu-
cleotide sites,

(vi) a common code with a “universal" distribution in the
eukaryotic and prokaryotic genes.

The different biological consequences of these properties, in
particular on the two-letter genetic alphabets, the genetic code
and the amino acid frequencies in proteins, are presented, e.g.
in Arquès and Michel (1996).

1.2.3. Circular codes in archaeal genomes
Archaea have features that are either unique, typically

prokaryotic or typically eukaryotic (Bernander, 2000; Woese,
2000; Forterre, 2001). They possess a prokaryotic mode of
cellular organisation, e.g. no nuclear envelope, circular DNA
molecules organized similarly to those of prokaryotes, etc. On
the other hand, they present many eukaryotic similarities in their
replication, transcription and translation processes, e.g. introns
in tRNA genes, protein synthesis initiation with unformylated
methionine, etc.

Very surprisingly, the method based on the frame permuted
trinucleotide frequency, a quantitative, sensitive and automatic
statistical method for searching circular codes in genes (detailed
in Frey and Michel, 2003), has recently identified 15 new cir-
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fore, the 15 archaeal codesX occur with frequencies higher than
the common codeCOM in the archaeal genomes.

The analytical evolutionary model developed in the next sec-
tion, will demonstrate that the archaeal circular codes can derive
from the common circular code subjected to random substitu-
tions.

1.3. An evolutionary model based on the common circular
code

Founded on the principle described in Introduction, the model
is based on a construction process which generates “primitive"
genes according to a random mixing of the 20 trinucleotides
of the common circular codeCOM with equiprobability (1/20).
This codeCOM has been chosen not only because it is “univer-
sal", as already mentioned, but also as it has stronger properties,
in particular the self-complementary one, which do not exist
in the archaeal codes. This process is not sufficient for retriev-
ing the archaeal codes and an evolutionary process is added to
the construction one. This evolutionary process transforms the
primitive genes into simulated actual ones. Substitutions with
different rates in the three sites of the 20 trinucleotides of the
codeCOM will generate other trinucleotides, distribute them
according to a non-balanced way in the hope of retrieving pref-
erentially the trinucleotides of the actual archaeal codes.

The aim of this mathematical model consists in determining
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ular codesX in 16 archaeal genomesG, the two genome
rcheoglobus and aeropyrum having the same code (Frey and
ichel, 2003; Appendices A and B). These 15 archaeal cod
are allC3 codes but without the important property of s

omplementary existing in the commonC3 codeCOM.
In order to quantify the preferential occurrence of an arch

odeX compared to the common codeCOM in an archaea
enomeG, the following probabilities are defined. LetPi(G) be

he occurrence probability of a trinucleotidei, i ∈ {1, . . . , 64}
epresenting the 64 trinucleotidesT, in the genes of a genom
. As the trinucleotides̃T (AAA, CCC, GGG and TTT) are no
onsidered in a circular code (by definition) and therefore
omputed in the occurrence probability of a circular code
ccurrence probabilityP(X, G) of a codeX in a genomeG is
enormalizing

(X, G) =
∑

i∈X Pi(G)∑
i∈T−T̃ Pi(G)

.

hen, in an archaeal genomeG, the probability differenc
r(X, COM, G) evaluates simply the preferential occurenc

he codeX compared to the codeCOM as follows

Pr(X, COM, G) = P(X, G) − P(COM, G). (1.1)

n the 16 archaeal genomes, Pr(X, COM, G) > 0, Pr(MSA,

OM, GMSA) = 1.22% being the lowest value (Table 1). There-

able 1
robability difference Pr(X, COM, G) = P(X, G) − P(COM, G) (in %) betw
enomesG

GenomeG AG AP HB MC MP MSA MSM

Pr(X, COM, G) 4.80 6.61 3.45 9.64 5.23 1.22 2
l

he analytical solutions of the occurrence probabilities of
ommon circular codeCOM and the 15 archaeal circular cod
as a function of the evolutionary timet and the six substitutio
arametersa, b, c, d, e andf (Section2). It should be stressed th

his stochastic approach with exact solutions, relies on a
volutionary physical model based on random substitutio
imulated sequences. However, in order to get computer r
ith a good approximation, a population of large seque
ust be simulated in the statistical analysis, which is

onsuming.
The model will demonstrate here that the archaeal circ

odes can derive from the common circular code after a ce
volutionary time of random substitutions in the common c
nd with particular values for the six substitution paramete

. Mathematical model

The mathematical model will determine at an evolution
ime t the occurrence probabilityP(X, t) of a circular codeX
hose trinucleotides mutate according to six real substitu
arametersa, b, c, d, e andf associated with the transitions a

ransversions in the three trinucleotide sites:a andb (resp.c and
, e and f) are the transitions and the transversions in the
resp. second, third) trinucleotide sites, respectively.

an archaeal circular codeX and the common circular codeCOM in 16 archaea

MT PB PCA PCF PCH SLS SLT TPA TPV

2.70 5.63 7.32 7.72 5.08 7.37 11.43 5.46
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By convention, the indexesi, j ∈ {1, . . . , 64} represent the
64 trinucleotidesT in alphabetical order. The occurrence prob-
ability Pi(t + dt) of a trinucleotidei at a timet + dt is equal
to the occurrence probabilityPi(t) of this trinucleotidei at the
time t minus the substitution probability of this trinucleotidei
during [t, t + dt] and plus the substitution probabilities of the
trinucleotidesj, j �= i, into the trinucleotidei during [t, t + dt]

Pi(t + dt) = Pi(t) − αdtPi(t) + αdt

64∑
j=1

P(j → i)Pj(t) (2.1)

whereα is the probability that a trinucleotide is subjected to
one substitution during an unit interval of time and where
P(j → i) is the substitution probability of a trinucleotidej into
a trinucleotidei. The probabilityP(j → i) is equal to 0 if the
substitution is impossible (j andi differ more than one nucleotide
as dt is assumed to be enough small that a trinucleotide cannot
mutate successively two times during dt) otherwise it is given
as a function of the six substitution ratesa, b, c, d, e and f.
For example with the trinucleotide AAA associated withi = 1,
P(GAA → AAA) = a, P(CAA → AAA) = P(TAA →
AAA) = b/2, P(AGA → AAA) = c, P(ACA → AAA) =
P(ATA → AAA) = d/2, P(AAG → AAA) = e, P(AAC →
AAA) = P(AAT → AAA) = f/2 andP(j → AAA) = 0 with
j /∈ {AAC, AAG, AAT , ACA, AGA, ATA , CAA, GAA, TAA}.

With an appropriate unit of time, the probabilityα is equal to
1 ime.
T
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c fou

diagonal elements are formed by four identical square submatri-
cesC (4, 4) and whose 12 non-diagonal elements are formed by
four square submatricescI (4, 4) and eight square submatrices
(d/2)I (4, 4) as follows

B =




C (d/2)I cI (d/2)I

(d/2)I C (d/2)I cI

cI (d/2)I C (d/2)I

(d/2)I cI (d/2)I C


 .

Finally, the square submatrixC (4, 4) is equal to

C =




0 f/2 e f/2

f/2 0 f/2 e

e f/2 0 f/2

f/2 e f/2 0


 .

The matrixA is stochastic whena + b + c + d + e + f = 1.
The differential Eq.(2.3)can then be written in the following

form

P ′(t) = M · P(t)

with

M = A − I.

As the six substitution parameters are real, the matrixA is real
a ix
i atrix
Q
t
Q

P

T , e.g.
L

P

w
es
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o ation
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A
t d
f

d

, i.e. there is one substitution per trinucleotide per unit of t
hen, the formula(2.1)becomes

Pi(t + dt)−Pi(t)

dt
≈ P ′

i (t) = −Pi(t)+
64∑

j=1

P(j→i)Pj(t). (2.2)

By considering the column vectorP(t) = (Pi(t))1≤i≤64 made
f the 64Pi(t) and the mutation matrixA (64, 64) of the 409

rinucleotide substitution probabilitiesP(j → i), the differentia
q. (2.2)can be represented by the following matrix equati

′(t) = −P(t) + A · P(t) = (A − I) · P(t) (2.3)

here I represents the identity matrix and the symbol·, the
atrix product.
The square matrixA (64, 64) can be defined by a squ

lock matrix (4, 4) whose four diagonal elements are for
y four identical square submatricesB (16, 16) and whose 1
on-diagonal elements are formed by four square submatriaI
16, 16) and eight square submatrices (b/2)I (16, 16) as follow

=







.

he index ranges{1, . . . , 16}, {17, . . . , 32}, {33, . . . , 48}
nd {49, . . . , 64} are associated with the trinucleotid
AAA , . . . , ATT}, {CAA, . . . , CTT}, {GAA, . . . , GTT} and
TAA , . . . , TTT}, respectively. The square submatrixB (16, 16)
an again be defined by a square block matrix (4, 4) whose
 r

nd also symmetrical by construction. Therefore, the matrM
s also real and symmetrical. There exists an eigenvector m

and a diagonal matrixD of eigenvaluesλk of M ordered in
he same way as the eigenvector columns inQ so thatM =

· D · Q−1. Then,

′(t) = Q · D · Q−1 · P(t).

his backward equation has the classical solution (see
ange, 2005)

(t) = Q · eDt · Q−1 · P(0) (2.4)

here eDt is the diagonal matrix of exponential eigenvalues eλkt .
The eigenvaluesλk of M are deduced from the eigenvalu

k of A such thatλk = µk − 1. The eigenvaluesµk of A can be
btained by determining the roots of the characteristic equ
et(A − µI) = 0 of A using its block matrix properties. The

ore, after linear combinations, the determinant det(A − µI) is
qual to

det(A − µI) = det(B − (−a + b + µ)I)

× det(B − (−a − b + µ)I)

× [det(B − (a + µ)I)]2. (2.5)

s the matrixB has a block structure similar to the matrixA,
he form of the determinant det(B − νI) can be easily deduce
rom det(A − µI)

et(B − νI) = det(C − (−c + d + ν)I)

× det(C − (−c − d + ν)I)

× [det(C − (c + ν)I)]2.
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Therefore, by substituting in(2.5)ν = −a + b + µ, ν = −a −
b + µ or ν = a + µ, the determinant det(A − µI) becomes

det(A − µI) = det(C − (−a + b − c + d + µ)I)

× det(C − (−a + b − c − d + µ)I)

× det(C − (−a − b − c + d + µ)I)

× det(C − (−a − b − c − d + µ)I)

× [det(C − (−a + b + c + µ)I)]2

× [det(C − (−a − b + c + µ)I)]2

× [det(C − (a − c + d + µ)I)]2

× [det(C − (a − c − d + µ)I)]2

× [det(C − (a + c + µ)I)]4. (2.6)

After linear combinations, the determinant det(C − ξI) is equal
to

det(C − ξI) = (e − f − ξ)(e + f − ξ)(−e − ξ)2.

Therefore, by substituting in(2.6) ξ = −a + b − c + d +
µ, ξ = −a + b − c − d + µ, ξ = −a − b − c + d + µ, ξ =
−a − b − c − d + µ, ξ = −a + b + c + µ, ξ = −a − b + c +
µ, ξ = a − c + d + µ, ξ = a − c − d + µ or ξ = a + c + µ,
the determinant det(A − µI) is obtained

d e −
+ e

+ e

− µ

− µ

− µ

+ f

a +
)4(−

T t
e
d

a

λ

d

1 ge-
b
1
−
λ

f

e

d

a
1
a

c + e + f , λ26 = −1 − a − c + e − f . There is one eigenvalue
of algebraic multiplicity 8:λ27 = −1 − a − c − e.

The 64 eigenvectors ofM associated with these 27 eigen-
valuesλk computed by formal calculus can be put in a form
independent ofa, b, c, d, e andf (data not shown).

The independent mixing of the 20 trinucleotides ofCOM
with equiprobability (1/20) leads to the following initial vector
P(0) =[0, 1/20, 0, 1/20, 0, 1/20, 0, 0, 0, 0, 0, 0, 0, 1/20, 0, 1/20,
0, 0, 1/20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/20, 1/20, 0, 1/20, 1/20,
1/20, 1/20, 0, 1/20, 0, 0, 0, 1/20, 0, 1/20, 1/20, 1/20, 0, 1/20, 0,
1/20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/20, 0, 0].

The formula (2.4) with the 64 trinucleotide probabilities
Pj(0) before the substitution process (t = 0), the diagonal matrix
eDt of exponential eigenvalues eλkt of M, its eigenvector matrix
Q and its inverseQ−1, determine the 64 trinucleotide probabili-
tiesPi(t) aftert substitutions as a function of the six substitution
parametersa, b, c, d, e andf. As a circular codeX cannot con-
tain a trinucleotidẽT by definition, the occurrence probability
P(X, t) of a circular codeX at the substitution stept, is

P(X, t) =
∑

i∈X Pi(t)∑
i∈T−T̃ Pi(t)

.

Finally, the evolutionary analytical formulaP(COM, t) of the
common circular codeCOM as a function of the six substitution

r the
t essed
a

P

w

D

et(A − µI) = (a + b + c + d + e + f − µ)(a + b + c + d +
× (a + b + c − d + e − f − µ)(a − b + c + d

× (a − b + c − d + e + f − µ)(a − b + c − d

× (a + b + c + d − e − µ)2(a + b + c − d − e

× (a + b − c + e − f − µ)2(a − b + c + d − e

× (a − b − c + e + f − µ)2(a − b − c + e − f

× (−a + c + d + e − f − µ)2(−a + c − d + e

× (a + b − c − e − µ)4(a − b − c − e − µ)4(−
× (−a + c − d − e − µ)4(−a − c + e + f − µ

herefore, there are 27 eigenvaluesλk of M. There are eigh
igenvalues of algebraic multiplicity 1:λ1 = −1 + a + b + c +
+ e + f , λ2 = −1 + a + b + c + d + e − f , λ3 = −1 +
+ b + c − d + e + f , λ4 = −1 + a + b + c − d + e − f ,
5 = −1 + a − b + c + d + e + f , λ6 = −1 + a − b + c +
+ e − f , λ7 = −1 + a − b + c − d + e + f and λ8 = −
+ a − b + c − d + e − f . There are 12 eigenvalues of al
raic multiplicity 2: λ9 = −1 + a + b + c + d − e, λ10 = −
+ a + b + c − d − e, λ11 = −1 + a + b − c + e + f , λ12 =
1 + a + b − c + e − f , λ13 = −1 + a − b + c + d − e,

14 = −1 + a − b + c − d − e, λ15 = −1 + a − b − c + e +
, λ16 = −1 + a − b − c + e − f , λ17 = −1 − a + c + d +
+ f , λ18 = −1 − a + c + d + e − f , λ19 = −1 − a + c −
+ e + f and λ20 = −1 − a + c − d + e − f . There
re six eigenvalues of algebraic multiplicity 4:λ21 = −
+ a + b − c − e, λ22 = −1 + a − b − c − e, λ23 = −1 −
+ c + d − e, λ24 = −1 − a + c − d − e, λ25 = −1 − a −
f − µ)(a + b + c − d + e + f − µ)

+ f − µ)(a − b + c + d + e − f − µ)

− f − µ)

)2(a + b − c + e + f − µ)2

)2(a − b + c − d − e − µ)2

)2(−a + c + d + e + f − µ)2

− µ)2(−a + c − d + e − f − µ)2

c + d − e − µ)4

a − c + e − f − µ)4(−a − c − e − µ)8.

atesa, b, c, d, e and f associated with the transitions and
ransversions in the three trinucleotide sites, can be expr
s a function of eigenvaluesλk of M

(COM, t) = 1

2D
(100+ 25eλ2t + eλ4t + 25eλ5t + 16eλ6t

+ eλ7t + 13eλ9t + 5eλ10t + 36eλ11t + 2eλ12t

+ 5eλ13t + eλ14t + 2eλ15t + 13eλ17t + 5eλ18t

+ 5eλ19t + eλ20t + 2eλ21t + 22eλ22t + 6eλ23t

+ 2eλ24t + 2eλ25t + 22eλ26t + 8eλ27t) (2.7)

ith the denominatorD

= 150− eλ4t + 4eλ6t − eλ7t + eλ21t + 3eλ22t

+ 2eλ23t − 2eλ24t + eλ25t + 3eλ26t . (2.8)
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Table 2
Initial probabilitiesP(X, 0) of the 15 archaeal circular codesX

X AG/AP HB MC MP MSA MSM MT PB PCA PCF PCH SLS SLT TPA TPV

P(X, 0)
7

10

7

10

1

2

7

10

3

4

7

10

3

4

3

4

7

10

3

5

3

5

11

20

1

2

7

10

7

10

In Appendix C, we give the evolutionary analytical formulas
P(X, t) of the 15 archaeal circular codesX for the reader who
wants detailed results (see also Section4).

Property 1. The initial probability P(COM, 0) (resp. P(X, 0))
of the code COM (resp. an archaeal code X) at the time t = 0can
(obviously) be obtained from the analytical solution P(COM, t)
(resp. P(X, t)) with t = 0 or also by a simple probability calcu-
lus.

The probability P(COM, 0) is equal to 1 as the primitive
genes in this evolutionary model are generated by the code COM
(20 among 20 trinucleotides).

The probability P(X, 0) is also equal to the ratio of the num-
ber of common trinucleotides between COM and X to 20. These
probabilities P(X, 0) are given in Table 2.

Property 2. The probability P(COM, t) (resp. P(X, t)) of the
code COM (resp. an archaeal code X) at the limit time t → ∞
can (obviously) be obtained from their limit study or also by a
simple probability calculus.

Whatever a, b, c, d, e, f ∈]0, 1[ such that a + b + c + d +
e + f = 1, lim

t→∞ P(COM, t) = lim
t→∞ P(X, t) = 1/3. Indeed, the

six substitutions in the 20 trinucleotides of COM, or X, generate
the 44other trinucleotides. When t → ∞, the 64 trinucleotides
T occur with the same probabilities and therefore, the prob-
abilities of COM and X are equal to 20/60 = 1/3 (the four
t ˜

P
t
e

t

p

T
b
t
s
w

t
s
a
t
p
t
s
i
a
u
t

p
S

occur with the same probability P(w, t) = (5/20)/32 = 1/128
with w ∈ COMY . The trinucleotides AAA and GGG (resp. CCC
and TTT) belong to TR (resp. TY ). Therefore, when t → ∞,
the trinucleotides T̃ occur with the same probability P(w, t) =
(6 + 2)/128= 1/16 with w ∈ T̃. Finally, lim

t→∞ P(COM, t) is

equal to

lim
t→∞ P(COM, t) =

∑
w∈COMR∪COMY

lim
t→∞ P(w, t)

1 − lim
t→∞ P(w, t)

w∈T̃

= (45+ 5)/128

1 − (1/16)
= 5

12
.

Property 4. The evolutionary analytical formula Q(COM, t) of
the common circular code COM as a function of the three sub-
stitution rates p, q and r associated with the three trinucleotide
sites, respectively, is a particular case of P(COM, t) with a =
p/3, b = 2p/3, c = q/3, d = 2q/3, e = r/3 and f = 2r/3

Q(COM, t)

= 1

2D

(
50+ 28e−(4/3)t + 5e−(4/3)(1−p)t + 16e−(4/3)(1−q)t

+ 19e−(4/3)(1−p−q)t + 5e−(4/3)(1−r)t + 18e−(4/3)(1−p−r)t

)

w

D

3

r
t
h
s
o ro-
c l code
X ty
c er
t

ation
o ross
w of
a

rinucleotides T being not considered).

roperty 3. When one (or more) substitution has a rate equal
o 0, some trinucleotides may be either not generated or gen-
rated without equiprobability and lim

t→∞ P(COM, t) �= 1/3, or

lim→∞ P(X, t) �= 1/3. As an example, we explain by a simple

robability calculus why lim
t→∞ P(COM, t) = 5/12 when b = 0.

he code COM has 20 trinucleotides with 15 trinucleotides
eginning with a purine base forming the set COMR and five
rinucleotides beginning with a pyrimidine base forming the
et COMY , i.e. COM = COMR ∪ COMY . Each trinucleotide
∈ COM occurs with the same probability P(w) = 1/20. As

here are purine and pyrimidine bases in the first trinucleotide
ites of COM and as the transitions and the transversions are
llowed in the second and third sites of COM (c, d, e, f > 0),
he 64 trinucleotides T are generated during the evolutionary
rocess. Among these 64 trinucleotides T, let TR be the set of
he 32 trinucleotides beginning with a purine base and TY , the
et of the 32 trinucleotides beginning with a pyrimidine base,
.e. T = TR ∪ TY . As in the first sites of COM the transitions
re allowed (a > 0) but not the transversions (b = 0), the trin-
cleotide set TR can only be generated from COMR. When
→ ∞, the trinucleotides ofCOMR and TR occur with the same
robability P(w, t) = (15/20)/32 = 3/128 with w ∈ COMR.
imilarly, when t → ∞, the trinucleotides of COMY and TY
+ 19e−(4/3)(1−q−r)t

ith the denominator D

= 75+ 2e−(4/3)t + 3e−(4/3)(1−q)t .

. Results

The 15 archaeal codesX have initial probabilitiesP(X, 0)
anging from 0.5 to 0.75, the two codesMC and SLT having
he lowest ones, and the three codesMSA, MT and PB, the
ighest ones (Table 2). All these 15 probabilitiesP(X, 0) are
ignificantly below than the initial probabilityP(COM, 0) = 1
f the common codeCOM. Therefore, a random mutation p
ess seems a priori completely unable to derive an archaea
from the common codeCOM by decreasing the probabili

urveCOM faster than anX one and then, by crossing it in ord
hat a codeX occurs with a higher probability.

The stochastic model developed here, allows the investig
f such a property by searching for a probability curve c
ith each archaeal codeX, i.e. by searching for the existence
positive probability difference

Pr(X, COM, t) = P(X, t) − P(COM, t) > k (3.1)
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Table 3
Substitution rate barycenters (in %) of the solution spaces for the 15 archaeal codesX such that each codeX occurs with a probability higher than the common code
COM (Eq.(3.1))

X a b c d e f p = a + b q = c + d r = e + f

AG/AP 24.9 1.9 14.5 18.8 13.4 26.5 26.8 33.3 39.9
HB 19.3 34.9 8.0 9.3 7.5 21.0 54.2 17.3 28.5
MC 10.5 2.9 20.6 20.6 17.0 28.4 13.4 41.2 45.4
MP 20.4 30.9 2.2 4.7 12.3 29.5 51.3 6.9 41.8
MSA 14.5 4.5 18.3 19.1 17.6 26.0 19.0 37.4 43.6
MSM 15.8 4.5 18.9 18.9 18.1 23.8 20.3 37.8 41.9
MT 17.8 3.5 18.0 19.9 16.0 24.8 21.3 37.9 40.8
PB 19.9 1.8 14.7 20.0 14.4 29.2 21.7 34.7 43.6
PCA 17.5 3.1 17.4 19.8 16.2 26.0 20.6 37.2 42.2
PCF 10.2 3.5 18.6 21.0 17.0 29.7 13.7 39.6 46.7
PCH 10.6 3.4 18.8 20.5 16.8 29.9 14.0 39.3 46.7
SLS 10.6 2.9 20.3 20.4 17.2 28.6 13.5 40.7 45.8
SLT 10.6 3.0 21.2 19.9 17.6 27.7 13.6 41.1 45.3
TPA 19.9 31.6 16.4 22.6 0.3 9.2 51.5 39.0 9.5
TPV 14.3 4.0 19.9 19.1 18.6 24.1 18.3 39.0 42.7

Table 4
Substitution rate barycenters (in %) of the solution spaces for the three archaeal codesX = {MSA, MSM, MT } such that each codeX has an occurrence probability
difference with the common codeCOM higher than the one observed in its genome (Eq.(3.2)and Pr(X, COM, G) (1.1)given in % (Table 1))

X Pr(X, COM, G) a b c d e f Figure

MSA 1.22 13.8 2.8 18.3 19.9 17.6 27.6 1
MSM 2.54 15.0 1.4 19.0 20.3 18.3 26.0 2
MT 2.70 17.9 0.02 17.2 21.9 16.3 26.7 3

k being chosen equal to 0.5% for a significant difference. Each
substitution ratea, b, c, d, e andf varies in the range [0,1] with
a step of 1% such that their probability sum is equal to 1, andt,
in the range [0,15].

Very unexpectedly, all archaeal codesX can be derived from
random substitutions in the common codeCOM. Indeed, the dif-
ference Pr(X, COM, t) can be positive for all codesX for some
values of the substitution parameters.Table 3gives the barycen-
ters of the solution spaces (not given) of the six substitution
ratesa, b, c, d, e andf for the 15 archaeal codes. The barycenter
rates allow proposal of a classification of the 15 archaeal codes
according to this evolutionary model with six parameters. Three
main classes can be observed according to the low values of the
substitution rates (Table 3):

(i) the classCr with low substitutions in the third site (e < 1%
andf < 10%, andr < 10%) containing one codeTPA,

(ii) the classCq with low substitutions in the second site (c <

10% andd < 10%, andq � 15%) containing the codesHB
andMP,

(iii) the class Cb with low transversions in the first site
(b < 5% ) which can be divided into five subclasses accord-
ing to the values ofb:
(iiia) the classCb1 containing the codesAG/AP andPB

with b ≈ 2%,

(iiie) the classCb5 containing the codesMSA and MSM
with b ≈ 4.5%.

However, the existence of a positive difference does not
simulate reality completely. Therefore, a stronger property has
been studied by chosenk equal to Pr(X, COM, G) ((1.1) and
Table 1), i.e. by searching for a probability difference between
each archaeal codeX and the codeCOM which is greater than
the one observed in its genome

Pr(X, COM, t) = P(X, t) − P(COM, t) > Pr(X, COM, G)

(3.2)

Three applications of the model are strongly correlated with
the archaeal codesMSA, MSM andMT (Table 4).

Fig. 1 (resp. 2 and 3) gives a graphical representation
of the analytical solutionsP(COM, t) (2.7) and P(MSA, t)
(resp. P(MSM, t) and P(MT, t)) (Appendix C) in its sub-
stitution rate barycenter (Table 4). The curve P(MSA, t)
(resp.P(MSM, t) and P(MT, t)) crossesP(COM, t) at tc ≈
2.51 (resp. 2.29 and 2.69) and is correlated with the actual
genes in the achaeal genomeMSA (resp. MSM and MT) at
ta ≈ 3.24 (resp. 3.44 and 5.48) as Pr(MSA, COM, 3.24) ≈
Pr(MSA, COM, GMSA) = 1.22% (resp. Pr(MSM, COM, 3.44)
≈ Pr(MSM, COM, GMSM) = 2.54% and Pr(MT, COM, 5.48)
≈ Pr(MT, COM, GMT ) = 2.70%).

4

here
i n the
(iiib) the classCb2 containing the codesMC, PCA, SLS and
SLT with b ≈ 3%,

(iiic) the classCb3 containing the codesMT, PCF andPCH
with b ≈ 3.5%

(iiid) the classCb4 containing the codeTPV with b ≈ 4%
. Discussion

A new analytical evolutionary model has been developed
n order to generalize several previous models based o
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Fig. 1. Evolution of the common circular codeCOM and the archaeal circular
codeMSA in its substitution rate barycenter (in %):a = 13.8, b = 2.8, c =
18.3,d = 19.9,e = 17.6 andf = 27.6 (Table 4). The curveP(MSA, t) crosses
P(COM, t) at tc ≈ 2.51 and is correlated with the actual genes of the achaeal
genomeMSA at ta ≈ 3.24.

nucleotide mutation matrices 4× 4 (Jukes and Cantor, 1969;
Kimura, 1980) and the trinucleotide mutation matrix 64× 64 at
three substitution parameters (Arquès et al., 1998). It has been
applied for deriving the evolutionary probabilities of the com-
mon circular codeCOM and 15 archaeal circular codesX as a
function of the timet and six substitutions parameters associated
with the transitions and transversions in the three trinucleotide
sites.

Very unexpectedly, the archaeal codesX can derive from the
common codeCOM subjected to random substitutions with par-
ticular values for the six substitution parameters. The model
demonstrates this existence by finding a positive probability dif-
ference Pr(X, COM, t) (3.1) for all archaeal codes (Table 3).
Furthermore, it has a strong correlation with the three archaeal
codesMSA, MSM andMT. Indeed, the probability differences
Pr(X, COM, t) (3.2)obtained in this model can be greater than
the probability differences Pr(X, COM, G) observed in their
genomes (Table 4andFigs. 1–3). The “crossing” timestc are
2.51, 2.29 and 2.69 forMSA, MSM andMT, respectively, and
their “actual” timesta, 3.24, 3.44 and 5.48, respectively. The

F ar
c
1 s
P aeal
g

Fig. 3. Evolution of the common circular codeCOM and the archaeal circular
codeMT in its substitution rate barycenter (in %):a = 17.9, b = 0.02, c =
17.2, d = 21.9, e = 16.3 andf = 26.7 (Table 4). The curveP(MT, t) crosses
P(COM, t) at tc ≈ 2.69 and is correlated with the actual genes of the archaeal
genomeMT at ta ≈ 5.48.

values of these actual times in this model suggest a time of evo-
lution which increases fromMSA, MSM to MT. Note also that
the shortest crossing time does not imply necessarily the short-
est actual time astc = 2.29 forMSM andta = 3.24 forMSA. A
strong correlation with the 12 other archaeal codes requires an
improvement of this model, e.g. by adding additional parame-
ters with a numerical model or by considering non symmetrical
mutation matrices, etc.

The low values of the substitution rate barycenters allow pro-
posal of an evolutionary classification of the 15 archaeal codes
into three main classes, a class containing the codeTPA, a class
with the two codesHB andMP, and a class containing the 12
remaining codes which can be subdivided into four subclasses
(Table 3and Section3).

The codeTPA is the unique archaeal code with low substi-
tutions in the third trinucleotide sites, i.e.r < 10% (Table 3),
in total contradiction with the actual degeneracy of the genetic
code (Ermolaeva, 2001). This result suggests that the codeTPA
is the only among the 15 identified archaeal codes which has
not evolved from the common codeCOM. It can be supported
by the biological fact that several genes in the archaeaTPA have
been acquired by lateral transfert from the archaeaSLS which
is only among the other archaea with living in the same ther-
moacidophilic environment (Ruepp et al., 2000).

The codesHB andMP have low substitutions in the second
trinucleotide sites, i.e.q < 20% (Table 3). The same evolu-
t d
b es
s
e

asses
C in
t s
o
( en-
e most
f s
t com-
ig. 2. Evolution of the common circular codeCOM and the archaeal circul
odeMSM in its substitution rate barycenter (in %):a = 15.0, b = 1.4, c =
9.0,d = 20.3,e = 18.3 andf = 26.0 (Table 4). The curveP(MSM, t) crosse
(COM, t) at tc ≈ 2.29 and is correlated with the actual genes of the arch
enomeMSM at ta ≈ 3.44.
ionary class for the archaeaHB and MP can be explaine
iologically by their high intracellular salinity which involv
everal specific genes not useful in the other archaea (Slesarev
t al., 2002).

The 12 other archaeal codes are classified into five cl
b1, Cb2, Cb3, Cb4 andCb5 as a function of low transversions
he first trinucleotide sites (b) (Table 3). In all these five classe
f codes, the rater is higher thanq which itself is higher thanp
r > q > p in Cb, Table 3), in agreement with the actual deg
racy of the genetic code in which the substitutions are the

requent in the third sites (Ermolaeva, 2001). Furthermore, a
he transversions are associated with two mutation events
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pared to the transitions with one mutation event (see the matrices
A, B andC in Section2), the transitions are more frequent that
the transversions in each of the three sites of these five classes
of codes (a > b/2, c > d/2 ande > f/2 in Cb except for one
among 36 cases withPB in the third site,Table 3), in agreement
with the chemical properties of the nucleotides (one carbon–
nitrogen ring for pyrimidines and two carbon–nitrogen rings for
purines) and the complementary base pairing showing a univer-
sal transition/transversion rate bias in genomes (Ochman, 2003;
Rosenberg et al., 2003).

The variations of the curvesP(COM, t) of the common cir-
cular codeCOM andP(X, t) of the 15 archaeal circular codes
X, giving their trinucleotide probabilities as a function of six
substitution parameters under a random evolutionary process,
cannot obviously be predicted without modelling as their ana-
lytical solutions are based on a sum of several exponential terms,
e.g. 23 terms for the numerator ofP(COM, t) (2.7). The prob-
ability differences between the trinucleotides in the primitive
genes (att = 0), have still some effects after a great number
of random substitutions in genes, e.g. att = 10 in Figs. 1–3.
The primitive traces generated by these trinucleotide variations,
can still be observed after a long period of random evolution,
even if noise increases. Several properties with these probability
curves have been observed for particular values of the six substi-
tution rates: curves with crossings, curves with a local minimum,
curves with a continuous increase during the random evolution-
a s, et
( igate
a r, a
a r-
m
A is of
t

uld
s y
t
a e 2
t ation
a s ar
d ry
C on-
c y is
t tible
w na-
t have
b ped
h ved
a cod
s r the
s s an
t it ha
a

rob
l rectl
u trin
u ers.
S ome

algorithms of phylogenetic tree reconstruction and sequence
alignment.

Appendix A. List of the 16 archaeal genomes studied
and their abbrevations

GenomeGAG: Archeoglobus (fulgidus) with 2407 genes con-
taining 1989 kb (Euryarchaeota EA)

GenomeGAP : Aeropyrum (pernix) with 2694 genes containing
1916 kb (Crenarchaeota CA)

GenomeGHB: Halobacterium (sp.NCR-1) with 2058 genes
containing 1761 kb (EA)

GenomeGMC: Methanoccocus (jannashii) with 1709 genes
containing 1444 kb (EA)

GenomeGMP : Methanopyrus (kandleri) with 1678 genes con-
taining 1492 kb (EA)

GenomeGMSA: Methanosarcina acetivorans with 4440 genes
containing 4162 kb (EA)

GenomeGMSM : Methanosarcina mazei with 3371 genes con-
taining 3065 kb (EA)

GenomeGMT : Methanothermobacter (thermautotrophicus)
with 1868 genes containing 1575 kb (EA)

GenomeGPB: Pyrobaculum (aerophilum) with 2605 genes
containing 1968 kb (CA)

GenomeGPCA: Pyroccocus abyssi with 1762 genes containing

ain-

on-

on-

in-

es

es

A

,

,

T,

,

T,
ry process, curves with a series of fusions and separation
data not shown). These properties have not been invest
s they are not direcly in the subject of this paper. Howeve
lready mentioned in Section2, the evolutionary analytical fo
ulasP(X, t) of the 15 archaeal circular codesX are given in
ppendix Cfor the reader who wants to deepen the analys

hese stochastic curves.
The biological meaning of this evolutionary model wo

uggest that the primitive genes (att = 0), are constructed b
rinucleotides of the common circular codeCOM. Only 20
mong 64 trinucleotides would have been necessary. Th

ypes of trinucleotides as well as the type of their concaten
re determined in this model. Indeed, the 20 trinucleotide
efined by the setCOM which is a maximal self-complementa
3 code (Section1.2.2). Furthermore, the independent c
atenation of these 20 trinucleotides with equiprobabilit
he simplest type of concatenation and therefore, compa
ith a primitive stage of gene evolution. A Markov concate

ion of trinucleotides (based on a stochastic matrix) would
een too complex at this primitive time. The model develo
ere has demonstrated that the 15 circular codes obser
rchaeal genomes can derive from the common circular
ubjected to random substitutions with particular values fo
ix substitutions parameters associated with the transition
ransversions in the three trinucleotide sites. Furthermore,
strong correlation with three archaeal codes.
Finally, the proposed method can be applied to other p

ems. In particular, the eigenvalues obtained here can be di
sed to develop similar evolutionary models based on a
cleotide mutation matrix with six substitution paramet
uch a trinucleotide mutation matrix could also improve s
c.
d

s

0

e

in
e

d
s

-
y
-

1606 kb (EA)
GenomeGPCF : Pyroccocus furiosus with 2060 genes cont

ing 1740 kb (EA)
GenomeGPCH : Pyroccocus horikoshii with 2058 genes c

taining 1704 kb (EA)
GenomeGSLS : Sulfolobus solfataricus with 2994 genes c

taining 2525 kb (CA)
GenomeGSLT : Sulfolobus tokodaii with 2826 genes conta

ing 2276 kb (CA)
GenomeGTPA: Thermoplasma acidophilium with 1478 gen

containing 1359 kb (EA)
GenomeGTPV : Thermoplasma volcanium with 1523 gen

containing 1353 kb (EA)

ppendix B. List of the 15 archaeal circular codes

CodeAG/AP : AAC, AAG, ATA, ACC, GAC, TAC, AGC,
GAG, GTA, ATC, ATG, ATT, GCC, CTC, GCG, GTC
CTG, TTC, GTG, GTT

CodeHB: AAC, AAG, AAT, ACC, GAC, TAC, CAG, GAG,
TAG, ATC, ATG, TAT, GCC, CTC, GGC, GTC, CTG
TTC, GTG, TTG

CodeMC: ACA, GAA, ATA, CCA, GAC, ACT, GCA, GGA,
GTA, TCA, GAT, ATT, GCC, CCT, GCG, GTC, GCT, TC
GGT, GTT

CodeMP: AAC, AAG, ATA, ACC, GAC, TAC, CAG, GAG,
GTA, ATC, ATG, ATT, GCC, CTC, GCG, GTC, CTG
TTC, GTG, TTG

CodeMSA: AAC, GAA, ATA, ACC, GAC, TAC, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GGC, GTC, GCT, CT
GTG, GTT
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CodeMSM: AAC, GAA, ATA, ACC, GAC, ACT, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GGC, GTC, GCT, CTT,
GTG, GTT

CodeMT: AAC, AAG, ATA, ACC, GAC, TAC, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GGC, GTC, GCT, TTC,
GTG, GTT

CodePB: AAC, GAA, ATA, ACC, GAC, TAC, GCA, GAG,
GTA, ATC, ATG, ATT, GCC, CTC, GCG, GTC, CTG,
TTC, GTG, GTT

CodePCA: AAC, AAG, ATA, ACC, GAC, TAC, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GCG, GTC, GCT, TTC,
GTG, GTT

CodePCF: ACA, GAA, ATA, CCA, GAC, CTA, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GCG, GTC, GCT, CTT,
GTG, GTT

CodePCH: ACA, GAA, ATA, CCA, GAC, CTA, GCA, GAG,
GTA, ATC, GAT, ATT, GCC, CTC, GCG, GTC, GCT, TTC,
GTG, GTT

CodeSLS: ACA, GAA, ATA, CCA, GAC, ACT, GCA, GAG,
GTA, TCA, GAT, ATT, GCC, CCT, GCG, GTC, GCT, TCT,
GGT, GTT

CodeSLT: ACA, GAA, ATA, CCA, GAC, ACT, GCA, GGA,
GTA, TCA, GAT, ATT, GCC, CCT, GGC, GTC, GCT, TCT,
GGT, GTT

CodeTPA: AAC, AAG, ATA, ACC, GAC, TAC, AGC, GAG,
GTA, ATC, ATG, ATT, GCC, CTC, GGC, GTC, CTG,

T,

A
a

t l
c

P

P

P

+ 13eλ22t + 3eλ23t − 5eλ24t − 3eλ25t

− 3eλ26t + 2eλ27t)

P(MP, t) = 1

2D
(100+ 20eλ5t − 2eλ7t + 23eλ9t + 3eλ10t

+ 42eλ11t − 2eλ12t − eλ13t + eλ14t + 2eλ15t

+ 4eλ18t + 2eλ20t + 6eλ21t + 16eλ22t + 2eλ23t

− 2eλ25t + 4eλ26t + 6eλ27t)

P(MSA, t) = 1

2D
(100+ 20eλ2t + eλ4t + 35eλ5t + 4eλ6t

− 2eλ7t + 9eλ9t − 2eλ10t + 30eλ11t + eλ12t

+ 2eλ13t + eλ14t + 3eλ15t + 18eλ17t − eλ18t

+ 3eλ19t + 2eλ20t + eλ21t + 5eλ22t + eλ23t

+ eλ24t + eλ25t + 9eλ26t − 2eλ27t)

P(MSM, t) = 1

D
(50+ 10eλ2t + eλ4t + 20eλ5t + 4eλ6t − eλ7t

+ 2eλ9t − eλ10t + 12eλ11t + eλ13t + 2eλ15t

+ 8eλ17t − eλ18t + 2eλ19t + eλ20t + eλ25t

+ 3eλ26t − 2eλ27t)

P

P

P

P

TTC, GTG, GTT
CodeTPV: AAC, GAA, ATA, ACC, GAC, ACT, GCA, GAG,

GTA, ATC, GAT, ATT, GCC, CTC, GGC, GTC, GCT, CT
GGT, GTT

ppendix C. Evolutionary analytical formulas of the
rchaeal circular codes

With the denominatorD (2.8) and the eigenvaluesλk of M,
he evolutionary analytical formulasP(X, t) of the 15 archaea
ircular codesX obtained are

(AG/AP, t) = 1

D
(50+ 5eλ2t + 15eλ5t − eλ7t + 11eλ9t

+ 18eλ11t − 2eλ13t + eλ15t + 2eλ18t − eλ19t

+ 2eλ21t + 9eλ22t + eλ23t − eλ26t + 3eλ27t)

(HB, t) = 1

2D
(100+ 10eλ2t + 10eλ5t + 8eλ6t + 24eλ9t

+ 6eλ10t + 42eλ11t − 2eλ12t − 2eλ13t − eλ17t

+ 3eλ18t + eλ19t + eλ20t + 4eλ21t

+ 8eλ22t + 12eλ26t)

(MC, t) = 1

2D
(100+ 5eλ2t + 30eλ5t + 4eλ6t − eλ7t

− 11eλ9t − 6eλ11t + 3eλ12t + 6eλ13t − eλ14t

+ eλ15t + 20eλ17t − eλ18t + 3eλ19t + eλ21t
(MT, t) = 1

2D
(100+ 20eλ2t + eλ4t + 35eλ5t + 4eλ6t − 2eλ7t

+ 15eλ9t + 2eλ10t + 30eλ11t + eλ12t + eλ14t

+ 3eλ15t + 12eλ17t + eλ18t − eλ19t + 2eλ20t

+ 3eλ21t + 11eλ22t + eλ23t + eλ24t − eλ25t

+ 3eλ26t − 2eλ27t)

(PB, t) = 1

2D
(100+ 5eλ2t + 30eλ5t − 4eλ6t − 3eλ7t

+ 18eλ9t + eλ10t + 36eλ11t + eλ12t + eλ13t + 3eλ15t

+ 10eλ17t + 5eλ18t + eλ19t + 3eλ21t + 17eλ22t

+ 3eλ23t + eλ24t − eλ25t + 9eλ26t + 4eλ27t)

(PCA, t) = 1

2D
(100+ 15eλ2t + eλ4t + 35eλ5t − 3eλ7t

+ 13eλ9t + 3eλ10t + 30eλ11t + 2eλ12t − eλ13t

+ eλ14t + 4eλ15t + 12eλ17t + 2eλ18t − 4eλ19t

+ 2eλ20t + 4eλ21t + 12eλ22t − 2eλ25t − 2eλ26t)

(PCF, t) = 1

2D
(100+ 5eλ2t + 30eλ5t − 4eλ6t − 3eλ7t + eλ9t

+ 24eλ11t + 5eλ12t + 2eλ13t + eλ14t + 3eλ15t

+ 21eλ17t + 2eλ19t + eλ20t + eλ21t + 3eλ22t

− 3eλ23t − eλ24t − eλ25t + eλ26t + 4eλ27t)
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P(PCH, t) = 1

2D
(100+ 30eλ5t − 2eλ7t + 3eλ9t + 5eλ10t

+ 24eλ11t + 4eλ12t + eλ13t − eλ14t + 4eλ15t

+ 21eλ17t + 3eλ18t + eλ19t − eλ20t + 8eλ22t

− 6eλ23t − 2eλ24t − 2eλ25t + 2eλ26t)

P(SLS, t) = 1

2D
(100+ 5eλ2t + 30eλ5t + 4eλ6t − eλ7t

− 10eλ9t + eλ10t + 3eλ12t + 3eλ13t + 3eλ15t

+ 20eλ17t − eλ18t + 3eλ19t + eλ21t + 13eλ22t

+ eλ23t − 3eλ24t − 3eλ25t + 5eλ26t + 2eλ27t)

P(SLT, t) = 1

D
(50+ 5eλ2t + 15eλ5t + 4eλ6t − 7eλ9t − 2eλ10t

− 6eλ11t + 3eλ13t + 10eλ17t − eλ18t + 3eλ19t

+ 6eλ22t + eλ23t − eλ24t)

P(TPA, t) = 1

2D
(100+ 15eλ2t − eλ4t + 25eλ5t − eλ7t

+ 24eλ9t + 2eλ10t + 36eλ11t − 2eλ12t − 4eλ13t

+ 2eλ17t + 4eλ18t + 2eλ21t + 12eλ22t + 2eλ23t

P

R
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