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Université Louis Pasteur de Strasbourg,
Pôle API,
Boulevard S´ebastien Brant,
67400 Illkirch,
France
E-mail: michel@dpt-info.u-strasbg.fr

We develop here anew class of gene evolution models in which the nucleotide
mutations are time dependent. These models allow to study nonlinear gene evo-
lution by accelerating or decelerating the mutation rates at different evolutionary
times. They generalize theprevious ones which are based on constant mutation
rates. The stochastic model developed in this class determines at some timet
the occurrence probabilities of trinucleotides mutating according to 3 time depen-
dentsubstitution parameters associated with the 3 trinucleotide sites. Therefore, it
allows to simulate the evolution of the circular code recently observed in genes. By
varying the class of function for the substitution parameters, 1 among 12 models
retrieves after mutation the statistical properties of the observed circular code in the
3 frames of actual genes. In this model, the mutation rate in the 3rd trinucleotide
site increases during gene evolution while the mutation rates in the 1st and 2nd sites
decrease. This property agrees with the actual degeneracy of the genetic code. This
approach can easily be generalized to study evolution of motifs of various lengths,
e.g., dicodons, etc., with time dependent mutations.
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1. INTRODUCTION

1.1. Presentation of the approach. The trinucleotide distribution in (protein
coding) genes is not random. Indeed, a few trinucleotides occur with higher fre-
quencies in the reading frame of genes (Granthamet al., 1980). This trinucleotide
usage preference has been related to several biological factors, including transla-
tional selection (Shpaer, 1986; Akashi and Eyre-Walker, 1998), GC composition
(Jukes and Bhushan, 1986; Konu and Li, 2002), strand-specific mutational bias
(Sharp and Matassi, 1994; Berg and Silva, 1997; Campbell et al., 1999), transcrip-
tional selection, RNA stability and tRNA content (Ikemura, 1985) [see also the
review Ermolaeva(2001)]. In this line of research, we have recently identified a
preferential subset of 20 trinucleotides in the reading frame of genes (Arquès and
Michel, 1996). By convention, the reading frame established by the codonAT G
is the frame 0, and the frames 1 and 2 are the reading frame 0 shifted in the 5′ − 3′
direction by 1 and 2 nucleotides respectively. The occurrence frequencies of the
64 trinucleotidesAAA, . . . , T T T are computed in the 3 frames of genes. Then,
a preferential frame for the 64 trinucleotides can be deduced by assigning to each
trinucleotide the frame associated with its highest occurrence frequency. Totally
unexpected, by excluding the identical trinucleotides (AAA, CCC, GGG and
T T T ) and with a few exceptions, this approach identifies 3 subsetsX0, X1 andX2

of 20 trinucleotides in the frames 0, 1 and 2 respectively of genes. Furthermore, the
same 3 subsetsX0, X1 andX2 are found in 2 large and different gene populations of
eukaryotes (26 757 sequences, 11 397 678 trinucleotides) and prokaryotes (13 686
sequences, 4 708 758 trinucleotides) (Arquès and Michel, 1996). The subsetX0

of 20 trinucleotides in frame 0 isX0 = {AAC, AAT, ACC, AT C, AT T, C AG,

CT C,CT G, G AA, G AC, G AG, G AT, GCC, GGC, GGT, GT A, GT C, GT T,

T AC, T T C} (Arquès and Michel, 1996). Unexpectedly, the start codonAT G does
not belong toX0. However, the scanning mechanism for initiation of translation
in eukaryotes is based on the consensus sequenceGCC RCC AT G(R = {A, G})
[review inKozak(2002)]. Surprisingly, the 2 trinucleotides precedingAT G belong
to X0(ACC, GCC ∈ X0). Therefore, this motif of 6 base length could have been
the translation initiation signal in primitive genes. The 2 subsetsX1 and X2 of 20
trinucleotides in the frames 1 and 2 respectively of genes can be deduced from the
subsetX0 by the permutationP (Arquès and Michel, 1996): P(X0) = X1 and
P(P(X0)) = P(X1) = X2 knowing that the (left circular) permutationP of a trin-
ucleotidew0 = l0l1l2, l0, l1, l2 ∈ A = {A, C, G, T }, is thepermuted trinucleotide
P(w0) = w1 = l1l2l0, e.g., AAC ∈ X0 implies P(AAC) = AC A ∈ X1 and
P(P(AAC)) = C AA ∈ X2. Thesame 3 subsetsX0, X1 and X2 found in both
eukaryotic and prokaryotic genes, have interesting properties, in particularX0, X1

andX2 are circular codes (Arquès and Michel, 1996).
The observation of a preferential subset of trinucleotides in the reading frame

of genes is the basis of our development of an evolutionary model. Indeed, if a
trinucleotide preferential subset occurs with frequencies higher than the random
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one in the reading frame of actual genes after (mainly) random evolution, then a
realistic hypothesis of an evolutionary model consists in asserting that this subset
had higher frequencies in the past compared to the actual time, i.e., in the reading
frame of ‘primitive’ genes (genes before evolution). AsX0 is a trinucleotide pref-
erential subset in the reading frame of actual genes, we take the hypothesis that the
primitive genes are constructed by trinucleotides ofX0. Therefore, the evolution-
ary model proposed is based on 2 processes: a construction process with a random
mixing of the 20 trinucleotides ofX0 with equiprobability(1/20) followed by an
evolutionary process with random substitutions in the 3 trinucleotide sites. These
random substitutions are modelled by 3 time dependent parameters. Therefore, the
stochastic model developed here is based on a time dependent mutation matrix.
It generalizes the previous models with constant mutation matrices, in particular
the matrices 4× 4 for the 4 nucleotides at 1 substitution parameter (Jukes and
Cantor, 1969), 2 parameters (transition and transversion) (Kimura, 1980), 3 and 6
parameters (Kimura, 1981), and the matrix 64× 64 for the 64 trinucleotides at 3
constant substitution parameters (Arquèset al., 1998). Otherwise, the probabilistic
model based on the nucleotide frequencies with a hypothesis of absence of correla-
tion between successive bases on a DNA strand (Kochand Lehmann, 1997) cannot
generateX0 (Lacan and Michel, 2001). The evolutionary model proposed here
allows to retrieve the circular codeX0 in actual genes and to identify evolutionary
properties ofX0.

In the next 2 sections, the 2 steps of our approach are briefly detailed: the obser-
vation of a circular code in genes and the evolutionary model. In particular, some
quantitative results used in the model are given.

1.2. A circular code in genes

1.2.1. Definition and recall of a few basic properties [detailed in Arquès and
Michel (1996) in particular]. Recall of a few notations. A being a finite alphabet,
A

∗ denotes the words onA of finite length including the empty word of length 0
andA

+, the words onA of finite length greater or equal to 1. Letw1w2 be the
concatenation of the 2 wordsw1 andw2.

DEFINITION 1. A subsetX of A
+ is a circular code if∀n, m ≥ 1 andx1, x2, . . . ,

xn, y1, y2, . . . , ym ∈ X , andr ∈ A
∗, s ∈ A

+, the equalitiessx2 . . . xnr = y1y2 . . . ym

andx1 = rs imply n = m, r = 1 andxi = yi , 1 ≤ i ≤ n (Berstel and Perrin, 1985;
Béal, 1993).

A circular code is a set of words on an alphabet such as any word written on a
circle (the next letter after the last letter of the word being the first letter) has a
unique decomposition into words of the circular code. For example, letX be the 6
word setX = {AAT, AT G, CCT, CT A, GCC, GGC} and consider as the word
w, the sequence of 9 lettersw = AT GGCCCT A. The wordw can be factorized
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circularly in 2 different ways,AT G, GCC, CT A and AAT , GGC, CCT . There-
fore, the setX is not a circular code. But the setX̃ obtained by replacing the last
word GGC of X by GT C, X̃ = {AAT, AT G, CCT, CT A, GCC, GT C}, is a
circular code as the factorization ofw, and moregenerally of any word generated
by X̃ , is unique.

An important property of a circular code is the automatic retrieval of the con-
struction frame of a word. Indeed, the construction frame of a word generated by
a concatenation of the words of a circular code can be retrieved after the reading,
anywhere in the word, of a certain number of nucleotides depending on the code.
This series of nucleotides is called the window of the circular code. The main
biological consequence of this property is the ability to retrieve automatically the
reading frame in genes (i.e., without start codon) which might be involved in the
transcription and the translation apparatus (Arquès and Michel, 1996).

Property 1: X0, X1 and X2 are maximal (20 trinucleotides) circular codes [proof
in Arquès and Michel(1996)].

Property 2: X0 is aC3 code.
As X0, X1 andX2 are circular codes (Property 1) and related to each other by
permutation such asP(X0) = X1 andP(X1) = X2 (seeSection 1.1), each
circular code can be deduced from the permutation of another circular code.
The code X1 associated with the frame defined as the (left) permutation of
the reading frame, i.e., the frame 1, can be obtained by the permutation of
the codeX0 in frame 0. Similarly, the codeX2 in frame 2 can be deduced
from the permutation of the codeX1 and the codeX0, from the codeX2. As
the codeX0 is coding for the reading frame in genes, it is considered as the
main code and then calledC3 code (maximal circular code with 2 permuted
maximal circular codes).

Property 3: X0, X1 and X2 are also related to each other by the complementar-
ity C: C(X0) = X0 (X0 is self-complementary) andC(X1) = X2 (X1 and
X2 are complementary to each other) knowing that the complementarityC
of a trinucleotidew0 = l0l1l2, l0, l1, l2 ∈ A = {A, C, G, T }, is the comple-
mentarytrinucleotideC(w0) = C(l2)C(l1)C(l0) with C(A) = T , C(C) = G,
C(G) = C, C(T ) = A, e.g., AAC ∈ X0 impliesC(AAC) = GT T ∈ X0 and
AC A ∈ X1 impliesC(AC A) = T GT ∈ X2.

Other properties, such as the rarity and the flexibility, as well as the different
biological consequences, in particular on the 2-letter genetic alphabets, the genetic
code and the amino acid frequencies in proteins, are given and detailed inArquès
and Michel(1996).

1.2.2. Actual probabilities of the circular code in genes. Let P(X j , f, tactual)

be the occurrence probability of a circular codeX j , j ∈ {0, 1, 2}, in the frame
f , f ∈ {0, 1, 2}, of genes at the actual timetactual. The computation of the 9
occurrence probabilities ofX0, X1 and X2 in the 3 frames in a eukaryotic gene
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population (34 144 genes), leads to the following actual values:P(X0, 0, tactual) =
0.485,P(X1, 0, tactual) = 0.29,P(X2, 0, tactual) = 0.225,P(X0, 1, tactual) = 0.255,
P(X1, 1, tactual) = 0.435,P(X2, 1, tactual) = 0.31,P(X0, 2, tactual) = 0.31,P(X1,

2, tactual) = 0.225 andP(X2, 2, tactual) = 0.465. According to the law of large
numbers, all these probabilities are stable and significant. They are retrieved with
other gene populations (data not shown).

Therefore, the following actual probability inequalities at the actual timetactual

can be deduced


P(X0, 0, tactual) > P(X1, 0, tactual) > P(X2, 0, tactual) in frame 0
P(X1, 1, tactual) > P(X2, 1, tactual) > P(X0, 1, tactual) in frame 1
P(X2, 2, tactual) > P(X0, 2, tactual) > P(X1, 2, tactual) in frame 2.

(1.1)

1.3. An evolutionary model of a circular code

1.3.1. The construction process. The construction process generates ‘primi-
tive’ genes according to a random mixing of the 20 trinucleotides ofX0 with
equiprobability(1/20). The occurrence probabilityP(X j , f, t0) of a circular code
X j , j ∈ {0, 1, 2}, in the frame f , f ∈ {0, 1, 2}, of genes at the initial past
time t0 can be easily determined. Obviously, in frame 0,P(X0, 0, t0) = 1 and
P(X1, 0, t0) = P(X2, 0, t0) = 0 (absence ofX1 and X2 in frame 0). By consid-
ering the 400 pairs of trinucleotides ofX0 and by computing exactly the num-
ber of trinucleotides in their frames 1 and 2 belonging toX0, X1 or X2, then
the following probabilities are obtained:P(X0, 1, t0) = 0.119, P(X1, 1, t0) =
0.754, P(X2, 1, t0) = 0.127, P(X0, 2, t0) = 0.119, P(X1, 2, t0) = 0.127 and
P(X2, 2, t0) = 0.754. A few trinucleotides ofX0 and X2 (resp. X0 and X1)
occur in frame 1 (resp. 2) (not detailed). The different symmetries observed with
these probabilities are the consequence of the complementarity property of theC3

codeX0.

REMARK 1. The commafree code ofCrick et al. (1957) has stronger conditions
compared to the circular code. Indeed, the 20 trinucleotides of the comma free
code which code for the 20 amino acids, are found in 1 frame only.

Therefore, the following past probability inequalities at the initial past timet0
can be deduced



P(X0, 0, t0) > P(X1, 0, t0) = P(X2, 0, t0) in frame 0
P(X1, 1, t0) > P(X2, 1, t0) > P(X0, 1, t0) in frame 1
P(X2, 2, t0) > P(X1, 2, t0) > P(X0, 2, t0) in frame 2.

(1.2)

These past probability inequalities are not observed in the actual genes. Indeed,
the actual probability inequalities have unexpected asymmetries in contradiction
with the complementarity property of theC3 codeX0 [see the probability inequal-
ities (1.1)]:
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(i) the frequency of the codeX1 is higher than the codeX2 in frame 0 of actual
genes, i.e.,P(X1, 0, tactual) > P(X2, 0, tactual), while these 2 codes do not
exist inframe 0 of primitive genes, i.e.,P(X1, 0, t0) = P(X2, 0, t0) = 0.

(ii) the frequency of the codeX0 is higher than the codeX1 in frame 2 of actual
genes, i.e.,P(X0, 2, tactual) > P(X1, 2, tactual), while an inverse situation
exists in frame 2 of primitive genes, i.e.,P(X1, 2, t0) > P(X0, 2, t0).

Therefore, an evolutionary process is added to the construction one in order to
retrieve the same probability inequalities with the actual and modelled genes.

1.3.2. The evolutionary process. The evolutionary process is based on random
substitutions according to 3 time dependent parameters associated with the 3 trin-
ucleotide sites. It transforms the primitive genes into simulated actual ones. Sub-
stitutions with different time dependent functions in the sites of the trinucleotides
of X0 will allow to generate the trinucleotides ofX1 andX2 according to a nonbal-
anced way and then, to retrieve the asymmetrical probability inequalities (1.1) of
actual genes. The aim of the mathematical model proposed consists in determining
the occurrence probabilities of the circular codesX0, X1 and X2 in the 3 frames
during evolution (Section 2).

Twelve models are analysed by varying the class of function for the 3 time depen-
dent parameters. Only one model retrieves the circular code observed in actual
genes after a certain evolutionary time. Furthermore, this model identifies a prop-
erty with the mutation rates in the trinucleotide sites.

2. MATHEMATICAL MODEL

The mathematical model will allow to determine at an evolutionary timet the
occurrence probabilityP(X j , f, t) of a circular codeX j in the frame f of genes
whose trinucleotides mutate according to 3 time dependent substitution parameters
p(t), q(t) andr(t) associated with the 3 trinucleotide sites respectively.

By convention, the indexesi, j, k ∈ {0, . . . , 63} represent the trinucleotides
AAA, . . . , T T T in the alphabetical order. The occurrence probabilityPi (t + dt)
of a trinucleotidei at a timet+dt is equal to the occurrence probabilityPi (t) of this
trinucleotidei at the timet minus the substitution probability of this trinucleotide
i during [t, t + dt] and plus the substitution probabilities of the trinucleotidesj ,
j �= i , into the trinucleotidei during [t, t + dt]

Pi (t + dt) = Pi(t) − αdt Pi (t) + αdt
63∑

j=0

P( j → i)Pj (t) (2.1)

whereα is the probability that a trinucleotide is subjected to 1 substitution during
a unit interval of time and whereP( j → i) is the substitution probability of a
trinucleotide j into a trinucleotidei . The probabilityP( j → i) is equal to 0 if the
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substitution is impossible (j andi differ more than one nucleotide asdt is assumed
to be small enough that a codon cannot mutate successively twice during
[t, t + dt]) otherwise it is given in the function of the 3 substitution ratesp(t),
q(t) and r(t). For example with the trinucleotideAAA associated withi = 0,
P(C AA → AAA) = P(G AA → AAA) = P(T AA → AAA) = p(t)/3,
P(AC A → AAA) = P(AG A → AAA) = P(AT A → AAA) = q(t)/3,
P(AAC → AAA) = P(AAG → AAA) = P(AAT → AAA) = r(t)/3, and
P( j → AAA) = 0 with j /∈ {AAC, AAG, AAT, AC A, AG A, AT A, C AA,

G AA, T AA}.
With an appropriate unit of time, the probabilityα is equal to 1, i.e., there is 1

substitution per codon per unit of time. Then, the formula (2.1) becomes

Pi (t + dt) − Pi (t)

dt
≈ P ′

i (t) = −Pi(t) +
63∑

j=0

P( j → i)Pj (t). (2.2)

By considering the column vectorP(t) = (Pi(t))0≤i≤63 madeof the 64Pi (t) and
the mutation matrixA(t) (64, 64) of the 4096 trinucleotide substitution probabili-
ties P( j → i), thedifferential equation (2.2) can be represented by the following
matrix equation

P ′(t) = −P(t) + A(t) · P(t) = (A(t) − I ) · P(t) (2.3)

whereI represents the identity matrix and the symbol·, the matrix product.

REMARK 2. The square matrixA(t) (64, 64) can be defined by a square block
matrix (4, 4) whose 4 diagonal elements are formed by 4 identical square subma-
tricesB(t) (16, 16) and whose 12 nondiagonal elements are formed by 12 identical
square submatrices(p(t)/3)I (16, 16)

A(t) =




0 · · · 15 16· · · 31 32· · · 47 48· · · 63
0 · · · 15 B(t) (p(t)/3)I (p(t)/3)I (p(t)/3)I

16· · · 31 (p(t)/3)I B(t) (P(t)/3)I (p(t)/3)I
32· · · 47 (p(t)/3)I (p(t)/3)I B(t) (p(t)/3)I
48· · · 63 (p(t)/3)I (p(t)/3)I (p(t)/3)I B(t)


 .

The index ranges{0, . . . , 15}, {16, . . . , 31}, {32, . . . , 47} and {48, . . . , 63} are
associated with the trinucleotides{AAA, . . . , AT T }, {C AA, . . . , CT T }, {G AA,

. . . , GT T } and{T AA, . . . , T T T } respectively. The square submatrixB(t) (16,16)
can again be defined by a square block matrix (4, 4) whose 4 diagonal elements are
formed by 4 identical square submatricesC(t) (4, 4) and whose 12 nondiagonal
elements are formed by 12 identical square submatrices(q(t)/3)I (4, 4)

B(t) =




C(t) (q(t)/3)I (q(t)/3)I (q(t)/3)I
(q(t)/3)I C(t) (q(t)/3)I (q(t)/3)I
(q(t)/3)I (q(t)/3)I C(t) (q(t)/3)I
(q(t)/3)I (q(t)/3)I (q(t)/3)I C(t)


 .
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Finally, the square submatrixC(t) (4, 4) is equal to

C(t) =




0 r(t)/3 r(t)/3 r(t)/3
r(t)/3 0 r(t)/3 r(t)/3
r(t)/3 r(t)/3 0 r(t)/3
r(t)/3 r(t)/3 r(t)/3 0


 .

The matrix A(t) is stochastic whenp(t) + q(t) + r(t) = 1.

The differential equation (2.3) can then be written in the following form

P ′(t) = M(t) · P(t)

M(t) = A(t) − I .

Suppose that for a samplingt0 < t1 < · · · < tn, A(t) is a constant matrix on the
interval [th, th+1], then denote

A(t) = Ah, ∀t ∈ [th, th+1].

This equation means that although the mutation matrixA(t) is not constant in the
entire time interval, there exist (sufficiently small) periods of time in which the
mutation factors are constant.

With this realistic hypothesis in mind, the equation (2.3) can be written as follows

P ′(t) = Mh · P(t), ∀t ∈ [th, th+1]

where

Mh = Ah − I .

For t ∈ [th, th+1], the probabilityP(t) is then computed by the formulae

P(t) = eMh (t−th) · eMh−1(th−th−1) · · · eM1(t2−t1) · eM0(t1−t0) P(0)

whereeMh (t−th) is the exponential ofMh(t − th) and the initial vectorP(0) =
{0,1/20, 0,1/20, 0,1/20, 0, 0, 0, 0, 0, 0, 0, 1/20, 0, 1/20, 0, 0, 1/20, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,1/20,1/20, 0,1/20, 1/20, 1/20,1/20, 0, 1/20, 0, 0, 0, 1/20, 0, 1/20,
1/20, 1/20, 0, 1/20, 0, 1/20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/20, 0, 0} (the compo-
nents ofP(0) associated with the trinucleotides ofX0 being equal to 1/20). Then,

P(t) = e(Ah−I )(t−th) · e(Ah−1−I )(th−th−1) · · · e(A1−I )(t2−t1) · e(A0−I )(t1−t0) P(0).

We noteP(i, f, t) the occurrence probability of the trinucleotidei in the frame
f , f ∈ {0, 1, 2}, of genes at the timet . Therefore, the probability vectorP(t)
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determining the 64 occurrence probabilitiesPi(t) of the 64 trinucleotidesi which
are in frame 0 (reading frame), can be denoted

P(i, 0, t) = Pi(t).

The occurrence probabilityP(i, 1, t) of the trinucleotidei in the frame 1 of genes
at the timet can be obtained from the product of the 2 probabilitiesP( j, 0, t)
andP(k, 0, t) associated with the concatenation of the 2 trinucleotidesj and k
generating the trinucleotidei

P(i, 1, t) =
3∑

j=0

P
(⌊

i

4

⌋
+ 16j, 0, t

)
×

15∑
k=0

P(16(i mod 4) + k, 0, t).

Similarly, the occurrence probabilityP(i, 2, t) of the trinucleotidei in the frame 2
of genes at the timet is deduced

P(i, 2, t) =
15∑

j=0

P
(⌊

i

16

⌋
+ 4 j, 0, t

)
×

3∑
k=0

P(4(i mod 16) + k, 0, t).

Then, the occurrence probabilityP(X j , f, t) of a circular codeX j , j ∈ {0, 1, 2},
in the frame f , f ∈ {0, 1, 2}, at the substitution stept , can be obtained

P(X j , f, t) =
∑

i∈X j
P(i, f, t)∑

i∈X0∪X1∪X2
P(i, f, t)

. (2.4)

Several classes of evolutionary models are analysed with the 3 time dependent
substitution parametersp(t), q(t) and r(t). For all these models, we take the
realistic hypothesis that the probabilities of substitutions in the 3 trinucleotide sites
at the initial past timet = 0, are equiprobable, i.e.,

p(0) = q(0) = r(0) = 1
3.

The function used here for varying the 3 parametersp(t), q(t) andr(t) such as
p(t)+q(t)+r(t) = 1 whatevert , is e−t as its convergence to a limit whent → ∞
allows it to remain in a probability space.

The first class of models studied has a parameter constant to 1/3, a parameter
varying according to the functionf (t) which exponentially decreases from 1/3
to 0 and a parameter varying according to the functiong(t) which exponentially
increases from 1/3 to 2/3, i.e.,

f (t) = e−t

3
,

g(t) = 2

3
− e−t

3
.

Therefore, 6 evolutionary models testing all the possible combinations in the 3
trinucleotide sites, can be defined
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p(t) q(t) r(t)
Model 1 f (t) g(t) 1/3
Model 2 g(t) f (t) 1/3
Model 3 f (t) 1/3 g(t)
Model 4 g(t) 1/3 f (t)
Model 5 1/3 f (t) g(t)
Model 6 1/3 g(t) f (t)

REMARK 3. The model p(t) = q(t) = r(t) = 1/3 is aparticular case of the
constant model for which no solution has been found (data not shown).

The second class of models has 2 parameters varying according to the same
decreasing functionf (t) and a parameter varying according to the functionh(t)
which exponentially increases from 1/3 to 1

h(t) = 1 − 2e−t

3
.

Therefore, there are 3 evolutionary models testing all the possible combinations in
the 3 sites

p(t) q(t) r(t)
Model 7 f (t) f (t) h(t)
Model 8 f (t) h(t) f (t)
Model 9 h(t) f (t) f (t)

The third class of models has a parameter varying according to the decreasing
function f (t) and 2 parameters varying according to the same functionh(t)/2
which exponentially increases from 1/3 to 1/2. Therefore, 3 evolutionary models
can be deduced

p(t) q(t) r(t)
Model 10 f (t) h(t)/2 h(t)/2
Model 11 h(t)/2 f (t) h(t)/2
Model 12 h(t)/2 h(t)/2 f (t)

3. RESULTS

The occurrence probabilitiesP(X j , f, t) of the 3 circular codesX0, X1 and X2

in the 3 frames of genes at the timet are computed in the 12 models according
to formulae (2.4). Among these 12 models, only model 7 with the evolutionary
parametersp(t) = f (t), q(t) = f (t) andr(t) = h(t) represented inFig. 1, leads
to a solution (Figs. 2–4). Indeed, after uncertain evolutionary time, it retrieves the
actual probability inequalities (1.1) in the3 frames simultaneously.
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Figure 1. Probabilities of the 3 evolutionary parametersp(t) = q(t) = e−t /3 (full line)
andr(t) = 1 − 2e−t /3 (dash line) under the mutation processt , 0 ≤ t ≤ 5, of model 7.
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Figure 2. ProbabilitiesP(X j , 0, t) of the 3 circular codesX0 (full line), X1 (dash line) and
X2 (dot line) in the frame 0 of genes under the mutation processt , 0 ≤ t ≤ 5, of model 7.

At the construction process(t = 0), model 7 has, as expected, the past probabil-
ity inequalities (1.2) in the 3 frames of genes (Figs. 2–4) and the actual probability
inequalities (1.1) in frame 1 (Fig. 3).

Unexpectedly, the substitution process(t > 0) in model 7 allows to retrieve the 2
other actual probability inequalities (1.1) in frames 0 and 2. Indeed, the inequalities
(1.1) in frame 0 are verified fort > 0 and the differenceP(X1, 0, t) − P(X2, 0, t)
increases during evolution (Fig. 2).

The inequalities (1.1) in frame 1 are observed att = 0 andt > 0, i.e., fort ≥ 0
(Fig. 3). Evolution also increases the differenceP(X2, 1, t)−P(X0, 1, t) (Fig. 3).

The variations of the probability curves in frame 2 are totally unexpected. Indeed,
the inequalities (1.1) in frame 2 are verified only after a certain evolutionary time as
the curveP(X0, 2, t) starting with values lower than the curveP(X1, 2, t), crosses
it at t ≈ 0.6 and remains higher through evolution (Fig. 4).
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Figure 3. ProbabilitiesP(X j , 1, t) of the 3 circular codesX0 (full line), X1 (dash line) and
X2 (dot line) in the frame 1 of genes under the mutation processt , 0 ≤ t ≤ 5, of model 7.
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Figure 4. ProbabilitiesP(X j , 2, t) of the 3 circular codesX0 (full line), X1 (dash line) and
X2 (dot line) in the frame 2 of genes under the mutation processt , 0 ≤ t ≤ 5, of model 7.
The curveP(X0, 2, t) crosses the curveP(X1, 2, t) at t ≈ 0.6.

In summary, the random substitution process generates the 2 inequalitiesP(X1,

0, t) > P(X2, 0, t) andP(X0, 2, t) > P(X1, 2, t) in frames 0 and 2 respectively
of genes and increases progressively the amplitude between the 2 lower probability
curves untilt ≈ 5.

The 11 other models tested cannot retrieve the actual probability inequalities
(1.1) in the 3 frames simultaneously. For each of these 11 models, the properties
of the probability curves in contradiction with the circular code observed in actual
genes, are briefly given:

• Model 1: P(X1, 0, t) ≈ P(X2, 0, t) ∀t , P(X0, 1, t) ≈ P(X2, 1, t) ∀t and
P(X0, 2, t) ≈ P(X1, 2, t) ∀t .

• Model 2: similar to model 1.
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Figure 5. ProbabilitiesP(X j , 0, t) of the 3 circular codesX0 (full line), X1 (dash line)
and X2 (dot line) in the frame 0 of genes under the mutation processt , 0 ≤ t ≤ 5, of
model 9. This evolutionary model 9 cannot generate the actual probability inequality (1.1)
P(X1, 0, t) > P(X2, 0, t) associated with the circular codeX0 in genes.

• Model 3: P(X1, 0, t) � P(X2, 0, t) ∀t , P(X0, 1, t) � P(X2, 1, t) ∀t and
P(X0, 2, t) � P(X1, 2, t) t → ∞. Model 3 has the properties of model 7
but with weak amplitudes for the 2 lower curves in the 3 frames.

• Model 4:P(X1, 0, t) � P(X2, 0, t) ∀t,P(X0, 1, t) � P(X2, 1, t) t → ∞
andP(X0, 2, t) � P(X1, 2, t) ∀t .

• Model 5: similar to model 1.
• Model 6: similar to model 1.
• Model 8:P(X1, 0, t) = P(X2, 0, t) ∀t , P(X0, 1, t) = P(X2, 1, t) t → ∞

andP(X0, 2, t) = P(X1, 2, t) t → ∞.
• Model 9:P(X1, 0, t) < P(X2, 0, t) ∀t (Fig. 5), P(X0, 1, t) > P(X2, 1, t)

t → ∞ andP(X0, 2, t) < P(X1, 2, t) t → ∞.
• Model 10: similar to model 3.
• Model 11: similar to model 8.
• Model 12: similar to model 4.

Fig. 5 gives an example of an evolutionary model, here model 9, generating a
probability inequality which is not observed in the actual genes.

4. DISCUSSION

The evolutionary model 7 retrieves the circular codesX0, X1 andX2 observed in
the 3 frames of genes and their main statistical properties. Its biological meaning
would suggest that the primitive genes, i.e., the genes before substitutions(t = 0),
are constructed by trinucleotides. Only 20 among 64 trinucleotides would have
been necessary. The 20 types of trinucleotides as well as the type of their con-
catenation are determined in this model. Indeed, the 20 trinucleotides are defined
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by the subsetX0 which is aC3 code (Section 1.2). Furthermore, the independent
concatenation of these 20 trinucleotides with equiprobability is the simplest type
of concatenation and therefore, compatible with a primitive stage of gene evolu-
tion. A Markov concatenation of trinucleotides (based on a matrix of probabili-
ties) would have been too complex at this primitive time. Model 7 also demon-
strates that a substitution process(t > 0) must follow the construction process
for obtaining a correlation with the actual genes. This substitution process allows
the generation of new and totally unexpected probability inequalities, in partic-
ular P(X1, 0, t) > P(X2, 0, t) andP(X0, 2, t) > P(X1, 2, t) in the frames 0
and 2 respectively of genes. Furthermore, by decreasing the initial probabilities
P(X0, 0, t), P(X1, 1, t) andP(X2, 2, t) of the 3 circular codesX0, X1 and X2 in
the 3 frames 0, 1 and 2 respectively, it retrieves the frequency orders ofX0, X1 and
X2 in each of the 3 frames of actual genes.

The negative results with models 1 and 2 suggest that the mutation rater(t) in the
3rd (trinucleotide) site cannot be constant(1/3) during gene evolution, whatever
the variations of the mutation ratesp(t) andq(t) in the 1st and 2nd sites respec-
tively [ p(t) increasing andq(t) decreasing, orp(t) decreasing andq(t) increas-
ing]. A similar conclusion can be deduced from the negative results with models
5 and 6 which would indicate thatp(t) cannot be constant(1/3) during gene evo-
lution, whatever the variations ofq(t) andr(t). The partial positive results with
models 3 and 10 and the negative results with models 4 and 11 would propose that
r(t) has an opposite variation compared top(t), andprecisely, thatr(t) increases
during gene evolution whilep(t) decreases (see also the negative results of model
12). The unique solution obtained with model 7 in the class of models 7, 8 and 9
confirms the previous results. Model 7 which leads to results more significant than
those of model 3, allows to deduce an interesting property with the variations of
the mutation rates during gene evolution:

In model 7, from an initial equiprobable mutation rate, the mutation rater(t) in
the 3rd site increases during gene evolution while the mutation ratesp(t) andq(t)
in the 1st and 2nd sites decrease. This property agrees with the actual degeneracy of
the genetic code with the highest mutation rate in the 3rd site [see e.g.,Ermolaeva
(2001)].

The complex behaviour of the curves giving the trinucleotide probabilities after
time dependent mutations, is totally unexpected and implies 2 remarks. It is impos-
sible to predict the probability variations of the trinucleotides after random substi-
tutions without modelling. Therefore, the identification of rules explaining why
only model 7 leads to a solution, is very difficult. On the other hand, the traces of
the primitive probability differences between the trinucleotides, are conserved in
the modelled genes even after a great number of substitutions, e.g., att = 5 in the
Figs. 2–4.

Weare currently investigating exponential functions of the forme−kt in order to
increase the correlation between model 7 and the gene reality. Other classes of
functions, such as sinusoidal, will also be tested. Furthermore, this approach can
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easily be generalized to study evolution of motifs of various lengths, e.g., dicodons,
etc., with time dependent mutations. Therefore, it could also be applied to the
phylogenetic tree reconstruction and the sequence alignment.
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