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Abstract

Recently, a convergence theorem of asynchronous iterations of discrete dynamic systems

partitioned into blocks has been proved [2]. This theorem is veri®ed with several asynchronous

block strategies. It also generalizes the chaotic iterations. Di�erent simulations of asynchro-

nous evolution of discrete systems performed with the research software Discrete System Evo-

lution (DSE), lead to the ®rst experimental results predicted by this theorem. Ó 1999 Elsevier

Science B.V. All rights reserved.

Keywords: Boolean iterations; Asynchronous algorithms; Discrete dynamic systems; Numerical simula-

tions; Research software

1. Introduction

The convergence results in the asynchronous continuous framework are well-
known and are based on a contraction hypothesis with respect to a maximum norm,
see e.g. [4,6,5,8,1,3]. However, this approach cannot be applied to the discrete frame-
work. Indeed, this hypothesis in the continuous framework leads to constant func-
tions in the discrete framework and a new study is necessary for the discrete case.
We have supposed that F is a contraction with respect to a vectorial distance [2].
The contraction with respect to a vectorial distance was ®rst introduced by [7] in or-
der to study a particular case of asynchronous iterations, namely the chaotic ones.

The discrete system considered here has n components. Each component i takes a
®nite number of values xi; i 2 1; . . . ; nf g. This system is partitioned into a blocks.
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Each block i has ni components with
Pa

i�1ni � n. The value of a block i is denoted by
Xi and the value of the block system, by X � X1; . . . ;Xa� �. The dynamic of the system
is described according to a function f

f �x� � f1 x1; . . . ; xn� �; . . . ; fn x1; . . . ; xn� �� �:
This function f is partitioned into a compatible way, i.e.

f �x� � F �X � � �F1�X1; . . . ;Xa�; . . . ; Fa�X1; . . . ;Xa��:
The state of a system (resp. a block system) at the time t is represented by xt (resp.
X t), or, more precisely by

xt � X t � xt
1; . . . ; xt

n

ÿ � � X t
1; . . . ;X t

a

ÿ �
:

De®nition 1.1. Consider the Cartesian product E � Qn
i�1Ei, where Ei represents the

®nite set of possible values xi of the component i of the discrete system. The vectorial
distance d: E � E! 0; 1f gn

is de®ned by for all �x; y� 2 E � E

�x; y� ! d�x; y� � �d�x1; y1�; . . . ; d�xn; yn��;
where

d�xi; yi� � 1 if xi 6� yi;
0 if xi � yi:

�
De®nition 1.2. Consider a discrete system whose dynamic is described according to a
function f : E! E. The boolean matrix B�f � associated with f is de®ned by its
general term bij; i; j 2 f1; . . . ; ng, so that

bij � 1 if the ith component of f depends on xj;
0 otherwise:

�
As B�f � is a boolean matrix, its only possible eigenvalues are 0 or 1.

Example 1.1. The following simple example shows that to have the boolean matrix
B�f � is equivalent to have the connexion graph of the discrete system. Consider a
discrete system with three components 1, 2 and 3 (cellular automata, processors,
neurons, etc). Assume that the notation 1! 2 means that component 1 informs
component 2. If these components are connected as shown in the ®gure below

then, the matrix B�f � associated with any mapping f � �f1; f2; f3� describing the
dynamic of the system according to the above graph, is
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B�f � �
0 1 1
1 0 1
0 1 0

0@ 1A:
Proposition 1.1 (detailed in [7]). d�f �x�; f �y��6B�f �d�x; y�; for all �x; y� 2 E � E,
where the componentwise order relation 6 is de®ned in f0; 1gn

by 06 06 16 1.

De®nition 1.3. The function f is a contraction if the spectral radius q�B� of the
associated matrix B�f � is equal to 0. B�f � is called the contraction matrix of f.

Proposition 1.2 (detailed in [7]). If the function f is a contraction on E �Qn
i�1Ei then

there exists a unique x� 2 E so that x� � f �x��. x� is called the ®xed point of f.

Remark 1.1. The contraction concept is related to the connexion graph of the discrete
system. Indeed, an iteration function f describing the dynamic of the system is a
contraction if and only if its connexion graph has no cycles. Note that there are an
in®nity of iteration functions associated with a given connexion graph.

All iteration functions associated with this connexion graph are contractions.

De®nition 1.4. The block vectorial distance is de®ned as follows

d�X ; Y � � �d�X1; Y1�; . . . ; d�Xa; Ya��
such that

d�Xi; Yi� � 1 if Xi 6� Yi;
0 if Xi � Yi:

�

2. Totally asynchronous discrete model

De®nition 2.1. Let the strategy fJ�t�gt2N be a sequence of non-empty subsets of
f1; . . . ; ag at the time t. Let fsi

j�t�gt2N; i; j 2 f1; . . . ; ag, be a sequence of integers at
the time t satisfying the three following conditions:

(i) si
j�t� � t ÿ ri

j�t� with 06 ri
j�t�6 t, ri

j�t� being the delay of the block j compared
to the block i. These delays may be generated by di�erent communications and
computation sizes of the elements of the system. This model takes no synchroni-
zation hypothesis.
(ii) 8i; j 2 f1; . . . ; ag, limt!1si

j�t� � 1, i.e. the delays associated with the block i
are unbounded but follow the iterations of the system.
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(iii) 8i 2 1; . . . ; af g;Card�ft; i 2 J�t�g� � 1, i.e. no block is de®nitively lost.
Then, the asynchronous iterations with delays fri

j�t�g according to the strategy
fJ�t�g are described by the algorithm

Given X 0 � �X 0
1 ; . . . ;X 0

a �
t � 0; 1; . . .

i � 1; . . . ; a

X t�1
i � Fi X

si
1
�t�

1 ; . . . ;X si
a�t�

a

� �
if i 2 J�t�

X t
i if i 62 J�t�:

( �1�

Remark 2.1.

1. The block i at the time t is either updated (iterated) by using some blocks j with
states X

si
j�t�

j available at the previous time si
j�t� � t ÿ ri

j�t�6 t, i.e.
X t�1

i � Fi�X si
1
�t�

1 ; . . . ;X si
a�t�

a �, or not updated, i.e. X t�1
i � X t

i .
2. These two alternatives are described by the iteration strategy fJ�t�gt2N,

J�t� � f1; . . . ; ag8t 2 N: if the block i belongs to the strategy J(t) then its state
X t�1

i is updated by Fi otherwise the block i is not updated. The iterations consid-
ered are asynchronous, i.e. chaotic iterations with delays.

3. The chaotic iterations are particular cases of Alg. (1) with si
j�t� � t.

Remark 2.2. The set of all possible strategies is not countable. Furthermore, if the
delays are also considered, the evolution complexity of asynchronous iterations is
hard to imagine.

Example 2.1. This simple example gives an evolution of a discrete model at three
components with chaotic and asynchronous iterations. It will show in particular that

(i) a successive substitution function F with a ®xed point does not automatically
imply the convergence of chaotic and asynchronous iterations;
(ii) the chaotic iterations are particular cases of asynchronous iterations;
(iii) the asynchronous iterations do not represent a classical process of successive
substitutions;
(iv) asynchronous iterations with di�erent strategies and delays can reach a state
which is the ®xed point in the successive substitutions, but without convergence.
Let the function F given by the following Table 1.
Then, the graph of successive substitutions is given in Fig. 1.
The graph of F is very simple with a ®xed point 3 (no cycles) (Fig. 1). For simplic-

ity reasons, the chaotic and asynchronous iterations considered below are compo-
nentwise iterations, i.e. at each iteration, only one component is updated. The
chaotic function Fi�X � is given by the following Table 2.

Then, the graph of chaotic iterations is given in Fig. 2.
Although there is a ®xed point in the successive substitutions, the chaotic itera-

tions do not converge. For example, if the initial state is 4� (1,0,0), then the chaotic
iterations are in a cycle containing the states 4,6,7 (Fig. 2).
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Let X s be a previous value of X. Fi�X s� is a value among all possible values of
Fi�X �, i.e. 0 or 1 in this example. The asynchronous function Fi�X s� is given by the
following Table 3.

Then, the graph of asynchronous iterations is given in Fig. 3.
The chaotic iterations are obviously particular cases of asynchronous iterations

(Figs. 2 and 3). Therefore, the asynchronous iterations do also not converge. Other-

Fig. 1. Graph of successive substitutions associated with Table 1.

Table 1

Example of successive substitutions

State X F(X)

0 0,0,0 0,0,1

1 0,0,1 1,0,1

2 0,1,0 0,0,1

3 0,1,1 0,1,1

4 1,0,0 1,1,0

5 1,0,1 0,1,1

6 1,1,0 1,0,1

7 1,1,1 1,1,0

Table 2

Example of chaotic iterations

State X F �X � F1�X �;X2;X3 X1; F2�X �;X3 X1;X2; F3�X �
0 0,0,0 0,0,1 0,0,0 0,0,0 0,0,1

1 0,0,1 1,0,1 1,0,1 0,0,1 0,0,1

2 0,1,0 0,0,1 0,1,0 0,0,0 0,1,1

3 0,1,1 0,1,1 0,1,1 0,1,1 0,1,1

4 1,0,0 1,1,0 1,0,0 1,1,0 1,0,0

5 1,0,1 0,1,1 0,0,1 1,1,1 1,0,1

6 1,1,0 1,0,1 1,1,0 1,0,0 1,1,1

7 1,1,1 1,1,0 1,1,1 1,1,1 1,1,0
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wise, asynchronous iterations with di�erent strategies and delays can reach state 3,
the ®xed point in the successive substitutions, but without convergence (Fig. 3).

This example of evolution also explains that the asynchronous iterations do not
constitute a process of successive substitutions. Table 4 below shows a particular
asynchronous evolution of the model corresponding to a particular choice of a stra-
tegy J�t� and delays si

j�t�.

De®nition 2.2. Consider the strictly increasing sequence of integers fplgl2N as follows

p0 � 0
pl�1 is the smallest integer satisfyingS
pl 6 smin�t�6 t<pl�1

J�t� � 1; . . . ; af g

where J�t� � 1; . . . ; af g and smin�t� � min
16 i;j6 a

si
j�t�

n o
:

This sequence plf g is well de®ned thanks to the conditions (ii) and (iii) of De®ni-
tion 2.1.

Theorem 2.1 (see [2]). Let a discrete dynamic system of n components be partitioned
into a blocks and described by an iteration function F � �F1; . . . ; Fa�. If F is a
contraction with respect to the block vectorial distance of De®nition 1.4 on the ®nite

Fig. 3. Graph of asynchronous iterations associated with Table 3.

Fig. 2. Graph of chaotic iterations associated with Table 2.
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Cartesian product set E � Qa
i�1Ei and if the 3 conditions of De®nition 2.1 are satis®ed,

then all asynchronous iterations from any initial state X 0 � �X 0
1 ; . . . ;X 0

a � converge to a
unique ®xed point X � within pa steps, i.e.

X � � X t; t � pa; pa � 1; . . . ;

where X t is de®ned in Alg. (1) and plf gl2N, in De®nition 2.2.
The main steps of the proof are given in Appendix A.

3. Results

3.1. Development of the research software DSE

The research software Discrete System Evolution (DSE) has been developed in or-
der to analyse di�erent convergence strategies of discrete models with asynchronous
iterations. The discrete models studied are boolean neural networks with n neurons,
i.e. each neuron at time t takes two states xt

i 2 f0; 1g. The network is partitioned into
a blocks, each block i having ni components so that

Pa
i�1ni � n. The state of the

block i at time t is denoted by X t
i and the state of the block system at time t, by

X t � �X t
1; . . . ;X t

a�. This software is based on four functionalities: the generation of
a contraction matrix, the choice of di�erent network parameters, the graphical rep-
resentation of results and the statistical analysis of results.

(1) DSE allows the generation of di�erent large (>100, the upper limit depending
on the computer) boolean matrices B�f � satisfying the contraction hypothesis (with a
spectral radius q�B� � 0). Contraction matrices cannot easily be obtained with the
available formal calculus software which does not include procedures for transform-
ing matrices with boolean operators. A sample of di�erent contraction matrices gen-
erated with a classical random function, allows statistical analysis (see point (4)).

(2) The di�erent network parameters are:
(i) the size of the network: the number n of components (>100), the number a of
blocks between 1 and n, the numbers ni of components per block i which can be
identical or di�erent but with a sum equal to n.
(ii) the initial state X 0 and the contraction matrix or the iteration function F.
(iii) the block delays in the set ft ÿ f �t�; . . . ; tg verifying the condition
limt!1si

j�t� � 1, e.g. si
j�t� generated according to a uniform random distribution

in ft ÿ t=20; . . . ; tg. If si
j�t� � t then the iterations are chaotic (particular case of

asynchronous iterations).
(iv) the block strategies:

· Asynchronous block parallel (Jacobi) strategy: J�t� � f1; . . . ; ag, i.e. the a blocks
are iterated simultaneously.

Given X 0 � X 0
1 ; . . . ;X 0

a

ÿ �
t � 0; 1; . . .

i � 1; . . . ; a

X t�1
i � Fi X

si
1
�t�

1 ; . . . ;X si
a�t�

a

� �
:

�2�
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· Asynchronous block series (Gauss±Seidel) strategy: J�t� � 1� t mod a, i.e. the a
blocks are iterated one after the other

Given X 0 � X 0
1 ; . . . ;X 0

a

ÿ �
t � 0; 1; . . .

i � 1; . . . ; a

X t�1
i � Fi X

si
1
�t�

1 ; . . . ;X si
a�t�

a

� �
if i � 1� t mod a

X t
i if i 6� 1� t mod a:

( �3�

· Asynchronous block random strategy: J�t� 6� ; and 8i 2 1; . . . ; af g, Card
t; i 2 J�t�f g� � � 1

Alg: �1� where the a blocks are iterated
according to a uniform random distribution between 1 and a:

�4�
· A particular case which we called ``communication reassembly'': within each iter-

ation t, the block i is independent from the others and its components are iterated
in parallel mode pi times. Then, before the time t � 1, all the results are commu-
nicated by a synchronization

Given X 0 � X 0
1 ; . . . ;X 0

a

ÿ �
t � 0; 1; . . .

i � 1; . . . ; a
Y 0

i � X t
i

s � 0; . . . ; pi ÿ 1
Y s�1

i � Fi X t
1; . . . ; Y s

i ; . . . ;X t
a

ÿ �
X t�1

i � Y pi
i :

�5�

The block iteration parameter pi generates delays between the blocks and the Alg.
(5) is a particular case of the Alg. (1).

(3) The graphical functionality allows the display of results in a window. These
curves are computed as follows. As the state xt

i of each boolean neuron i is de®ned
on the binary system E � f0; 1g of Card �E� � 2, the state xt of the network with
n neurons can be associated with the boolean number xt

E � xt
1 . . . xt

n. This number
xt

E can be represented on the decimal system D � f0; . . . ; 9g as follows

xt
D � xt

12nÿ1 � xt
22nÿ2 � . . .� xt

n if n6 10;
xt

1 � 2ÿ1 � xt
2 � 2ÿ2 � . . .� xt

n � 2ÿn if n > 10:

�
If n6 10, xt

D is an integer number and exactly represented on a computer with val-
ues between 0 and 1023 (210 possible values). If n > 10, xt

D is a real number and ap-
proximately represented on a computer with values in the range �0; 1�. The lower
bound 0 is obtained when xt

i � 0 8i 2 f1; . . . ; ng and the upper bound 1, when xt
i �

1 8i 2 f1; . . . ; ng with n!1. Therefore, these curves are represented as follows: the
abscissa shows the time t by varying t between 0 and tmax, and the ordinate gives the
state of the network on the decimal system xD with values either between 0 and 1023
(if n6 10) or between 0 and 1 (if n > 10). For large values of n, the curve cannot dis-
criminate all the states of the network. For example, a network with n � 100 neurons
has 2100 � 1030 possible states. Therefore, two kinds of information are given for
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each t: the number xt
D and a boolean indicator testing whether the state of the net-

work at time t � 1 is equal or not to the state at time t (by comparing the state of
each neuron at the times t � 1 and t).

(4) The statistical functionality allows the generation of a sample of boolean neu-
ral networks having the same network parameters but di�erent contraction matrices.
Two classical statistical parameters are computed: the convergence mean time and its
standard deviation.

Several utilities have also been developed: graphic tools (display of curves in a giv-
en range of t where the size, the lower and upper bounds are user parameters, the left/
right scroll of curves), the printing of curves, the creation of numerical ®les, etc.
Written in Pascal Delphi, this software can be implemented on microcomputers.

In summary, the research software DSE based on di�erent network parameters
allows the simulation of various discrete iteration processes.

3.2. Numerical applications

3.2.1. A linear system
The numerical applications are based on a boolean neural network with n � 100

neurons partitioned into a � 10 blocks according to the following way: n1 � 11,
n2 � 9, n3 � 13, n4 � 7, n5 � 15, n6 � 5, n7 � 17, n8 � 3, n9 � 19, n10 � 1. The linear
iteration function F chosen for the di�erent simulations is FX � BX , where B is the
contraction matrix. As B is a boolean contraction matrix, the unique ®xed point
from any initial state X 0, is X � � �0; . . . ; 0� associated with x�D � 0. The initial state
chosen for the di�erent simulations is the state with greatest distance to X �, i.e. X 0 �
�1; . . . ; 1� associated with x0

D ' 1. Eight simulations with these network parameters
have been investigated (Table 5):

Table 5

Convergence mean time and its standard deviation of boolean neural networks with di�erent types of

strategies

Evolution Convergence

Mean time SD

Asynchronous iterations

With a block parallel strategy: Alg. (2) 210 27

With a block series strategy: Alg. (3) 854 129

With a block random strategy: Alg. (4) 1576 270

Communication reassembly: Alg. (5)

With a block iteration parameter pi � 1 58 4

With a block iteration parameter pi � 2i 53 4

Chaotic iterations

With a block parallel strategy: Alg. (2) with si
j�t� � t 59 3

With a block series strategy: Alg. (3) with si
j�t� � t 352 25

With a block random strategy: Alg. (4) with si
j�t� � t 655 78
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· three simulations with asynchronous iterations according to three block strategies,
parallel: Alg. (2), series: Alg. (3), random: Alg. (4). The block delays are generated
in the same way for these three simulations: si

j�t� has a uniform random distribu-
tion in ft ÿ t=20; . . . ; tg.

· two simulations with communication reassembly: Alg. (5) in function of the block
iteration parameter pi, one simulation with pi � 1, i.e. each block is iterated one
time, and one simulation with pi � 2i, i.e. the number of iterations depends on
the block i.

· three simulations representing particular cases of asynchronous iterations with
si

j�t� � t (no delay), i.e. chaotic iterations according to the three previous block
strategies: parallel, series and random.
For each simulation, a sample of 100 networks of 100 neurones (based on di�er-

ent contraction matrices) is constructed for computing the convergence mean time
and its standard deviation. The statistical results obtained with this sample are sig-
ni®cant and stable, e.g. a sample of 1000 networks leads to similar results for these
two statistical parameters (data not shown).

Fig. 4 gives an example of convergence to X � (x�D � 0) of the network of 100 neu-
rones with asynchronous iterations according to a block parallel strategy. Note that
the network can reach the ®xed point X � several times before to stay on it.

The three types of simulations with asynchronous iterations and the two types of
simulations with communication reassembly converge to a unique ®xed point and
are the ®rst experimental results predicted by Theorem 2.1. In the case of asynchro-

Fig. 4. Convergence of the boolean neural network with asynchronous iterations according to a block par-

allel strategy.

J.M. Bahi, C.J. Michel / Simulation Practice and Theory 7 (1999) 309±324 319



nous iterations, i.e. with unbounded delays, the mean times of convergence are, as
expected, the lowest for the parallel strategy, medium for the series strategy and
the highest for the random strategy (Table 5). Indeed, for the asynchronous parallel
strategy, all blocks are updated at each t while for the asynchronous series strategy
and the asynchronous random strategy, only one block is updated at each t. Further-
more, for the asynchronous series strategy, the blocks are updated one after the oth-
er leading to pa steps (see De®nition 2.2 and Theorem 2.1) shorter than the
asynchronous random strategy where several identical blocks can be updated within
the pa steps. The same reasoning can be applied to the three types of strategies with
the chaotic iterations leading to the expected obervations in Table 5. On the other
hand, for a given strategy, the convergence mean time with asynchronous iterations
is higher than the one with chaotic iterations. Indeed, unbounded delays slow down
the convergence process by considering previous states at some distance from the
®xed point. Otherwise, the communication reassembly with a block iteration param-
eter pi � 1 converges to the ®xed point with a mean time similar to the one of chaotic
iterations with a parallel strategy.

3.2.2. An application in the computer ®eld leading to a nonlinear system
Consider a computer system with n � 10 processors Pi. Each processor computes

a program which depends on some states xi of some other processors Pj. This pro-
gram is described according to the nonlinear iteration function f � f1; . . . ; f10� � de-
®ned as follows

f �x� �

f1�x� � x2x4 � x5x6 � x8x9

f2�x� � x8

f3�x� � x1 � x2 � x4x5 � x7x8x9

f4�x� � x2x8x9

f5�x� � x2 � x4x8 � x9

f6�x� � x2 � x4 � x5 � x8x9

f7�x� � x2�x4 � x5� � x6�x8 � x9�
f8�x� � 1
f9�x� � x2

f10�x� � x1�x2x3 � x5� � x6x9:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
For example, the processor P6 uses the states of the processors P2; P4; P5; P8 and P9

(Fig. 5).
The problem associated with this example is the following one. What would be the

behaviour of the computer under di�erent types of evolution: parallel, series, block

Fig. 5. Example of a relation between processors.
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series, chaotic. Furthermore, what would be this evolution if there are delays due to
the communications between the processors or due to the di�erent sizes of compu-
tation.

The Theorem 2.1. asserts the stabilization of the processors to the solution x� of
the system x � f �x� from any initial state if the conditions of this theorem are satis-
®ed.

The matrix B�f � associated with f is then deduced

B�f � �

0 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0
1 1 0 1 1 0 1 1 1 0
0 1 0 0 0 0 0 1 1 0
0 1 0 1 0 0 0 1 1 0
0 1 0 1 1 0 0 1 1 0
0 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

It can be veri®ed without di�culty that B�f � is a contraction matrix as q�B� � 0.
Therefore, the asynchronous evolution of the computer will stabilize to the ®xed

point x� � �1; 1; 1; 0; 1; 1; 1; 1; 0; 1� associated with x�E � 1110111101 and represented
on the decimal system by x�D � 957 (graphical representation for n6 10). The asyn-
chronous componentwise iterations are based on random delays (satisfying the

Fig. 6. Convergence of the computer system with asynchronous componentwise iterations and a random

strategy.
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condition (ii) of the De®nition 2.1) and a random strategy. The initial state x0 chosen
is the state with greatest distance to x�, i.e. x0 � �0; 0; 0; 1; 0; 0; 0; 0; 1; 0� associated
with x0

E � 0001000010 and x0
D � 66.

Fig. 6 shows the convergence to x� of the computer system with random si
j�t� 2

ft=3; . . . ; tg and a random strategy J�t�.

4. Conclusion

Di�erent simulations of asynchronous evolution of discrete systems have been de-
veloped by varying the nature of the system, linear or nonlinear, its partition into
blocks or not, the type of strategies and the delays. All these simulations converge
and represent the ®rst experimental results predicted by the theory. This work can
be applied in several research ®elds such as parallel computing, neural networks, cel-
lular automata, pattern recognition, transport, etc. The choice of the best strategy
leading to the fastest convergence is an open theoretical problem, both in the contin-
uous and discrete frameworks.
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Appendix A

We give the main steps of the proof of the convergence Theorem 2.1.
Denote: For t 2 N� and i; j 2 f1; . . . ; ag

X t � X t
1; . . . ;X t

a

ÿ �
;

X si�t� � X
si

1
�t�

1 ; . . . ;X si
a�t�

a

� �
;

X s�t� � X s1�t�; . . . ;X sa�t�
� �

;

and Atÿ1, a n� n matrix de®ned by

Atÿ1� �ij �
1 if i � j 62 J�t ÿ 1�
0 if i � j 2 J�t ÿ 1�
0 if i 6� j:

8<: �6�

The proof is divided into three parts.
(i) d�X t;X ��6Atÿ1d�X tÿ1;X �� � B�F �d�X s�tÿ1�;X ��.
We ®rst prove that

d X t;X �� �6Atÿ1d X tÿ1;X �
ÿ �� d F X s tÿ1� �ÿ �

; F X �� �ÿ �
;
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where for all integers t P 1;Atÿ1 is de®ned by Eq. (6). By applying Proposition 1.1,
we deduce

d X t;X �� �6Atÿ1d X tÿ1;X �
ÿ �� B F� �d X s tÿ1� �;X �

ÿ �
:

(ii) d X t;X �� �6Pq
j�1 B F� �� �kj d X 0;X �� � with kj P a for t P pa:

(iia) d X t;X �� �6Pq
j�1 B F� �� �kj d X 0;X �� �.

We prove that there exists ®nite integers q and kj such that

d X t;X �� �6
Ytÿ1

j�0

Ajd X 0;X �
ÿ ��Xq

j�1

B F� �� �kj d X 0;X �
ÿ �

:

Due to De®nition 2.2 of plf gl2N,

8i 2 1; . . . ; af g; 8l 2 N; 9j 2 pl; . . . ; pl�1f ÿ 1g so that Aj

ÿ �
ii
� 0:

Therefore,Ytÿ1

j�0

Aj � 0 if t P p1:

Then for t P pa,

d X t;X �� �6
Xq

j�1

B F� �� �kj d X 0;X �
ÿ �

:

(iib) kj P a for t P pa.
Due to the construction of plf gl2N in De®nition 2.2, if t P pa then kj P a. Indeed,

all the blocks are updated at least a times.
(iii) 8t P pa; d X t;X �� � � 0:
As F is a contraction, we haveXq

j�1

B F� �� �kj �
Xq

j�1

PLP T
ÿ �kj � P

Xq

j�1

Lkj P T ;

where L is a strictly lower triangular block matrix. As PP T � I ; kj P a and as the
product of a strictly lower triangular block matrices of dimension a leads to a null
matrix, then for all j 2 1; . . . ; qf g,

Lkj � 0:

So

d X t;X �� � � 0:

In conclusion, the asynchronous discrete model converges to the unique ®xed
point X � at most after pa steps.
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