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The self-complementary subset T0 = X0∪{AAA, TTT} with X0 = {AAC,AAT,
ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT,
GTA, GTC, GTT, TAC, TTC} of 22 trinucleotides has a preferential occurrence in
the frame 0 (reading frame established by the ATG start trinucleotide) of protein
(coding) genes of both prokaryotes and eukaryotes. The subsets T1 = X1∪{CCC}
and T2 = X2∪{GGG} of 21 trinucleotides have a preferential occurrence in the
shifted frames 1 and 2 respectively (frame 0 shifted by one and two nucleotides
respectively in the 5′–3′ direction). T1 and T2 are complementary to each other.
The subset T0 contains the subset X0 which has the rarity property (6× 10−8) to
be a complementary maximal circular code with two permutated maximal circular
codes X1 and X2 in the frames 1 and 2 respectively. X0 is called a C3 code.

A quantitative study of these three subsets T0, T1, T2 in the three frames 0,
1, 2 of protein genes, and the 5′ and 3′ regions of eukaryotes, shows that their
occurrence frequencies are constant functions of the trinucleotide positions in the
sequences. The frequencies of T0, T1, T2 in the frame 0 of protein genes are
49, 28.5 and 22.5% respectively. In contrast, the frequencies of T0, T1, T2 in
the 5′ and 3′ regions of eukaryotes, are independent of the frame. Indeed, the
frequency of T0 in the three frames of 5′ (respectively 3′) regions is equal to
35.5% (respectively 38%) and is greater than the frequencies T1 and T2, both
equal to 32.25% (respectively 31%) in the three frames.
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Several frequency asymmetries unexpectedly observed (e.g. the frequency dif-
ference between T1 and T2 in the frame 0), are related to a new property of the
subset T0 involving substitutions. An evolutionary analytical model at three pa-
rameters (p,q, t) based on an independent mixing of the 22 codons (trinucleotides
in frame 0) of T0 with equiprobability (1/22) followed by t ≈ 4 substitutions per
codon according to the proportions p ≈ 0.1,q ≈ 0.1 and r = 1− p− q ≈ 0.8 in
the three codon sites respectively, retrieves the frequencies of T0, T1, T2 observed
in the three frames of protein genes and explains these asymmetries. Furthermore,
the same model (0.1, 0.1, t) after t ≈ 22 substitutions per codon, retrieves the
statistical properties observed in the three frames of the 5′ and 3′ regions. The
complex behaviour of these analytical curves is totally unexpected and a priori
difficult to imagine.

c© 1998 Society for Mathematical Biology

1. INTRODUCTION

1.1. Historical background. The concept of a code without commas, intro-
duced by .Crick et al. (.1957), is a code readable in only one frame and without
a start signal. Such a theoretical code ‘without commas’ is a set X of codons
so that their concatenation (series of codons) leads to genes which have the in-
teresting property of automatically retrieving the concatenation of codons of X ,
without the use of a start codon, in the case that the trace of this initial con-
catenation is lost (the ‘commas’ dividing the series of nucleotides into groups
of three for constituting the codons in the initial concatenation are lost). Such a
code was proposed in order to explain how the reading of a series of nucleotides
in the protein (coding) genes could code for the amino acids constituting the
proteins. The two problems stressed were: why are there more codons than
amino acids and how to choose the reading frame? For example, a series of
nucleotides . . .AGTCCGTACGA. . . can be read in three frames: . . .AGT, CCG,
TAC, GA. . ., . . .A, GTC, CGT, ACG, A. . . and . . .AG, TCC, GTA, CGA, . . ..
.Crick et al. (.1957) proposed that only 20 among 64 codons would code for the
20 amino acids. However, the determination of a set of 20 codons forming a
code X without commas depends on a great number of constraints. For example,
the four codons with identical nucleotides AAA, CCC, GGG and TTT must be
excluded from such a code. Indeed, the concatenation of AAA, for example,
with itself does not allow retrieval of the frame: . . .AAA, AAA, AAA, . . ., . . .A,
AAA, AAA, AA. . . and . . .AA, AAA, AAA, A. . .. Similarly, two codons related
to circular permutations, e.g. AAC and ACA (or CAA), cannot belong to such a
code at the same time. Indeed, the concatenation of AAC with itself for example,
leads to the concatenation of ACA (or CAA) with itself in another frame, mak-
ing the frame determination impossible. Therefore, by excluding AAA, CCC,
GGG and TTT and by gathering the 60 remaining codons in 20 classes of three
codons so that, in each class, the three codons are deduced from each other by
circular permutations (e.g. AAC, ACA and CAA), a code without commas has



Analytical Model of a Circular Code 165

only one codon per class and therefore contains at most 20 codons. This codon
number is identical to the amino acid number. This remark has naturally led to
the proposition of a code without commas assigning one codon per amino acid
(.Crick et al., .1957).

In contrast, .Dounce ( .1952) proposed a flexible code associating several codons
per amino acid. Such a flexibility can explain the variations in a G+ C compo-
sition observed in the actual protein genes ( .Jukes and Bhushan, .1986).

The two discoveries that the codon TTT, an ‘excluded’ codon in the concept of
a code without commas, codes for phenylalanine ( .Nirenberg and Matthaei, .1961),
and that the protein genes are placed in the reading frame with a particular codon,
namely the start codon ATG, have led to the withdrawal of the concept of a code
without commas on the alphabet {A, C, G, T}. For several biological reasons,
in particular the interaction between mRNA and tRNA, the concept of a code
without commas is resumed later on the alphabet {R, Y} (R = purine = A or
G, Y = pyrimidine = C or T) with two codon models for the primitive protein
genes: RRY (.Crick et al., .1976) and RNY (N = R or Y) (.Eigen and Schuster,

.1978).
Recently, a code without commas (called circular code in computer terms) on

the alphabet {A, C, G, T} has been identified in the protein genes of both prokary-
otes and eukaryotes (.Arquès and Michel, .1996). This circular code is associated
with 20 codons which occur preferentially in reading frame, in comparison with
the other codons. The first aim of this paper is to quantify the preferential occur-
rence of these 20 codons (Section 2). In the actual protein genes, the 64 codons
are used for protein synthesis: one start codon for locating the reading frame,
61 codons for coding the 20 amino acids and three stop codons (according to
the universal genetic code). However, the circular code observed may be the
trace, after evolution, of a primitive structure of protein genes. The second aim
of this paper is the development of an evolutionary analytical model in order to
propose an explanation for the presence of a circular code in the actual protein
genes (Section 3). This model will be based on two processes: a construction
process of primitive genes with the circular code and an evolutionary process
with different rates of random substitutions in the three codon sites.

In order to understand the circular code identified in protein genes of prokary-
otes and eukaryotes on the alphabet {A, C, G, T} (Section 1.3), the concept of
circular code is first presented on the alphabet {R, Y} in Section 1.2. Sections 1.2
and 1.3 are the necessary reminders of the results obtained and detailed in .Arquès
and Michel (.1996). Sections 1.4 and 1.5 present the new results. Section 1.4 in-
troduces the quantitative study of the circular code which will identify frequency
asymmetries in contradiction with the complementarity property of the circular
code. Section 1.5 presents an evolutionary model explaining these asymmetries
and leading to the identification of a new property, namely an evolutionary prop-
erty, of the circular code observed in protein genes.
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1.2. Concept of circular code.Recall of a few language-theory notations. Let
B be a genetic alphabet, B2 = {R,Y} and B4 = {A,C,G,T}. B∗ denotes the
words on B of finite length including the empty word of length 0. B+ denotes
the words on B of finite length ≥ 1. Let w1w2 be the concatenation of the two
words w1 and w2.

Recall of the DNA complementarity rule ( .Watson and Crick, .1953). The DNA
double helix consists of two nucleotide sequences s1 and s2 connected with the
nucleotide pairing (hydrogen bonds) according to the complementarity rule C:
the nucleotide A (respectively C, G. T) in s1 pairs with the complementary
nucleotide C(A) = T (resp. C(C) = G, C(G) = C, C(T) = A) in s2. The ex-
tension of this rule to the alphabet B2 leads to C(R) = Y and C(Y) = R. The
two nucleotide sequences s1 and s2 run in opposite directions (called antipar-
allel) in the DNA double helix: the trinucleotide w = l1l2l3, l1, l2, l3 ∈ B, in
s1 pairs with the complementary trinucleotide C(w) = C(l3)C(l2)C(l1) in s2 e.g.
C(AAC) = GTT, C(RRY) = RRY.

Recall of the trinucleotide circular permutation. The circular permutation P of
the trinucleotide w = l1l2l3, is the permutated trinucleotide P(w) = l2l3l1, e.g.
P(AAC) = ACA,P(RRY) = RYR. If X is a set of trinucleotides then P(X ) is
the set of permutated trinucleotides of X .

Definition of a circular code. A subset X of B+ is a circular code if for all
n,m ≥ 1 and x1, x2, . . . , xn ∈ X , y1, y2, . . . , ym ∈ X and p ∈ B∗, s ∈ B+, the
equalities sx2x3 . . . xn p = y1y2 . . . ym and x1 = ps imply n = m, p = 1 and
xi = yi , 1 ≤ i ≤ n (.Béal, .1993; .Berstel and Perrin, .1985). In other terms, every
word on B ‘written on a circle’ has at most one factorization (decomposition)
over X . In the following, X will be a set of words of length 3 as a protein gene
is a concatenation of trinucleotides.

The main consequence of the circular code property is the frame determination
property (admitted). If a word is constructed by concatenating words of X and
if the frame of construction is lost, then the code property assures that the frame
of construction can be retrieved in a unique way.

On the alphabet B2 = {R,Y}, there are nine potential maximal (sets of two
trinucleotides) circular codes; ( .Arquès and Michel, .1996). Two of these nine
sets, Xa = {RRY,RYY} = RNY and {YRR,YYR} = YNR, are complementary
maximal circular codes with two permutated maximal circular codes (called C3

codes; .Arquès and Michel, .1996). This concept of circular code is presented with
the set Xa which is associated with the biological model of RNY codons ( .Eigen
and Schuster, .1978). The RNY codon model leads to a protein gene model formed
by a series RNYRNY. . . of nucleotides so that there is one type of trinucleotide
RNY (Xa) in frame 0 (reading frame), one type of trinucleotide NYR (Xb) in
frame 1 and one type of trinucleotide YRN (Xc) in frame 2 (frames 1 and 2
being the frame 0 shifted by one and two nucleotides respectively in the 5′–3′

direction). NYR (resp. YRN) is obtained by one (resp. two) circular permutation
of RNY.
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. . . . . . :, R N Y R R RNY ∈ χaN NY Y, ,,

. . . . . . :,R N Y R R NYR ∈ χaN NY Y, ,,

. . . . . . :,R N Y R R YRN ∈ χaN NY Y, ,,

Figure 1. The set Xa = RNY is a circular code as there is a unique decomposition
over Xa.

The set Xa = {RRY,RYY} = RNY is a maximal circular code. Indeed,
the concatenation of two trinucleotides of Xa, . . .RRYRRY. . ., . . .RRYRYY. . .,
. . .RYYRRY. . . and . . .RYYRYY. . ., leads to only one factorization over Xa as
the eventual decomposition in frame 1 has always an R in the third position
but no trinucleotide of Xa ends with R and as the eventual decomposition in
frame 2 has always a Y in the first position but no trinucleotide of Xa begins
with Y (Fig. 1). Furthermore, Xa is self complementary, i.e. C(Xa) = Xa as
RRY and RYY are complementary. Any subset of Xa is also a circular code
but not maximal. Therefore, the RRY model ( .Crick et al., .1976) is a non-
maximal circular code. The two sets Xb = P(Xa) = {RYR,YYR} = NYR and
Xc = P2(Xa) = {YRR,YRY} = YRN obtained by circular permutations of Xa

are also maximal circular codes (identical proof). Furthermore, Xb and Xc are
complementary to each other, i.e. C(Xb) = Xc and C(Xc) = Xb, as RYR (resp.
YYR) and YRY (resp. YRR) are complementary. In summary, the set Xa = RNY
is a complementary maximal circular code with two permutated maximal circular
codes Xb = P(Xa) = NYR and Xc = P2(Xa) =YRN (C3 code).

1.3. A C3 code identified in the protein coding genes on the alphabet{A, C, G, T}.
In contrast to the alphabet B2 ={R, Y} where the circular codes can be completely
studied by hand, the identification of a circular code on the alphabet B4 ={A, C,
G, T} is obviously more complex and difficult as there are ≈ 3.5 milliard potential
maximal (sets of 20 trinucleotides) circular codes ( .Arquès and Michel, .1996,
.Table 2d). Unexpectedly, a simple method computing the occurrence frequencies
of the 64 trinucleotides AAA, . . ., TTT in the three frames 0, 1, 2 of protein
(coding) genes and assigning each trinucleotide to the frame associated with
its highest frequency, has recently identified three subsets of trinucleotides per
frame: T0 = X0∪{AAA, TTT} with X0 = {AAC,AAT,ACC,ATC, ATT, CAG,
CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC,
TTC} in frame 0, T1 = X1∪{CCC} and T2 = X2∪ {GGG} in the shifted frames 1
and 2 respectively, with X1 and X2 defined in Table 1. The subsets T0, T1 and
T2 have 22, 21 and 21 trinucleotides respectively. Furthermore, the same three
subsets T0, T1, T2 are retrieved with very few exceptions for the two large protein
gene populations of prokaryotes (13,686 sequences, 4,708,758 trinucleotides) and
eukaryotes (26,757 sequences, 11,397,678 trinucleotides).
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Table 1. Identification of three subsets of trinucleotides in the protein coding genes of
both prokaryotes and eukaryotes ( .Arquès and Michel, .1996): T0 = X0∪{AAA, TTT} in
frame 0, T1 = X1∪{CCC} in frame 1 and T2 = X2∪{GGG} in frame 2.
X0:AAC AAT ACC ATC ATT CAG CTC CTG GAA GAC

GAG GAT GCC GGC GGT GTA GTC GTT TAC TTC
X1:AAG ACA ACG ACT AGC AGG ATA ATG CCA CCG

GCG GTG TAG TCA TCC TCG TCT TGC TTA TTG
X2:AGA AGT CAA CAC CAT CCT CGA CGC CGG CGT

CTA CTT GCA GCT GGA TAA TAT TGA TGG TGT

The three subsets T0, T1, T2 of trinucleotides have five important properties
(detailed in .Arquès and Michel, .1996).

(i) The property of a maximal (20 trinucleotides) circular code for X0 allow-
ing automatic retrieval of frame 0 in any region of a protein gene model
formed by a series of trinucleotides of X0. A biological consequence of
this property is the uselessness of motifs for locating the reading frame
(frame 0). In the actual protein genes, the most important motif initiating
the reading frame is the start codon ATG. Furthermore, X1 and X2 are also
maximal circular codes.

(ii) The DNA complementarity property C : C(T0) = T0 (T0 is self-complemen-
tary: 11 trinucleotides of T0 are complementary to the 11 other trinu-
cleotides of T0), C(T1) = T2 and C(T2) = T1 (T1 and T2 are complementary
to each other: the 21 trinucleotides of T1 are complementary to the 21
trinucleotides of T2). This property allows the two paired reading frames
of a DNA double helix simultaneously to code for amino acids, in agree-
ment with biological results ( .Zull and Smith, .1990; .Konecny et al., .1993;
.Béland and Allen, .1994; .Konecny et al., .1995).

(iii) The circular permutation property P : P(X0) = X1 and P(X1) = X2 (X0

generates X1 by one circular permutation and X2 by another circular per-
mutation: one and two circular permutations with each trinucleotide of X0

lead to the trinucleotides of X1 and X2 respectively) implying that the two
subsets X1 and X2 can be deduced from X0.

(iv) The rarity property: there are 216 codes with the three properties (i)–(iii)
among 320 potential maximal circular codes, i.e. the occurrence probability
of X0 is equal to 216/320 = 6×10−8 (.Arquès and Michel, .1996, .Table 2d).
This probability is very low and therefore, non-random in protein genes.
In addition, this code X0 is observed in two independent and large protein
gene populations (prokaryotes: 13,686 sequences and eukaryotes: 26,757
sequences).

(v) Three concatenation properties (.Arquès and Michel, .1996, .Section 3.7)
implying that the code X0 has flexibility properties.

In summary, the self-complementary subset T0 of 22 trinucleotides identified in
protein genes of prokaryotes and eukaryotes contains the subset X0 of 20 trinu-
cleotides which is a complementary maximal circular code with two permutated
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maximal circular codes (C3 code) and with concatenation properties allowing
retrieval on the alphabet {A, C, G, T} the properties both of the code with-
out commas on the alphabet {R, Y} (.Crick et al., .1976; .Eigen and Schuster,
.1978) and of the flexible code ( .Dounce, .1952). Several consequences of the
subset T0 have been studied with respect to the three two-letter genetic alphabets
(purine/pyrimidine, amino/ceto, strong/weak interaction), the genetic code, the
amino acid frequencies in proteins and the complementary paired DNA sequence
(.Arquès and Michel, .1996). A new property, precisely an evolutionary property,
of the C3 code X0 is identified in this paper.

1.4. Identification of unexpected frequency asymmetries.As the trinucleotides
in T0 (resp. T1, T2) have a preferential occurrence in frame 0 (resp. 1, 2)
(Table 1), the global mean frequency of T0 (resp. T1, T2) in frame 0 (resp. 1,
2) will be expected to be greater than the global mean frequencies of T1 and
T2 (resp. T0 and T2, and T0 and T1) in frame 0 (resp. 1, 2). Furthermore, the
complementarity property of the C3 code X0 would imply several symmetries
with the frequencies of T0, T1, T2 in the three frames, in particular the same
frequency of T1 and T2 in frame 0 (detailed in Section 3). In Section 2, in
order to verify these quantitative consequences of the subset T0, the occurrence
frequencies of T0, T1, T2 are computed for each codon position (after the start
trinucleotide ATG and before the stop trinucleotide TAA, TAG or TGA) in the
three frames of protein genes of higher eukaryotes (large gene populations of
primates, rodents, (other) mammals and (other) vertebrates). The strong statistical
properties associated with the subset T0, e.g. the preferential occurrence of T0

(resp. T1, T2) in the frame 0 (resp. 1, 2), are indeed observed in eukaryotic
protein genes. However, several frequency asymmetries are identified in protein
genes which are in contradiction with the complementarity property of the C3

code X0.
In contrast to the protein genes, the 5′ and 3′ regions have no protein cod-

ing function. The previous method applied to the 5′ and 3′ regions of higher
eukaryotes, i.e. the computation of the occurrence frequencies of T0, T1, T2 for
each codon position in the three extended frames before ATG (5′ regions) and
after TAA, TAG or TGA (3′ regions), shows indeed other statistical properties,
in particular a frequency of T0 greater than the frequencies of T1 and T2 whatever
the frame.

1.5. An evolutionary C3 code. An evolutionary process by substitutions of nu-
cleotides will allow an explanation of the frequency asymmetries observed in
eukaryotic protein genes. The evolutionary model which will be tested in Sec-
tion 3, is based on two processes.

(i) A construction process generating simulated primitive genes according
to an independent mixing of the 22 trinucleotides of the subset T0 with
equiprobability (1/22). These primitive genes have 22 among 64 trinu-
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cleotides and frequency symmetries (due to the complementarity property
of T0) which are not observed in the real actual protein genes.

(ii) An evolutionary process based on substitutions in the three trinucleotide
sites transforming the simulated primitive genes into simulated actual genes.
Substitutions with different rates in the sites of trinucleotides of T0 allow
generation of the trinucleotides of T1 and T2 according to a non-balanced
way and retrieval of the frequency asymmetries of the real actual protein
genes. Therefore, these asymmetries are related to a new property, namely
an evolutionary property, of the C3 code X0. The measure of these asym-
metries in the model quantifies this evolutionary property, i.e. the number
of substitutions. According to the degeneracy of the genetic code, the high-
est substitution rate is expected to occur in the third codon site, which is
observed in the model. Indeed, after ≈ 4 substitutions per codon in the
three codon sites in the proportions ≈ 0.1,≈ 0.1 and ≈ 0.8 respectively,
the simulated actual genes are correlated with the real actual genes.

The 5′ and 3′ regions surround the protein genes and can be subjected to a
high rate of substitutions as they have no protein coding function (no reading
frame). These 5′ and 3′ regions appear as a limit case (high substitution rate) of
the evolutionary process of protein genes. The same model, i.e. with the same
substitution rates ≈ 0.1,≈ 0.1 and ≈ 0.8 in the three codon sites, will, after
≈ 22 substitutions per codon, indeed retrieve the statistical properties observed
in the three frames of the 5′ and 3′ regions.

2. A QUANTITATIVE STUDY OF THE SUBSET T0 IN THE PROTEIN

CODING GENES, 5′ AND 3′ REGIONS OF EUKARYOTES

2.1. Method. Let w be a trinucleotide in T ={AAA, . . ., TTT} (64 trinuc-
leotides). Let f ∈ {0, 1, 2} be a frame determined by a series of trinucleotides
in a gene s of a population F . The frame f = 0 is the reading frame established
by the start trinucleotide ATG up to a stop trinucleotide TAA, TAG or TGA and
the frames f = 1 and f = 2 are the frame 0 shifted by one and two nucleotides
respectively in the 5′–3′ direction. The concept of frame is extended to the 5′ and
3′ regions by continuing a series of trinucleotides before ATG (5′ region) and after
TAA, TAG or TGA (3′ region). By choosing the stop trinucleotide TAA as an
example, f = 0 is the following frame . . ., NNN, ATG, NNN, . . ., NNN, TAA,
NNN, . . . and f = 1, . . ., NNA, TGN, . . ., NNT, AAN, . . . and f = 2, . . ., NAT,
GNN, . . ., NTA, ANN, . . . (N being any nucleotide). Therefore, the population
F containing the genes s read in the frame f is noted Ff . By representing the
5′–3′ DNA direction by an axis whose origin is either ATG or a stop trinucleotide,
the algebraic position d in a given frame f is defined as being the number of
trinucleotides before ATG (5′ region, d < 0), after ATG (5′ part of a protein
gene, d > 0), before a stop trinucleotide (3′ part of a protein gene, d < 0) and
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after a stop trinucleotide (3′ region, d > 0). A positive (resp. negative) position
is then related to the 5′–3′ (resp. 3′–5′) direction. For example, d = 10 in f = 0
(resp. f = 1, f = 2) is the tenth codon after ATG (resp. TGN, GNN) or after
the chosen stop trinucleotide TAA (resp. NNT, NTA) and d = −10 in f = 0
(resp. f = 1, f = 2) is the tenth codon before ATG (resp. TGN, GNN) or
before the chosen stop trinucleotide TAA (resp. NNT, NTA). For a given frame,
a trinucleotide w at the algebraic position d is noted wd. Let Tg be the subset of
trinucleotides having a preferential occurrence in the frame g ∈{0, 1, 2} (Table 1).
In a given frame f of a gene s, the function

δd(Tg) =
{

1 if wd ∈ Tg

0 if wd /∈ Tg

determines if the trinucleotide w at the position d belongs or not to Tg with
g = 0, 1, 2. Then, the occurrence probability Pd(Tg, Ff ) of a subset Tg at the
trinucleotide position d in a gene population Ff , is

Pd(Tg, Ff ) =
∑
s∈Ff

δd(Tg)

/
n(wd)

where n(wd) is the total number of trinucleotides w at the position d in the gene
population Ff .

This probability function is represented as a curve as follows: the abscissa
shows the position d in trinucleotides, by varying d in a given range, e.g.
[2, 200] (5′ parts of protein genes or 3′ regions) and [−200,−2] (3′ parts of
protein genes or 5′ regions), and the ordinate gives the occurrence probability of
Pd(T0, Ff ), Pd(T1, Ff ) and Pd(T2, Ff ) in a protein gene population Ff .

REMARKS:

(i) For readability reasons, the ATG, the stop and the first (d = 1 and d = −1)
conserved trinucleotides are not represented in the curves.

(ii) Pd(T f , Ff ) > Pd(Tg, Ff ), f, g ∈ {0, 1, 2} and g 6= f , for any position
d in the three frames f ∈ {0, 1, 2} of a protein gene population Ff as
T0, T1, T2 have a preferential occurrence in the frames 0, 1 and 2 respec-
tively (Table 1).

(iii) Pd(T0, H f ) = 22/64 = 0.34375 and Pd(T1, H f ) = Pd(T2, H f ) = 21/64 =
0.328125 for any position d in the three frames f ∈ {0, 1, 2} of a random
gene population H f generated with an independent mixing of the four
nucleotides A, C, G and T with equiprobability (1/4).

The large gene populations F of higher eukaryotes analyzed here are:
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Protein (coding) genes (P)
5′ regions (R5) 5′ parts (P5) and 3′ parts (P3) 3′ regions (R3)

Humans + Rodents 7745 sequences 20,345 sequences 15,756 sequences
+ Mammals + F = R5−HRMV F = P5−HRMV F = R3−HRMV
Vertebrates (HRMV) and F = P3−HRMV
Humans (HUM) 2933 sequences 7507 sequences 5915 sequences

F = R5−HUM F = P5−HUM F = R3−HUM
and F = P3−HUM

Rodents (ROD) 3134 sequences 7594 sequences 5919 sequences
F = R5−ROD F = P5−ROD F = R3−ROD

and F = P3−ROD
Mammals (MAM) 721 sequences 2586 sequences 1869 sequences

F = R5−MAM F = P5−MAM F = R3−MAM
and F = P3−MAM

Vertebrates (VRT) 957 sequences 2658 sequences 2053 sequences
F = R5−VRT F = P5−VRT F = R3−VRT

and F = P3−VRT

These large populations, obtained from EMBL Nucleotide Sequence Data Library
Release 47 (June 1996) in the same way as described in previous studies (see,
e.g., .Arquès and Michel (.1987, .1990) for a description of data acquisitions),
allow stable frequencies (consequence of the law of large numbers, .Arquès and
Michel (.1990), Section 2.3.3).

2.2. Results.

2.2.1. Protein coding genes of eukaryotes. Figures 2a, b show that the proba-
bility curve T0 is, as expected, greater than the two curves T1 and T2, for any trin-
ucleotide position d in the frame 0 of the 5′ parts (Fig. 2a: Pd(Tg,P5−HRMV0))
and the 3′ parts (Fig. 2b: Pd(Tg,P3−HRMV0)) of protein genes of humans, ro-
dents, mammals and vertebrates. The curve T0 is globally horizontal with an
average frequency around 49% in P−HRMV0 (P5−HRMV0 and P3−HRMV0)
(Table 2a). The two curves T1 and T2 are also globally horizontal but unexpect-
edly distinct (Fig. 2a, b). Indeed, the average frequency of T1 around 28.5% is
greater than the frequency of T2 around 22.5% in P−HRMV0 (Table 2a). The
probability difference Pd(T1,P−HRMV0)−Pd(T2,P−HRMV0) ≈ 0.06 in frame 0
cannot be explained by the difference 1/64 ≈ 0.016 consequent on the fact that
T1 has one stop trinucleotide less than T2 (TAG ∈ T1 and TAA,TGA ∈ T2, Ta-
ble 1) and is a first contradiction with the expected equality resulting from the
complementarity property of the C3 code X0 (self-complementarity of T0 and com-
plementarity of T1 and T2). The probabilities in frame 0 can be represented by the
following set Q(P0) of inequalities: Pd(T0,P−HRMV0) > Pd(T1,P−HMRV0) >

Pd(T2,P−HMRV0).
The horizontally as well as the frequency of these three curves are retrieved

by increasing the trinucleotide position d, e.g. [2, 500] and [−500,−2], in the
frame 0 of protein genes of humans, rodents, mammals and vertebrates (data not
shown).
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Figure 2. (a) Probability Pd(Tg, F0) of T0,T1 and T2 at the trinucleotide position d
in frame 0 of the 5′ regions (F0 = R5−HRMV0) and the 5′ parts of protein coding
genes (F0 = P5−HRMV0) of humans, rodents, mammals and vertebrates (HRMV0).
Three distinct horizontal curves T0,T1,T2 in decreasing probabilities occur in the protein
coding genes. The horizontal curve T0 is slightly greater than the two mixed curves T1
and T2 in the 5′ regions, similar to the two other frames 1 (Fig. 3a) and 2 (Fig. 4a).
(b) Probability Pd(Tg, F0) of T0,T1 and T2 at the trinucleotide position d in frame 0
of the 3′ parts of protein coding genes (F0 = P3−HRMV0) and the 3′ regions (F0 =
R3−HRMV0) of humans, rodents, mammals and vertebrates (HRMV0). Three distinct
horizontal curves T0,T1,T2 in decreasing probabilities occur in the protein coding genes.
The horizontal curve T0 is greater than the two mixed curves T1 and T2 in the 3′ regions,
similar to the two other frames 1 (Fig. 3b) and 2 (Fig. 4b).

These results in frame 0 are also observed with each protein gene subpopulation
(data not shown): humans (Pd(Tg,P5−HUM0) and Pd(Tg,P3−HUM0)), rodents
(Pd(Tg,P5−ROD0) and Pd(Tg,P3−ROD0)), mammals (Pd(Tg,P5−MAM0) and
Pd(Tg,P3−MAM0)) and vertebrates (Pd(Tg,P5−VRT0) and Pd(Tg,P3−VRT0)).

Figures 3a, b (resp. Fig. 4a, b) show that the probability curve T1 (resp. T2)
is, as expected, greater than the two curves T2 and T0 (resp. T0 and T1), for any
trinucleotide position d in frame 1 (resp. 2) of the 5′ and 3′ parts of protein genes
of humans, rodents, mammals and vertebrates (Fig. 3a: Pd(Tg,P5−HRMV1) and
Fig. 3b: Pd(Tg,P3−HRMV1)) (resp. Fig. 4a: Pd(Tg,P5−HRMV2) and Fig. 4b:
Pd(Tg,P3−HRMV2)). Note that the curve T1 (resp. T2) has the highest proba-
bility in the shifted frame 1 (resp. 2) even if T0 has one trinucleotide more than
T1 or T2. In frame 1, the three curves T1, T2, T0 are globally horizontal with an
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Figure 3. (a) Probability Pd(Tg, F1) of T0,T1 and T2 at the trinucleotide position d
in frame 1 of the 5′ regions (F1 = R5−HRMV1) and the 5′ parts of protein coding
genes (F1 = P5−HRMV1) of humans, rodents, mammals and vertebrates (HRMV1).
Three distinct horizontal curves T1,T2,T0 in decreasing probabilities occur in the protein
coding genes. In contrast to the protein coding genes, the horizontal curve T0 is slightly
greater than the two mixed curves T1 and T2 in the 5′ regions, similar to the two other
frames 0 (Fig. 2a) and 2 (Fig. 4a). (b) Probability Pd(Tg, F1) of T0,T1 and T2 at
the trinucleotide position d in frame 1 of the 3′ parts of protein coding genes (F1 =
P3−HRMV1) and the 3′ regions (F1 = R3−HRMV1) of humans, rodents, mammals
and vertebrates (HRMV1). Three distinct horizontal curves T1,T2,T0 in decreasing
probabilities occur in the protein coding genes. In contrast to the protein coding genes,
the horizontal curve T0 is greater than the two mixed curves T1 and T2 in the 3′ regions,
similar to the two other frames 0 (Fig. 2b) and 2 (Fig. 4b).

average frequency around 43, 30.5 and 26.5% respectively (Table 2a). The prob-
abilities in frame 1 can be represented by the following set Q(P1) of inequalities:
Pd(T1,P−HRMV1) > Pd(T2,P−HRMV1) > Pd(T0,P−HRMV1). In frame 2, the
three curves T2, T0, T1 are globally horizontal with an average frequency around
45, 32 and 23% respectively (Table 2a). The probabilities in frame 2 can be
represented by the following set Q(P2) of inequalities: Pd(T2,P−HRMV2) >

Pd(T0,P−HRMV2) > Pd(T1,P−HMRV2). There is a second contradiction with
the complementarity property of the C3 code X0 which would have led to the
following inequalities in frame 1: Pd(T1,P−HRMV1) > Pd(T0,P−HRMV1) >

Pd(T2,P−HRMV1). Indeed, a simulated population Sgenerated, for example, ac-
cording to an independent mixing of the 22 trinucleotides of T0 with equiprobabil-
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Figure 4. (a) Probability Pd(Tg, F2) of T0,T1 and T2 at the trinucleotide position d
in frame 2 of the 5′ regions (F2 = R5−HRMV2) and the 5′ parts of protein coding
genes (F2 = P5−HRMV2) of humans, rodents, mammals and vertebrates (HRMV2).
Three distinct horizontal curves T2,T0,T1 in decreasing probabilities occur in the protein
coding genes. In contrast to the protein coding genes, the horizontal curve T0 is slightly
greater than the two mixed curves T1 and T2 in the 5′ regions, similar to the two other
frames 0 (Fig. 2a) and 1 (Fig. 3a). (b) Probability Pd(Tg, F2) of T0,T1 and T2 at
the trinucleotide position d in frame 2 of the 3′ parts of protein coding genes (F2 =
P3−HRMV2) and the 3′ regions (F2 = R3−HRMV2) of humans, rodents, mammals
and vertebrates (HRMV2). Three distinct horizontal curves T2,T0,T1 in decreasing
probabilities occur in the protein coding genes. In contrast to the protein coding genes,
the horizontal curve T0 is greater than the two mixed curves T1 and T2 in the 3′ regions,
similar to the two other frames 0 (Fig. 2b) and 1 (Fig. 3b).

ity (1/22) leads to the following inequalities, in frame 0: P(T0, S0) > P(T1, S0) =
P(T2, S0), in frame 1: P(T1, S1) > P(T0, S1) > P(T2, S1) and in frame 2:
P(T2, S2) > P(T0, S2) > P(T1, S2).

The horizontality as well as the frequency of the three curves are retrieved
by increasing the trinucleotide position d in frames 1 and 2 of protein genes of
humans, rodents, mammals and vertebrates (data not shown). These results in
frames 1 and 2 are also observed with each protein gene subpopulation (data not
shown).
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Table 2a. Mean frequencies P(Tg, F f ) (%) of T0,T1 and T2 in the three frames f =
0, 1, 2 of protein coding genes (5′ and 3′ parts) of humans, rodents, mammals and
vertebrates (with rounded averages).

Protein coding genes of humans,
rodents, mammals and vertebrates P−HRMV)

Frame 0
5′ parts 3′ parts Average
P5−HRMV0 P3−HRMV0 P−HRMV0

T0 48.9 48.6 49
T1 28.6 28.8 28.5
T2 22.5 22.6 22.5

Frame 1
5′ parts 3′ parts Average
P5−HRMV1 P3−HRMV1 P−HRMV1

T0 26.2 26.4 26.5
T1 42.9 43.0 43
T2 30.9 30.6 30.5

Frame 2
5′ parts 3′ parts Average
P5−HRMV2 P3−HRMV2 P−HRMV2

T0 32.0 32.1 32
T1 22.9 23.2 23
T2 45.1 44.7 45

2.2.2. 5′ and 3′ regions of eukaryotes. In contrast to the eukaryotic protein
genes, the probability curve T0 is greater than the probability curves T1 and T2,
whatever the frame of the 5′ and 3′ regions of eukaryotes. Curves T1 and T2 are
mixed (frame 0 of the 5′ regions (Fig. 2a): Pd(Tg,R5−HRMV0), frame 0 of the
3′ regions (Fig. 2b): Pd(Tg,R3−HRMV0), frame 1 of the 5′ regions (Fig. 3a):
Pd(Tg,R5−HRMV1), frame 1 of the 3′ regions (Fig. 3b): Pd(Tg,R3−HRMV1),
frame 2 of the 5′ regions (Fig. 4a): Pd(Tg,R5−HRMV2), frame 2 of the 3′ re-
gions (Fig. 4b): Pd(Tg,R3−HRMV2)). These probabilities which are common to
the 5′ and 3′ regions (R) and independent of the frame f , can be represented by
the following set Q(R f ) of inequalities: P(T0,R f ) > P(T1,R f ) ≈ P(T2,R f ).
Otherwise, the probability curve T0 in the 3′ regions (R3) is greater than the prob-
ability curve T0 in the 5′ regions (R5) for the three frames (Figs. 2a, b, 3a, b, 4a,
b). These results are obvious by smoothing the curves (frame 0 of the 5′ and 3′ re-
gions (Fig. 5a): Pd(Tg,R5−HRMV0) and Pd(Tg,R3−HRMV0), frame 1 of the 5′

and 3′ regions (Fig. 5b): Pd(Tg,R5−HRMV1) and Pd(Tg,R3−HRMV1), frame 2
of the 5′ and 3′ regions (Fig. 5c): Pd(Tg,R5−HRMV2) and Pd(Tg,R3−HRMV2)).
The average frequency of T0 is 35.5% in the 5′ regions (Table 2b) and 38% in the
3′ regions (Table 2c). The average frequencies of T1 and T2 are about 32.25% in
the 5′ regions (Table 2b) and 31% in the 3′ regions (Table 2c).
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Figure 5. (a) Probability Pd(Tg, F0) of T0,T1 and T2 at the trinucleotide position d in
frame 0 of the 5′ regions (F0 = R5−HRMV0) and the 3′ regions (F0 = R3−HRMV0) of
humans, rodents, mammals and vertebrates (HRMV0) (smooth curves). The probability
curve T0 in the 3′ regions is greater than the probability curve T0 in the 5′ regions, similar
to the other frames 1 (Fig. 5b) and 2 (Fig. 5c). (b) Probability Pd(Tg, F1) of T0,T1
and T2 at the trinucleotide position d in frame 1 of the 5′ regions (F1 = R5−HRMV1)

and the 3′ regions (F1 = R3−HRMV1) of humans, rodents, mammals and vertebrates
(HRMV1) (smooth curves). The probability curve T0 in the 3′ regions is greater than
the probability curve T0 in the 5′ regions, similar to the other frames 0 (Fig. 5a) and 2
(Fig. 5c). (c) Probability Pd(Tg, F2) of T0,T1 and T2 at the trinucleotide position d in
frame 2 of the 5′ regions (F2 = R5−HRMV2) and the 3′ regions (F2 = R3−HRMV2) of
humans, rodents, mammals and vertebrates (HRMV2) (smooth curves). The probability
curve T0 in the 3′ regions is greater than the probability curve T0 in the 5′ regions,
similar to the other frames 0 (Fig. 5a) and 1 (Fig. 5b).
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Table 2b. Mean frequencies P(Tg, F f ) (%) of T0,T1 and T2 in the three frames f =
0, 1, 2 and in the rounded average frame of 5′ regions of humans, rodents, mammals and
vertebrates.

5′ regions of humans, rodents, mammals and vertebrates (R5−HRMV)
Frame 0 Frame 1 Frame 2 Average frame
R5−HRMV0 R5−HRMV1 R5−HRMV2 R5−HRMV

T0 35.5 35.1 35.2 35.5
T1 32.5 32.8 32.3 32.5
T2 32.0 32.1 32.5 32

Table 2c. Mean frequencies P(Tg, F f ) (%) of T0,T1 and T2 in the three frames f =
0, 1, 2 and in the rounded average frame of 3′ regions of humans, rodents, mammals and
vertebrates.

3′ regions of humans, rodents, mammals and vertebrates (R3−HRMV)
Frame 0 Frame 1 Frame 2 Average frame
R3−HRMV0 R3−HRMV1 R3−HRMV2 R3−HRMV

T0 37.7 37.7 37.8 38
T1 31.1 31.1 31.1 31
T2 31.2 31.2 31.1 31

These results in the three frames are also observed with each subpopulation
(humans, rodents, mammals, vertebrates) of the 5′ and 3′ regions (data not shown).

3. AN EVOLUTIONARY ANALYTICAL MODEL OF THE SUBSET T0

3.1. Presentation of the model.The three subsets T0, T1, T2 of trinucleotides in
the analyzed gene populations present several statistical properties. The probabil-
ity curves are constant functions of the trinucleotide position (horizontal curves)
in the three frames of protein genes, 5′ and 3′ regions of eukaryotes. There-
fore, these curves can be characterized by their probabilities P(Tg, Ff ) (instead
of Pd(Tg, Ff )) (Table 2a–c). These probabilities are highly statistically signif-
icant as they are computed in a large population (HRMV) and retrieved in its
subpopulations (HUM, ROD, MAM, VRT).

In the protein genes (P), the probabilities P(Tg,P f ) of T0, T1, T2 in the three
frames f = 0, 1, 2 of P can be represented by three sets of inequalities, Q(P0)

in frame 0: P(T0,P0) > P(T1,P0) > P(T2,P0), Q(P1) in frame 1: P(T1,P1) >

P(T2,P1) > P(T0,P1) andQ(P2) in frame 2: P(T2,P2) > P(T0,P2) > P(T1,P2)

(Table 2a). As detailed in Section 2.2, these probability inequalities seem to be
in contradiction with the complementarity property of the C3 code X0.

In the 5′ and 3′ regions (R), the probabilities P(Tg,R f ) of T0, T1, T2 in the three
frames f = 0, 1, 2 of R are independent of the frame f and can be associated with
the set of inequalities Q(R f ): P(T0,R f ) > P(T1,R f ) ≈ P(T2,R f ) (Table 2b,
c).

A new property of the subset T0 related to evolution by substitution is stud-
ied in this section. Precisely, the problem investigated here is whether a unique
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evolutionary analytical model can explain the properties of the subsets T0, T1, T2

observed in the three frames of actual protein genes, and the 5′ and 3′ regions,
in particular the asymmetries observed in protein genes and the statistical prop-
erties observed in the three frames of 5′ and 3′ regions. The main evolutionary
process of DNA sequences is determined by substitutions of nucleotides. Edit-
ing of RNA ( .Benne et al., .1986) by insertions and deletions of nucleotides, is an
evolutionary process only observed in particular protein genes (mainly mitochon-
drial transcripts of the kinetoplastid protozoa and Physarum polycephalum) as it
destroys the reading frame (reviews .Benne, .1989; .Feagin, .1990; .Simpson, .1990;
.Stuart, .1991). However, RNA editing also occurs in the 5′ and 3′ regions, with a
reduced extent compared with the protein genes (e.g. .Feagin et al., .1988; .Shaw et
al., .1988). Therefore, as the actual protein genes have a preferential occurrence
of the subset T0 (in frame 0; note also that P(T0,P0) > P(T2,P2) > P(T1,P1) in
Table 2a) and as the main process of gene evolution is determined by nucleotide
substitutions, the model which will be tested, is based on two processes.

(i) A construction process based on an independent mixing of the 22 trinu-
cleotides of T0 with equiprobability (1/22).

(ii) An evolutionary process based on substitutions in the three trinucleotide
sites.

Such models based on two successive processes, construction and evolution (sub-
stitutions, insertions and deletions of nucleotides), have already been developed
on the purine/pyrimidine alphabet ( .Arquès and Michel, .1990, .1992, .1993, .1994).

3.2. Method. In order to determine the exact probabilities of T0, T1, T2 after
substitutions, the analytical solutions giving the probabilities of the eight trinu-
cleotides on the alphabet {R, Y} after a unique substitution rate per codon ( .Arquès
and Michel, .1994) are generalized both to the 64 trinucleotides on the alphabet
{A, C, G, T} and to the three substitution rates p,q and r = 1 − p− q of the
three codon sites respectively.

By convention, in the following, the indexes i or j ∈ [1, 64] represent the
trinucleotides AAA, . . ., TTT in the alphabetical order. The occurrence proba-
bility Pi (t + dt) of a trinucleotide i at a time t + dt is equal to the occurrence
probability Pi (t) of this trinucleotide i at the time t minus the substitution proba-
bility of this trinucleotide i during [t, t+dt] and plus the substitution probabilities
of the trinucleotides j, j 6= i , into the trinucleotide i during [t, t + dt]:

Pi (t + dt) = Pi (t)− αdt Pi (t)+ αdt
64∑
j=1

P( j → i )Pj (t) (1)

where α is the probability that a trinucleotide is subjected to one substitution
during a unit interval of time and where P( j → i ) is the substitution probability
of a trinucleotide j, j 6= i , into a trinucleotide i . The probability P( j → i ) is
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equal to 0 if the substitution is impossible ( j is different from i , and j and i differ
by more than one nucleotide as dt is assumed to be small enough so that a codon
cannot substitute successively twice during [t, t + dt]), otherwise it is given in
the function of the three substitution rates p,q and r = 1 − p− q in the three
codon sites respectively (matrix A, Table 3). For example with i = 1, P(AAC
→ AAA) = P(AAG → AAA) = P(AAT → AAA) = r/3, P(ACA → AAA)
= P(AGA → AAA) = P(ATA → AAA) = q/3, P(CAA → AAA) = P(GAA
→ AAA) = P(TAA → AAA) = p/3 and P( j → AAA) = 0 with j /∈ {AAC,
AAG, AAT, ACA, AGA, ATA, CAA, GAA, TAA}. Formula (1) considers only
the case of one substitution during dt as the case of several substitutions leads
to negligible terms function of dt2.

Table 3. Substitution matrix A (64, 64) of the 4096 trinucleotide substitutions given in
the function of the three substitution rates p,q and r = 1 − p− q of the three codon
sites respectively. The lines and the columns correspond to the trinucleotides given in
alphabetical order. The matrix A (64, 64) is symmetrical, i.e. the lines or the columns
can correspond to the trinucleotides before or after substitutions. The square matrix A
can be represented by a square block matrix B (4, 4) whose four diagonal elements
are formed by four identical square submatrices M (16, 16) (Table 4) and whose 12
non-diagonal elements are formed by 12 identical square submatrices (p/3)Id (16, 16).

1: 16:17: 32:33: 48:49: 64:
A A C C G G T T· · · · · · · · · · · ·
A T A T A T A T
A T A T A T A T

1:AAA
·
· M (p/3)Id (p/3)Id (p/3)Id
·

16:ATT

17:CAA
·
· (p/3)Id M (p/3)Id (p/3)Id
·

32:CTT

33:GAA
·
· (p/3)Id (p/3)Id M (p/3)Id
·

48:GTT

49:TAA
·
· (p/3)Id (p/3)Id (p/3)Id M
·

64:TTT

With an appropriate unit of time, α = 1 (i.e. one substitution per codon per
unit of time in average and, therefore, the time t is then equivalent to the mean
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number of substitutions per codon) and formula (1) becomes

Pi (t + dt)− Pi (t)

dt
≈ P′i (t) = −Pi (t)+

64∑
j=1

P( j → i )Pj (t). (2)

For example, a sequence of 100 codons after t = 0.1 substitutions per codon
according to the site proportions p = 0.2,q = 0.3 and r = 1− 0.2− 0.3 = 0.5
means that 100 × 0.1 = 10 codons, randomly chosen in the sequence, have
mutated, 10× 0.2 = 2 codons in the first site, 10× 0.3 = 3 codons in the second
site and 10× 0.5 = 5 codons in the third site.

By considering the column vector P(t) = [Pi (t)]1≤i≤64 made of the 64Pi (t)
and the substitution matrix A (64, 64) of the 4096 trinucleotide substitutions
P( j → i ) (Table 3), the differential equation (2) can be represented by the
following matrix equation

P′(t) = −P(t)+ A · P(t) = (A− Id) · P(t)
where the symbol · represents the matrix product.

The real matrix A is symmetrical (see below). Therefore, the real matrix A−Id
is symmetrical. Then, it exists as an eigenvector matrix Q and a diagonal matrix
D of characteristic roots (λk − 1) (where λk are the characteristic roots of A
ordered in the same way as the eigenvector columns in Q) so that A − Id =
Q · D · Q−1. Then,

P′(t)= Q · D · Q−1 · P(t)
Q−1 · P′(t)= (Q−1 · P(t))′ = D · Q−1 · P(t).

This equation has the classical solution

Q−1 · P(t) = eDt · Q−1 · P(0)
where eDt is the diagonal matrix of exponential characteristic roots e(λk−1)t .
Finally,

P(t) = Q · eDt · Q−1 · P(0).
The characteristic roots (λk − 1) of the matrix A− Id are deduced from the

characteristic roots λk of the matrix A which can be obtained by determining the
roots of the characteristic equation det(A− λId) = 0 of A.

Table 4. Square submatrix M (16, 16) forming the four diagonal elements of the square
block matrix B (4, 4) of the substitution square matrix A (64, 64) (Table 3). The square
matrix M (16, 16) is symmetrical and can be represented by a square block matrix C
(4, 4) whose four diagonal elements are formed by four identical square submatrices N
(4, 4) (Table 6) and whose 12 non-diagonal elements are formed by 12 identical square
submatrices (q/3)Id (4, 4) (Table 7).

N (q/3)Id (q/3)Id (q/3)Id
(q/3)Id N (q/3)Id (q/3)Id
(q/3)Id (q/3)Id N (q/3)Id
(q/3)Id (q/3)Id (q/3)Id N
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Table 5. Square block matrix B (4, 4) (Table 3) after linear combinations.

M − (p/3)Id 0 0 0
0 M + pId 0 0
0 (2p/3)Id M − (p/3)Id 0
0 (p/3)Id 0 M − (p/3)Id

The substitution square matrix A (64, 64) (Table 3) can be represented by the
square block matrix B (4, 4) whose four diagonal elements are formed by four
identical square submatrices M (16, 16) (Table 4) and whose 12 non-diagonal
elements are formed by 12 identical square submatrices (p/3)Id (16, 16) (the
product of the identity matrix (16, 16) and the parameter p/3). The square block
matrix B (4, 4) (Table 3) after linear combinations (Table 5) leads to the following
determinant for the matrix A− λId

det(A− λId)= det3(M − λId− (p/3)Id) det(M − λId+ pId)

= det3(M − (λ+ p/3)Id) det(M − (λ− p)Id). (3)

The submatrix M (Table 4) can be represented by the square block matrix C (4, 4)
whose four diagonal elements are formed by four identical square submatrices N
(4, 4) (Table 6) and whose 12 non-diagonal elements are formed by 12 identical
square submatrices (q/3)Id (4, 4) (Table 7). Therefore, the determinant for the
matrix M − µId is as before

det(M − µId) = det3(N − µId− (q/3)Id) det(N − µId+ qId).

By substituting in (3) with µ = λ+ p/3 or µ = λ− p,

det(A− λId)= [det3(N − (λ+ p/3)Id− (q/3)Id) det(N − (λ+ p/3)Id+ qId]3

× det3(N − (λ− p)Id− (q/3)Id) det(N − (λ− p)Id+ qId)

= det9(N − (λ+ p/3+ q/3)Id) det3(N − (λ+ p/3− q)Id)

× det3(N − (λ− p+ q/3)Id) det(N − (λ− p− q)Id). (4)

Table 6. Square submatrix N (4, 4) forming the four diagonal elements of the square
block matrix C (4, 4) (Table 4).

0 r/3 r/3 r/3
r/3 0 r/3 r/3
r/3 r/3 0 r/3
r/3 r/3 r/3 0

Table 7. Square submatrix (q/3)Id (4, 4) forming the 12 non-diagonal elements of the
square block matrix C (4, 4) (Table 4).

q/3 0 0 0
0 q/3 0 0
0 0 q/3 0
0 0 0 q/3
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The submatrix N (Table 6) after linear combinations similar to the block matrix
B (Table 5) leads to the following determinant for the matrix N − µId:

det(N − µId) = (−µ− r/3)3(−µ+ r ).

By substituting in (4) with µ = λ+ p/3+q/3, µ = λ+ p/3−q, µ = λ− p+q/3
or µ = λ− p− q,

det(A− λId)= [(−(λ+ p/3+ q/3)− r/3)3(−(λ+ p/3+ q/3)+ r )]9

×[(−(λ+ p/3− q)− r/3)3(−(λ+ p/3− q)+ r )]3

×[(−(λ− p+ q/3)− r/3)3(−(λ− p+ q/3)+ r )]3

×(−(λ− p− q)− r/3)3(−(λ− p− q)+ r )

= (−λ− p/3− q/3− r/3)27(−λ− p/3− q/3+ r )9

×(−λ− p/3+ q − r/3)9(−λ+ p− q/3− r/3)9

×(−λ− p/3+ q + r )3(−λ+ p− q/3+ r )3

×(−λ+ p+ q − r/3)3(−λ+ 1).

Therefore, there are eight characteristic roots λk : λ1 = 1 (order of the associated
space eigenvector: 1), λ2 = p+q−r/3 (order of the associated space eigenvector:
3), λ3 = p − q/3 + r (order of the associated space eigenvector: 3) λ4 =
−p/3+q+ r (order of the associated space eigenvector: 3), λ5 = p−q/3− r/3
(order of the associated space eigenvector: 9), λ6 = −p/3 + q − r/3 (order
of the associated space eigenvector: 9), λ7 = −p/3 − q/3 + r (order of the
associated space eigenvector: 9) and λ8 = −p/3 − q/3 − r/3 = −1/3 (order
of the associated space eigenvector: 27). The eigenvectors associated with these
eight characteristic roots λk computed by formal calculus are independent of
p,q, r (data not shown).

The independent mixing of the 22 trinucleotides of T0 with equiprobability
(1/22) leads to the following initial vector P(0) = [1/22, 1/22, 0, 1/22, 0, 1/22,
0, 0, 0, 0, 0, 0, 0, 1/22, 0, 1/22, 0, 0, 1/22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1/22, 1/22, 0, 1/22, 1/22, 1/22, 1/22, 0, 1/22, 0, 0, 0, 1/22, 0, 1/22, 1/22,
1/22, 0, 1/22, 0 , 1/22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/22, 0, 1/22]. The
formula P(t) = Q · eDt · Q−1 · P(0) with the 64 trinucleotide probabilities Pj (0)
before the substitution process (t = 0), the diagonal matrix of characteristic roots
e(λk−1)t , the eigenvector matrix Q and its inverse Q−1, allows deduction of the
64 trinucleotide probabilities Pi (t) in frame 0 after t substitutions in function
of the three substitution rates p,q and r = 1 − p− q of the three codon sites
respectively (the indexes i or j representing the trinucleotides AAA, . . ., TTT in
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the alphabetical order). For example with the trinucleotide AAA (i = 1),

P1(t)= 1

704
[9e−

4
3 t + e−

4
3 pt + 3e−

4
3 (1−p)t + 7e−

4
3 qt

+e−
4
3 (1−q)t + 5e−

4
3 (p+q)t − 5e−

4
3 (1−p−q)t + 11].

NOTE. limt→∞ P1(t) = 11/704 = 1/64.
Therefore, the occurrence probabilities P(Tg, f = 0, t) of the subsets T0, T1, T2

of trinucleotides in the frame f = 0 at the substitution step t are equal to
P(Tg, 0, t) =∑i∈Tg

Pi (t).
After simplification,

P(T0, 0, t)= 1

352
[61e−

4
3 t + 33e−

4
3 pt + 13e−

4
3 (1−p)t + 49e−

4
3 qt

+29e−
4
3 (1−q)t + 13e−

4
3 (p+q)t + 33e−

4
3 (1−p−q)t + 121]

P(T1, 0, t)= 1

704
[−61e−

4
3 t − 29e−

4
3 pt − 25e−

4
3 (1−p)t − 49e−

4
3 qt

−29e−
4
3 (1−q)t − e−

4
3 (p+q)t − 37e−

4
3 (1−p−q)t + 231]

P(T2, 0, t)= 1

704
[−61e−

4
3 t − 37e−

4
3 pt − e−

4
3 (1−p)t − 49e−

4
3 qt

−29e−
4
3 (1−q)t − 25e−

4
3 (p+q)t − 29e−

4
3 (1−p−q)t + 231]

NOTES. ∑
g=0,1,2

P(Tg, 0, t)= 1

lim
t→∞ P(T0, 0, t)= 121/352 = 22/64

and

lim
t→∞ P(T1, 0, t) = lim

t→∞ P(T2, 0, t) = 231/704 = 21/64

(remember that the subsets T0, T1 and T2 have 22, 21 and 21 trinucleotides re-
spectively).

The occurrence probabilities P(Tg, f = 1, t) (resp. P(Tg, f = 2, t)) of
T0, T1, T2 in the shifted frame f = 1 (resp. f = 2) at the substitution step
t are obtained by determining the 64 trinucleotide probabilities P(i, f = 1, t)
(resp. P(i, f = 2, t)) in the shifted frame f = 1 (resp. f = 2). The proba-
bility P(i, 1, t) (or P(i, 2, t)) of a trinucleotide i given in alphabetical order in
frame 1 (or 2) is obtained from the product of the two probabilities P( j, 0, t)
and P(k, 0, t) associated with the concatenation of the two trinucleotides j and
k in frame 0 generating the trinucleotide i in frame 1 (or 2). For example, the
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trinucleotide AAA (i = 1) in frame f = 1 is obtained by the concatenation of the
two types of trinucleotides NAA and ANN in frame 0. Therefore, the probability
P(i = 1, 1, t) of the trinucleotide AAA (i = 1) in the frame f = 1 is equal to
the product of the probability of the trinucleotides NAA, i.e. AAA, CAA, GAA
or TAA ( j = 1, 17, 33, 49) in frame 0 and the probability of the trinucleotides
ANN (k = 1, . . . , 16) in frame 0. Similarly, the probability P(i = 1, 2, t) of
the trinucleotide AAA (i = 1) in the frame f = 2 is equal to the product of the
probability of the trinucleotides NNA ( j = 1 + 4 × j ′ with j ′ = 0, . . . , 15) in
frame 0 and the probability of the trinucleotides AAN (k = 1, . . . , 4) in frame 0:

P(2, 1, t) =
∑

j=1,17,33,49

P( j, 0, t)×
∑

k=1,...,16

P(k, 0, t)

and

P(2, 2, t) =
∑

j=1+4× j ′
j ′=0,...,15

P( j, 0, t)×
∑

k=1,...,4

P(k, 0, t)

After simplification,

P(T0, 1, t)= 1

3872
[−15e−

4
3 t − 275e−

4
3 pt + 33e−

4
3 (1−p)t − 154e−

4
3 qt

−20e−
4
3 (1−q)t − 98e−

4
3 (p+q)t − 154e−

4
3 (1−p−q)t + 1331]

P(T1, 1, t)= 1

7744
[21e−

4
3 t + 715e−

4
3 pt + 231e−

4
3 (1−p)t + 847e−

4
3 qt

+115e−
4
3 (1−q)t + 133e−

4
3 (p+q)t + 869e−

4
3 (1−p−q)t + 2541]

P(T2, 1, t)= 1

7744
[9e−

4
3 t − 165e−

4
3 pt − 297e−

4
3 (1−p)t − 539e−

4
3 qt

−75e−
4
3 (1−q)t + 63e−

4
3 (p+q)t − 561e−

4
3 (1−p−q)t + 2541]

P(T0, 2, t)= 1

3872
[−15e−

4
3 t − 154e−

4
3 pt − 98e−

4
3 (1−p)t − 154e−

4
3 qt

−20e−
4
3 (1−q)t + 33e−

4
3 (p+q)t − 275e−

4
3 (1−p−q)t + 1331]

P(T1, 2, t)= 1

7744
[9e−

4
3 t − 561e−

4
3 pt + 63e−

4
3 (1−p)t − 539e−

4
3 qt

−75e−
4
3 (1−q)t − 297e−

4
3 (p+q)t − 165e−

4
3 (1−p−q)t + 2541]

P(T2, 2, t)= 1

7744
[21e−

4
3 t + 869e−

4
3 pt + 133e−

4
3 (1−p)t + 847e−

4
3 qt

+115e−
4
3 (1−q)t + 231e−

4
3 (p+q)t + 715e−

4
3 (1−p−q)t + 2541].
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NOTES. ∑
g=0,1,2

P(Tg, 1, t)=
∑

g=0,1,2

P(Tg, 2, t) = 1

lim
t→∞
f=1,2

P(T0, f, t)= 1331/3872 = 22/64

and

lim
t→∞
f=1,2

P(T1, f, t) = lim
t→∞
f=1,2

P(T2, f, t) = 2541/7744 = 21/64.

The numerical results obtained with these analytical solutions have been ver-
ified by computer simulation (simulation of random substitutions in simulated
sequences, see Section 4).

The model (p,q, t) has a solution if, for given values of the two site substitution
parameters p and q, there are values of the codon substitution parameter t verify-
ing the three inequality sets Q(P0): P(T0,P0) > P(T1,P0) > P(T2,P0),Q(P1):
P(T1,P1) > P(T2,P1) > P(T0,P1), Q(P2): P(T2,P2) > P(T0,P2) > P(T1,P2)

and the frequency order of T0, T1, T2 associated with the three frames of ac-
tual protein genes and if there are higher values of t verifying the inequality
set Q(R f ): P(T0,R f ) > P(T1,R f ) ≈ P(T2,R f ) and the frequency order of
T0, T1, T2 with any frame f of actual 5′ and 3′ regions (by assuming that the 5′

and 3′ regions have a greater number of substitutions compared with the protein
genes).

3.3. Results.

3.3.1. Simulation of protein coding genes of eukaryotes. By varying the two
parameters p and q in the range [0, 1] with a step of 0.05 and the parameter
t in the range [0, 30] with a step of 0.1, the model (p,q, t) retrieves the three
inequality sets Q(P0), Q(P1), Q(P2) of actual protein genes and the inequality
set Q(R f ) of the actual 5′ and 3′ regions when p = 0.1± 0.05,q = 0.1± 0.05
and r = 1− p− q = 0.8± 0.1.

At the construction process (t = 0), the model (p = 0.1,q = 0.1, t = 0) leads
to the following expected probabilities, in frame 0: P(T0, 0, 0)
= 1 and P(T1, 0, 0, ) = P(T2, 0, 0) = 0 (Fig. 6a), in frame 1: P(T1, 1, 0) =
0.708, P(T0, 1, 0) = 0.167 and P(T2, 1, 0) = 0.125 (Fig. 6b) and in frame 2:
P(T2, 2, 0) = 0.708, P(T0, 2, 0) = 0.167 and P(T1, 2, 0) = 0.125 (Fig. 6c),
i.e. to the following inequalities, in frame 0: P(T0, 0, 0, ) > P(T1, 0, 0) =
P(T2, 0, 0), in frame 1: P(T1, 1, 0) > P(T0, 1, 0) > P(T2, 1, 0) and in frame 2:
P(T2, 2, 0) > P(T0, 2, 0) > P(T1, 2, 0) which result from the complementarity
property of the C3 code X0. These probability inequalities before the substitution
process differ from the inequalities Q(P0) and Q(P1) of protein genes and from
the inequality set Q(R f ) of the 5′ and 3′ regions. The construction process only
simulates the inequality Q(P2) in frame 2 of protein genes.
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Figure 6. (a) Probability P(Tg, 0, t) of T0,T1 and T2 in frame 0 generated with an
independent mixing of 22 trinucleotides of T0 with equiprobability (1/22) and subjected
to t substitutions per codon according to the proportions p = 0.1 q = 0.1 and r =
1− p− q = 0.8 in the three codon sites respectively. The inequality Q(P0) in frame 0
of protein coding genes is verified for a substitution number t in the range [0,≈ 16].
At t = 4.3 substitutions, the three analytical curves have the occurrence probability
orders of T0,T1,T2 similar to those observed in frame 0 of protein coding genes. The
inequality Q(R0) in frame 0 of the 5′ and 3′ regions is verified for a substitution number
t >≈ 16. (b) Probability P(Tg, 1, t) of T0,T1 and T2 in frame 1 generated with
an independent mixing of the 22 trinucleotides of T0 with equiprobability (1/22) and
subjected to t substitutions per codon according to the proportions p = 0.1 q = 0.1
and r = 1 − p− q = 0.8 in the three codon sites respectively. The inequality Q(P1)

in frame 1 of protein-coding genes is verified for a substitution number t in the range
]0.9, 5.9]. At t = 4.3 substitutions, the three analytical curves have the occurrence
probability orders of T0,T1,T2 similar to those observed in frame 1 of protein coding
genes. The inequality Q(R1) in frame 1 of the 5′ and 3′ regions is verified for a
substitution number t > 22.5. (c) Probability P(Tg, 2, t) of T0,T1 and T2 in frame 2
generated with an independent mixing of the 22 trinucleotides of T0 with equiprobability
(1/22) and subjected to t substitutions per codon according to the proportions p = 0.1
q = 0.1 and r = 1 − p− q = 0.8 in the three codon sites respectively. The inequality
Q(P2) in frame 2 of protein coding genes is verified for a substitution number t in the
range [0, 22.2]. At t = 4.3 substitutions, the three analytical curves have the occurrence
probability orders of T0,T1,T2 similar to those observed in frame 2 of protein coding
genes. The inequality Q(R2) in frame 2 of the 5′ and 3′ regions is verified for a
substitution number t > 22.2.
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The inequality Q(P0) in frame 0 of protein genes exists in the model (p =
0.1,q = 0.1, t) for a substitution number t in the range ]0,≈ 16] (Fig. 6a). The
inequality Q(P1) in frame 1 of protein genes exists in the model (0.1, 0.1, t)
for t in the range ]0.9, 5.9] (Fig. 6b). The inequality Q(P2) in frame 2 of pro-
tein genes exists in the model (0.1, 0.1, t) for t in the range [0, 22.2] (Fig. 6c).
Therefore, the range of substitutions simultaneously verifying these three in-
equalities in the three frames of protein genes is determined by the range of
substitutions in frame 1, i.e. t in the range ]0.9, 5.9]. Furthermore, the model
(0.1, 0.1, t) retrieves the probability order of T0 in frame 0, T1 in frame 1 and
T2 in frame 2 at t = 4.3 : P(T0,P0) = 0.49 (Table 2a) and P(T0, 0, 4.3) ≈ 0.49
(Fig. 6a), P(T1,P1) = 0.43 (Table 2a) and P(T1, 1, 4.3) ≈ 0.45 (Fig. 6b) and
P(T2,P2) = 0.45 (Table 2a) and P(T2, 2, 4.3) ≈ 0.462 (Fig. 6c). Note that the
model (0.1, 0.1, t) allows simulation of another inequality observed in protein
genes: P(T0,P0) > P(T2,P2) > P(T1,P1).

3.3.2. Simulation of the 5′ and 3′ regions of eukaryotes. By increasing the
number t of substitutions, the model (0.1, 0.1, t) allows simulation of the in-
equality Q(R f ) : P(T0,R f ) > P(T1,R f ) ≈ P(T2,R f ) observed in the three
frames of the actual 5′ and 3′ regions.

(i) In frame 0: P(T1, 0, t) ≈ P(T2, 0, t) for t >≈ 16 (Fig. 6a). As P(T0, 0, t)
> P(T1, 0, t) and P(T0, 0, t) > P(T2, 0, t) whatever t , the inequality
Q(R0) in frame 0 of the 5′ and 3′ regions is simulated with the model
(0.1, 0.1, t) for t >≈ 16.

(ii) In frame 1: P(T0, 1, t) > P(T1, 1, t) for t > 22.5 (Fig. 6b). Therefore, the
inequality Q(R1) in frame 1 of the 5′ and 3′ regions is simulated with the
model (0.1, 0.1, t) for t > 22.5.

(iii) In frame 2: P(T0, 2, t) > P(T2, 2, t) for t > 22.2 (Fig. 6c). Therefore, the
inequality Q(R2) in frame 2 of the 5′ and 3′ regions is simulated with the
model (0.1, 0.1, t) for t > 22.2.

The range of substitutions simultaneously verifying these three inequalities in the
three frames of the 5′ and 3′ regions is determined by the range of substitutions
in frames 1 and 2, i.e. t >≈ 22.

4. DISCUSSION

The subset T0 of trinucleotides (Table 1) has a preferential occurrence in protein
genes (frame 0) of prokaryotes and eukaryotes, and the rarity property (6×10−8)

to contain a complementary maximal circular code X0 with two permutated max-
imal circular codes X1 and X2 (C3 code, Section 1.3). The quantitative study of
the three subsets T0, T1, T2 in the three frames 0, 1, 2 of protein genes, and the
5′ and 3′ regions of eukaryotes, has shown that their occurrence frequencies are
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constant for each codon position in the sequences. In protein genes, the frequen-
cies of T0, T1, T2 in frame 0 are 49, 28.5 and 22.5% respectively (Table 2a). In
the 5′ (resp. 3′) regions, these frequencies are 35.5% (resp. 38%), 32.5% (resp.
31%) and 32% (resp. 31%) (Tables 2b, c). This property leads to an application
at the sequence level. Each sequence in a population is classified in T0, T1 or
T2 according to its greatest number of codons belonging to T0, T1 or T2. In the
eukaryotic protein gene population, 94% of sequences are classified in T0, 5%
of sequences in T1 and 1% of sequences in T2. In contrast, in the eukaryotic
5′ (resp. 3′) region populations, 44% (resp. 60%) of sequences are classified in
T0, 34% (resp. 20%) of sequences in T1 and 22% (resp. 20%) of sequences in
T2. By including these values in frame 0 and also those which can be obtained
in the shifted frames (to improve the significance) in some statistical tests, this
application could be used to discriminate protein coding and non-coding genes
and could be added to the other discriminating tests (e.g. .Shulman et al., .1981,
.Shepherd, .1981; .Staden and McLachlan, .1982; .Fickett, .1982; .Smith et al., .1983;
.Blaisdell, .1983).

The evolutionary model tested has a solution correlated with the reality ob-
served in the protein genes, and the 5′ and 3′ regions. Its biological meaning
would suggest that these three types of sequences before substitution (t = 0) are
constructed by trinucleotides. Only 22 among 64 trinucleotides would have been
necessary. The 22 types of trinucleotides as well as the type of their concatena-
tion are determined in the model. Indeed, the 22 trinucleotides are defined by
the subset T0 which contains a C3 code with concatenation properties of flexibil-
ity (Section 1.3) allowing its evolution. The independent concatenation of these
22 trinucleotides with equiprobability is the simplest type of conatenation and
therefore, compatible with a primitive stage of gene evolution. A Markov con-
catenation of trinucleotides would have been too complex at this time. The model
also demonstrates that a substitution process (t > 0) must follow the construction
process in order to simulate the protein genes, and the 5′ and 3′ regions. The
substitution process allows generation of new and totally unexpected inequali-
ties, e.g. the substitution process in frame 1 creates four successive inequalities:
P(T1, 1, t) > P(T0, 1, t) > P(T2, 1, t), P(T1, 1, t) > P(T2, 1, t) > P(T0, 1, t),
then again P(T1, 1, t) > P(T0, 1, t) > P(T2, 1, t) and finally P(T0, 1, t) >
P(T1, 1, t) ≈ P(T2, 1, t) (Fig. 6b). Furthermore, the substitution process de-
creases the initial probabilities of P(T0, 0, t), P(T1, 1, t), P(T2, 2, t) in the frames
0, 1, 2 respectively.

The evolutionary model (p = 0.1,q = 0.1, t = 4.3) allows simulation of the
protein genes by retrieving not only the three sets Q(P0), Q(P1) and Q(P2) of
inequalities and the frequency order of T0, T1, T2 in the three frames respectively
but also several other sets of probability inequalities observed in protein genes
(Table 2a): P(T0,P0) > P(T2,P2) > P(T1,P1) > P(T0,P2) > P(T2,P1) and
(P(T0,P2) − P(T1,P2)) > (P(T1,P0) − P(T2,P0)) > (P(T2,P1) − P(T0,P1))

(numerical results of the analytical solutions not shown). However, the model is
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insufficient to simulate the inequalities associated with the four lowest probabili-
ties P(T1,P0), P(T0,P1), P(T2,P0) and P(T1,P2). Similarly, all observed proba-
bilities cannot exactly be simulated, e.g. the analytical probability P(T1, 1, 4.3) ≈
0.448 (Fig. 6b) is greater than the observed probability P(T1,P1) = 0.43 (Ta-
ble 2a) which is obtained in the model at t ≈ 5.4 (Fig. 6b). The model proposed
can be improved, for example by forbidding the generation of a stop trinucleotide
TAA, TAG or TGA in frame 0 or by suppressing the strong constraint of a con-
stant proportion of substitutions in the three codon sites during all the substitution
process. Nevertheless, the investigation of simple models in a first approach is
essential for reducing the great number of possible combinations and secondly
for obtaining properties which can be used afterwards to develop more general
models containing the simple models. The first hypothesis of model improve-
ment has been tested. An evolutionary model forbidding the generation of a stop
trinucleotide TAA, TAG or TGA in frame 0, developed by a numerical model
(with the substitution matrix (61, 61) there is no formula giving the eigenvectors
and the characteristic roots in a function of the parameters p and q, i.e. the eigen-
vectors and the characteristic roots must be explicitly determined for each value
of the doublet (p,q) in the scanning) or by computer simulation (simulation of
random substitutions in simulated sequences), does not improve the results ob-
tained with the analytical model developed here (data not shown).

The substitutions in the model (p = 0.1,q = 0.1, t = 4.3) occur with the high-
est rate in the third codon site (0.8 representing 4.3×0.8 ≈ 3.5 transformations),
as expected with the degeneracy of the genetic code. They must also occur in the
first and second codon sites but at a weaker rate (0.1 representing 4.3×0.1 ≈ 0.5
transformations for both sites). An evolutionary process with substitutions in the
third codon site only (p = q = 0 and r = 1 − p− q = 1) does not lead to a
similarity with the reality observed in protein genes (data not shown).

The evolutionary model (p = 0.1,q = 0.1, t >≈ 22) allows simulation of
the 5′ and 3′ regions by retrieving the set Q(R f ) of inequalities whatever the
frame. According to this model, the 5′ and 3′ regions have a greater number of
substitutions compared with the protein genes. The absence of statistical prop-
erty associated with a frame observed in the study of the reality of the 5′ and 3′

regions, as well as the existence of a higher evolutionary process in this model
simulating these regions, may be explained by the absence of a protein coding
function in these regions. Finally, as the probability of T0 in the 5′ regions (0.355)
is less than the probability of T0 in the 3′ regions (0.38) (Tables 2b, c), a greater
number of substitutions may have occurred in the 5′ regions compared with the
3′ regions.

The complex behaviour of these analytical curves giving the trinucleotide prob-
abilities under a random evolutionary process, see for example Fig. 6b, is totally
unexpected and implies two remarks. It is impossible to predict the relative
variations of trinucleotides after substitutions without modelling. On the other
hand, even after a great number of substitutions, e.g. 4 and 22 substitutions per
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codon for the protein genes and the regions respectively (Fig. 6a–c), the trace
of primitive disparities between the trinucleotide probabilities are conserved in
the actual genes simulated with the model (p = 0.1,q = 0.1, t) and correlated
with the real actual genes. With other parameters p and q, the behaviour of the
analytical curves is completely different and does not lead to a correlation with
the reality observed (data not shown).

As mentioned in Section 3.2, the time t is equivalent to a mean number of
substitutions per codon. Therefore, the analytical probabilities of T0, T1, T2 in
the three frames after t substitutions can be approximated by computing the
occurrence probabilities of T0, T1, T2 in the three frames in a simulated population
S (having, for example, 100 sequences of 3000 base length to get significant
statistical results) which is generated according to an independent mixing of
the 22 trinucleotides of T0 with equiprobability (1/22) (construction process, i.e.
t = 0) and subjected to t substitutions per codon according to the given site
proportions p and q (r being the complement to 1) randomly applied to each
sequence of S (substitution process, i.e. t > 0).

Furthermore, the replacement of t by −t in the analytical probabilities al-
lows inversion of the evolutionary sense (from the present to the past), i.e. to
analyze the probabilities of T0, T1, T2 in the three frames after back substitu-
tions. In this case, the trinucleotide probabilities Pi (0) before the substitution
process (t = 0) are the trinucleotide probabilities of actual genes. These prob-
abilities are known and can be obtained from gene databases. It should also
be stressed that the trinucleotide probabilities after back substitutions can only
be obtained by analytical solution and not by computer simulation. Indeed, as
the site, the type and the order of previous substitutions are unknown, it is
impossible to reproduce by simulation the effects of back substitutions in the
nucleotide series of actual genes (detailed in .Arquès and Michel, .1994). This
approach analyzing the analytical probabilities of T0, T1, T2 after back substi-
tutions in protein genes, is currently in investigation. Finally, these analytical
solutions could be used in the phylogenetic tree reconstruction and the sequence
alignment.
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